ECE 322
Digital Design with VHDL

Counters and Simple Design Example

Lecture 12
Sequential Logic Review

Chapter 7 Flip-flop, Registers, Counters, and a Simple Processor

In this lecture, we learn how to implement basic sequential blocks using VHDL

- Counters

Example of digital system that make use of sequential logic blocks
Counters
Asynchronous Counters

Up-Counter with T Flip-Flops

(a) Circuit

(b) Timing diagram

A three-bit up-counter
Asynchronous Counters

Down-Counter with T Flip-Flops

(a) Circuit

(b) Timing diagram

A three-bit down-counter
Synchronous Counters

Synchronous Up-Counter with T Flip-Flops

<table>
<thead>
<tr>
<th>Clock cycle</th>
<th>Q_2</th>
<th>Q_1</th>
<th>Q_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Derivation of the synchronous up-counter
Synchronous Counters

Synchronous Up-Counter with T Flip-Flops

(a) Circuit

(b) Timing diagram
A four-bit synchronous up-counter
Counters with Enable & Clear

Synchronous Up-Counter with Enable & Clear Inputs
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
ENTITY upcount IS
 PORT (Clock, Resetn, Enable : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END upcount;

ARCHITECTURE behavioral OF upcount IS
 SIGNAL Count : std_logic_vector(3 DOWNTO 0);
BEGIN
 PROCESS (Clock, Resetn)
 BEGIN
 IF Resetn = '0' THEN
 Count <= "0000";
 ELSIF rising_edge(Clock) THEN
 IF Enable = '1' THEN
 Count <= Count + 1;
 ELSE
 Count <= Count;
 END IF;
 END IF;
 END PROCESS;
 Q <= Count;
END behavioral;
Design Example
A digital system with \(k \) \(n \)-bit registers

Design Example: Bus Structure
Design Example: Bus Structure

Details for connecting registers to a bus
Design Example: Bus Structure

Using a shift register for control
Design Example: Bus Structure

VHDL Code for an n-bit register

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY regn IS
 GENERIC (N : INTEGER := 8) ;
 PORT (R : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;
 Rin, Clock : IN STD_LOGIC ;
 Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;
END regn ;
ARCHITECTURE Behavior OF regn IS
BEGIN
 PROCESS
 BEGIN
 WAIT UNTIL Clock'EVENT AND Clock = '1' ;
 IF Rin = '1' THEN
 Q <= R ;
 END IF ;
 END PROCESS ;
END Behavior ;
VHDL Code for an n-bit tri-state buffer

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY trin IS
 GENERIC (N : INTEGER := 8) ;
 PORT (X : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;
 E : IN STD_LOGIC ;
 F : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;
END trin ;

ARCHITECTURE Behavior OF trin IS
BEGIN
 F <= (OTHERS => 'Z') WHEN E = '0' ELSE X ;
END Behavior ;
Design Example: Bus Structure

VHDL Code for the shift register

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY shiftr IS -- left-to-right shift register with async reset
 GENERIC (K : INTEGER := 4);
 PORT (Resetn, Clock, w : IN STD_LOGIC ;
 Q : BUFFER STD_LOGIC_VECTOR(1 TO K)) ;
END shiftr ;
ARCHITECTURE Behavior OF shiftr IS
BEGIN
 PROCESS (Resetn, Clock)
 BEGIN
 IF Resetn = '0' THEN
 Q <= (OTHERS => '0') ;
 ELSIF Clock'EVENT AND Clock = '1' THEN
 FOR i IN K DOWNTO 2 LOOP
 Q(i) <= Q(i-1) ;
 END LOOP ;
 Q(1) <= w ;
 END IF ;
 END PROCESS ;
END Behavior ;
PACKAGE components IS
 COMPONENT regn -- register
 GENERIC (N : INTEGER := 8) ;
 PORT (R : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;
 Rin, Clock : IN STD_LOGIC ;
 Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;
 END COMPONENT ;

 COMPONENT shiftr -- left-to-right shift register with async reset
 GENERIC (K : INTEGER := 4) ;
 PORT (Resetn, Clock, w : IN STD_LOGIC ;
 Q : BUFFER STD_LOGIC_VECTOR(1 TO K)) ;
 END component ;

 COMPONENT trin -- tri-state buffers
 GENERIC (N : INTEGER := 8) ;
 PORT (X : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;
 E : IN STD_LOGIC ;
 F : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;
 END COMPONENT ;

END components ;
Design Example: Bus Structure

VHDL code for a circuit that swaps the contents of two registers

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.components.all ;

ENTITY swap IS
 PORT (Data : IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
 Resetn, w : IN STD_LOGIC ;
 Clock, Extern : IN STD_LOGIC ;
 RinExt : IN STD_LOGIC_VECTOR(1 TO 3) ;
 BusWires : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0)) ;
END swap ;
Design Example: Bus Structure

VHDL code for a circuit that swaps the contents of two registers

ARCHITECTURE Behavior OF swap IS
 SIGNAL Rin, Rout, Q : STD_LOGIC_VECTOR(1 TO 3);
 SIGNAL R1, R2, R3 : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
 control: shiftr GENERIC MAP (K => 3)
 PORT MAP (Resetn, Clock, w, Q) ;
 Rin(1) <= RinExt(1) OR Q(3) ;
 Rin(2) <= RinExt(2) OR Q(2) ;
 Rin(3) <= RinExt(3) OR Q(1) ;
 Rout(1) <= Q(2) ; Rout(2) <= Q(1) ; Rout(3) <= Q(3) ;
 tri_ext: trin PORT MAP (Data, Extern, BusWires) ;
 reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;
 reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
 reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
 tri1: trin PORT MAP (R1, Rout(1), BusWires) ;
 tri2: trin PORT MAP (R2, Rout(2), BusWires) ;
 tri3: trin PORT MAP (R3, Rout(3), BusWires) ;
END Behavior ;