
Pollards p-1 is an “algebraic-group factoring algorithm” 
invented by John Pollard in 1974 and used to find 
prime factors of a composite integer n for which p-1  
considered “smooth” with respect to a small bound B, 

where p is the prime factor. A number is “B-smooth” 
when all of its prime factors are less than B. 

Pros Cons 

The longer the number, the larger 
the chance the algorithm will yield 
a factor 

The longer the number, the longer 
the algorithm takes 

Considerably faster and less 
resource intensive than Trial 
Division 

Each successive trial takes longer 
and uses more resources 

Can be run incrementally for 
increasing values of “b” 

Does not always yield a non-trivial 
prime factor of the original number 

Can be modified to  find a prime 
larger than “B” 

This does require a modification.  
And a separate algorithm 
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Integer/Prime Factorization 
-Breaking down a composite integer into its prime factors, which when 
multiplied together results in the original number. 
-There are several special methods used known as factorization algorithms. 

      Factoring large composite numbers into its prime factors has long been a goal of mathematicians. While several methods do exist with 
a variability in the degree of success, no definitive way has emerged as superior to all for factoring each number. Rather, different cases  
require different methods to break these numbers down. 
 
      Not all large composites (at least 9 digits long) can easily be factored into smaller prime numbers. For example, semi-prime numbers 
are difficult to factorize because they are the product of two primes. While testing all primes up to the square root of a number is feasible 
for smaller numbers, RSA encryption schemes recommend 232 or more digits, a process that can take years with this method, even when 
using hundreds of computers simultaneously. Therefore other practical methods must be discovered to factor these numbers.  
 
      There are two types of factoring methods, general purpose and special purpose. The time taken by general purpose algorithms depends 
solely on the size of the integer to be factored, while that of special purpose algorithms depend on the size of the smallest prime factor. 
 
      The security of many cryptographic systems, such as the RSA encryption/decryption algorithms, depend on factoring large numbers 
due to this difficulty.  If a way was produced to easily factor large composites, especially semi-primes, RSA and other such methods would 
be rendered obsolete. 
 
 
RSA Algorithm: 
   Key Generation: 

• Choose 2 large primes (P) and (Q). 
• Compute n=(p)(q). 
• Compute φ(n)=(p-1)(q-1). 
• Select a public exponent e, where 1 ≤ e ≤ φ(n) -1 and gcd(e, φ(n))=1.  

• Compute private exponent (d) such that (e)(d)≡1(mod φ(n)). 

• Alice’s public key is (n,e) and her private key is d. 
   Encryption: 
• Convert message to an integer m, where 1 ≤ m ≤ n. 
• Compute c=me (mod n). 
• The encrypted message is c. Bob sends c to Alice. 

   Decryption: 
• Compute m’=cd (mod n). 
• The decrypted message is m’=m. 

    If you did not know, we are part of the computer science group, 
specifically Explorations in Number Theory (the study of integers) and 

Cryptography (the art of studying and writing codes), aka the Krypto-Kids. 
 

What do these two completely 
different subjects have anything to 

do with each other? 

pollPmo := proc (o)  
    local a, b, d, l, i;  

       a := `mod`(rand(), o-2)+1;  

          print(a);  
       b := 56;  

       d := gcd(a, o);  
 if 2 <= d then  

    return d  

       else for i from 2 to b do  
          if type(i, prime) then  

             l := floor(ln(o)/ln(i));  
             a := `mod`(a^(i^l), o);  

             d := gcd(a-1, o);  

                 if d = 1 or d = o then  
                    print("EPC FAIL")  

                       else return d  
                end if  

           end if  

       end do  
end if  

end proc 

• Random square factoring 

• Quadratic sieve factoring 

• Number field sieve factoring 
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Example of Prime Factorization: 

Fun fact-or: The largest semi prime number 
ever factorized was RSA-768, a 768 bit number 
232 digits long! 
 
It would take over 2,000 years on a 2.2 GHz 
AMD Opteron processor. 

Fun fact-or: There is a $200,000 cash prize for the 
successful factorization of a number known as RSA-
2048 ( its 617 decimal digits long)! 

Fun fact-or: Semi-prime 
numbers are difficult to 
find.  88% of all integers 
have a factor under 100, 
and 92% have a factor 
under 1000.  Therefore, 
precautions must be 
made to choose semi 
primes that are not 
made up of smaller, 
more easily tested 
primes. 

As one can see, each of the three factoring methods 

disĐussed, Trial DiǀisioŶ, Pollard’s Rho aŶd Pollard’s P-1, all 

have their own unique strengths and weaknesses.  Trial 

DiǀisioŶ, for eǆaŵple, takes loŶger thaŶ ďoth Pollard’s Rho 
aŶd Pollard’s P-1, however it yields more results.  Many 

other methods also exist, and many more are currently in 

development.  Obviously, the need for factoring still 

reŵaiŶs, aŶd it ǁill still reŵaiŶ a ͞priŵe͟ goal of ŵaŶǇ 
mathematicians. 

The relationship between magnitude of 
integers tested and the time in seconds to 
factor closely follows an exponential growth 
model; in other words, it takes considerably 
longer each time the number is expanded 
than the previous time. 

Information about the tests: 
All the tests conducted, while using 
different methods of factoring, use 
the same procedural method of 
choosing the numbers to be factored 
to maintain the integrity of the 
experiment.  The magnitude of 
integer axis on the graphs, for 
example, represents the range of 
random  prime numbers p and q 
chosen by the computer. The range of 
each is (1*10x…1*10x+1).  These two 
primes are then multiplied together to 
get the number that will be factored 
by each method (p*q).   

Eve 

Alice Bob 

• Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of Applied 

Cryptography 

• Randall Munroe. XKCD 

Pros Cons 

Works best for smaller numbers 
 

Loses efficiency with larger 
numbers. 

88% of all composite numbers 
have a prime factor under 100 

The most resource intensive 
procedure for factoring 

92% of all composite numbers 
have a prime factor under 1000 

Takes the most time.  

Will always find a prime factor Must check every prime from 2 to 
the square root of the number being 
factored 

      Trial Division is a factoring method involving testing various 
primes less than the largest integer less than the square root of a 
non-prime integer until a factor is found.   
 
      In our example, we are testing a composite number “n” and 
assigning the square root of n to “b”.  We test each consecutive 
prime number starting from 2, and output the number if it evenly 
divides n. 

trialDiv := proc (n)  
   local b, i, d; 
      d := 0;  
      b := floor(sqrt(n));  
      x := 1; 
         while x <  2 to b do 
            x := nextprime(x); 
            if modp(n,x) = 0 then 
               return x, n/x; 
            fi; 
         od; 
end proc;             

Here, each integer and the time it took to find its first non-trivial 
factor is are plotted.  This plot displays how trial division takes 
considerably longer each time the number factored is expanded 
another digit and how it is slower than both the other methods.  
The simulation follows an exponential growth curve. 
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Magnitude of Integer 

Pros Cons 

Can yield a number very quickly 
depending on the chosen random 
numbers 

Can take a very long time to 
yield simple factors based on 
chosen numbers 

Considerably more efficient than 
trial division  

Will not always yield a prime 
factor 
 

Offers a good balance between 
running time and probability of 
success 

Multiple tests may be 
necessary to generate a prime 
factor 
 Running multiple tests is easy; 

variables can be manipulated easily 

Pollard’s Rho Algorithm, invented by John Pollard in 1975, is used to 
find small, non-trivial factors for composite integers.  This is done by 
creating a function that loops until a collision occurs within itself. A 
collision is defined as an area the function has already encountered. 

pollRho := proc (m) 
   local a, b, i, d;  
      a := 2;  
      b := 2;  
         for i to infinity do  
            a := mod`(a^2+1, m);  
            b := mod`(b^2+1, m);  
            b := mod`(b^2+1, m);  
            d := gcd(a-b, m);  
             if 1 < d and d < m then  
                return d;  
             elif d = m then  
                return 0;  
             end if;  
       end do;  
end proc; 
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