Trial Division What is Trial Division?

Trial Division is a factoring method involving testing various primes less than the largest integer less than the square root of a non-prime integer until a factor is found.

In our example, we are testing a composite number "n" and assigning the square root of n to "b". We test each consecutive prime number starting from 2, and output the number if it evenly divides n.

Algorithm

trialDiv = proc (n) local b, i, d; d := 0; b := floor(sqrt(n))x ≔ 1; while x < 2 to b do x := nextprime(x);if modp(n,x) = 0 then return x, n/x; end proc;

Simulation

Here, each integer and the time it took to find its first non-trivial factor is are plotted. This plot displays how trial division takes considerably longer each time the number factored is expanded another digit and how it is slower than both the other methods. The simulation follows an exponential growth curve.

Pros and Cons

Pros	Cons
Works best for smaller numbers	Loses efficiency with larger numbers.
88% of all composite numbers have a prime factor under 100	The most resource intensive procedure for factoring
92% of all composite numbers have a prime factor under 1000	Takes the most time.
Will always find a prime factor	Must check every prime from 2 to the square root of the number being factored

Pollard's Rho (p)

Pollard's Rho Algorithm, invented by John Pollard in 1975, is used to find small, non-trivial factors for composite integers. This is done by creating a function that loops until a collision occurs within itself. A collision is defined as an area the function has already encountered.

Algorithm

Simulation

Pros and Cons

Pros	Cons
Can yield a number very quickly depending on the chosen random numbers	Can take a very long time to yield simple factors based on chosen numbers
Considerably more efficient than trial division	Will not always yield a prime factor
Offers a good balance between running time and probability of success	Multiple tests may be necessary to generate a prime factor
Running multiple tests is easy; variables can be manipulated easily	

random prime numbers p and q

chosen by the computer. The range of

primes are then multiplied together to

each is $(1*10^{x}...1*10^{x+1})$. These two

get the number that will be factored

by each method (p*q).

Participants: Alexander Melton, Peter Rodriguez, Paul Mayer, Brandon Huynh Supervised by: Frank Madrid, Dr. Charles Lam Background

Integer/Prime Factorization -Breaking down a composite integer into its prime factors, which when multiplied together results in the original number. -There are several special methods used known as factorization algorithms.

Example of Prime Factorization:

What do these two completely different subjects have anything to do with each other?

Factoring large composite numbers into its prime factors has long been a goal of mathematicians. While several methods do exist with a variability in the degree of success, no definitive way has emerged as superior to all for factoring each number. Rather, different cases require different methods to break these numbers down.

Not all large composites (at least 9 digits long) can easily be factored into smaller prime numbers. For example, semi-prime numbers are difficult to factorize because they are the product of two primes. While testing all primes up to the square root of a number is feasible for smaller numbers, RSA encryption schemes recommend 232 or more digits, a process that can take years with this method, even when using hundreds of computers simultaneously. Therefore other practical methods must be discovered to factor these numbers.

There are two types of factoring methods, general purpose and special purpose. The time taken by general purpose algorithms depends solely on the size of the integer to be factored, while that of special purpose algorithms depend on the size of the smallest prime factor.

The security of many cryptographic systems, such as the RSA encryption/decryption algorithms, depend on factoring large numbers due to this difficulty. If a way was produced to easily factor large composites, especially semi-primes, RSA and other such methods would be rendered obsolete.

30b

Eve

RSA Algorithm:

- **Key Generation**:
- Choose 2 large primes (P) and (Q).
- Compute n=(p)(q).
- Compute $\phi(n) = (p-1)(q-1)$.
- Select a public exponent e, where $1 \le e \le \phi(n) 1$ and $gcd(e, \phi(n)) = 1$.

Alice

- Compute private exponent (d) such that $(e)(d) \equiv 1 \pmod{\phi(n)}$.
- Alice's public key is (n,e) and her private key is d.
- Encryption:
- Convert message to an integer m, where $1 \le m \le n$.
- Compute c=m^e (mod n).
- The encrypted message is c. Bob sends c to Alice.
- **Decryption:**
- Compute $m'=c^d \pmod{n}$.
- The decrypted message is m'=m.

This material is based upon work supported by the National Science Foundation under Grant No. 1241636. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

<u>Fun fact-or:</u> The largest semi prime number ever factorized was RSA-768, a 768 bit number 232 digits long!

It would take over 2,000 years on a 2.2 GHz AMD Opteron processor.

Cryptography (the art of studying and writing codes), aka the Krypto-Kids.

<u>Fun fact-or:</u> Semi-prime numbers are difficult to find. 88% of all integers have a factor under 100, and 92% have a factor under 1000. Therefore, precautions must be made to choose semi primes that are not made up of smaller, more easily tested primes.

end if end proc

As one can see, each of the three factoring methods discussed, Trial Division, Pollard's Rho and Pollard's P-1, all have their own unique strengths and weaknesses. Trial Division, for example, takes longer than both Pollard's Rho and Pollard's P-1, however it yields more results. Many other methods also exist, and many more are currently in development. Obviously, the need for factoring still remains, and it will still remain a "prime" goal of many mathematicians.

Pollard's P-1 What is Pollard's P-1?

Pollards *p*-1 is an "algebraic-group factoring algorithm" invented by John Pollard in 1974 and used to find prime factors of a composite integer *n* for which *p*-1 considered "smooth" with respect to a small bound *B*, where *p* is the prime factor. A number is "B-smooth" when all of its prime factors are less than *B*.

Algorithm

Simulation

The relationship between magnitude of integers tested and the time in seconds to factor closely follows an exponential growth model; in other words, it takes considerably longer each time the number is expanded than the previous time.

Pros and Cons

	Cons	
onger the number, the larger nance the algorithm will yield or	The longer the number, the longer the algorithm takes	
derably faster and less rce intensive than Trial on	Each successive trial takes longer and uses more resources	
e run incrementally for asing values of "b"	Does not always yield a non-trivial prime factor of the original number	
e modified to find a prime than "B"	This does require a modification. And a separate algorithm	

Conclusion

Other Factoring Methods...

- Random square factoring
- Quadratic sieve factoring
- Number field sieve factoring

References

 Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. <u>Handbook of Applied</u> **Cryptography** Randall Munroe. <u>XKCD</u>

