
Pollards p-1 is an “algebraic-group factoring algorithm”
invented by John Pollard in 1974 and used to find
prime factors of a composite integer n for which p-1
considered “smooth” with respect to a small bound B,

where p is the prime factor. A number is “B-smooth”
when all of its prime factors are less than B.

Pros Cons

The longer the number, the larger
the chance the algorithm will yield
a factor

The longer the number, the longer
the algorithm takes

Considerably faster and less
resource intensive than Trial
Division

Each successive trial takes longer
and uses more resources

Can be run incrementally for
increasing values of “b”

Does not always yield a non-trivial
prime factor of the original number

Can be modified to find a prime
larger than “B”

This does require a modification.
And a separate algorithm

This material is based upon work supported by the National Science Foundation under Grant No. 1241636. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Integer/Prime Factorization
-Breaking down a composite integer into its prime factors, which when
multiplied together results in the original number.
-There are several special methods used known as factorization algorithms.

 Factoring large composite numbers into its prime factors has long been a goal of mathematicians. While several methods do exist with
a variability in the degree of success, no definitive way has emerged as superior to all for factoring each number. Rather, different cases
require different methods to break these numbers down.

 Not all large composites (at least 9 digits long) can easily be factored into smaller prime numbers. For example, semi-prime numbers
are difficult to factorize because they are the product of two primes. While testing all primes up to the square root of a number is feasible
for smaller numbers, RSA encryption schemes recommend 232 or more digits, a process that can take years with this method, even when
using hundreds of computers simultaneously. Therefore other practical methods must be discovered to factor these numbers.

 There are two types of factoring methods, general purpose and special purpose. The time taken by general purpose algorithms depends
solely on the size of the integer to be factored, while that of special purpose algorithms depend on the size of the smallest prime factor.

 The security of many cryptographic systems, such as the RSA encryption/decryption algorithms, depend on factoring large numbers
due to this difficulty. If a way was produced to easily factor large composites, especially semi-primes, RSA and other such methods would
be rendered obsolete.

RSA Algorithm:
 Key Generation:

• Choose 2 large primes (P) and (Q).
• Compute n=(p)(q).
• Compute φ(n)=(p-1)(q-1).
• Select a public exponent e, where 1 ≤ e ≤ φ(n) -1 and gcd(e, φ(n))=1.

• Compute private exponent (d) such that (e)(d)≡1(mod φ(n)).

• Alice’s public key is (n,e) and her private key is d.
 Encryption:
• Convert message to an integer m, where 1 ≤ m ≤ n.
• Compute c=me (mod n).
• The encrypted message is c. Bob sends c to Alice.

 Decryption:
• Compute m’=cd (mod n).
• The decrypted message is m’=m.

 If you did not know, we are part of the computer science group,
specifically Explorations in Number Theory (the study of integers) and

Cryptography (the art of studying and writing codes), aka the Krypto-Kids.

What do these two completely
different subjects have anything to

do with each other?

pollPmo := proc (o)
 local a, b, d, l, i;

 a := `mod`(rand(), o-2)+1;

 print(a);
 b := 56;

 d := gcd(a, o);
 if 2 <= d then

 return d

 else for i from 2 to b do
 if type(i, prime) then

 l := floor(ln(o)/ln(i));
 a := `mod`(a^(i^l), o);

 d := gcd(a-1, o);

 if d = 1 or d = o then
 print("EPC FAIL")

 else return d
 end if

 end if

 end do
end if

end proc

• Random square factoring

• Quadratic sieve factoring

• Number field sieve factoring

Participants:

Alexander Melton, Peter Rodriguez, Paul Mayer, Brandon Huynh

Supervised by:

Frank Madrid, Dr. Charles Lam

715

65

5 13

11

11

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

)S
e

co
n

d
s

Magnitude of Integers (1*10^x)

Example of Prime Factorization:

Fun fact-or: The largest semi prime number
ever factorized was RSA-768, a 768 bit number
232 digits long!

It would take over 2,000 years on a 2.2 GHz
AMD Opteron processor.

Fun fact-or: There is a $200,000 cash prize for the
successful factorization of a number known as RSA-
2048 (its 617 decimal digits long)!

Fun fact-or: Semi-prime
numbers are difficult to
find. 88% of all integers
have a factor under 100,
and 92% have a factor
under 1000. Therefore,
precautions must be
made to choose semi
primes that are not
made up of smaller,
more easily tested
primes.

As one can see, each of the three factoring methods

disĐussed, Trial DiǀisioŶ, Pollard’s Rho aŶd Pollard’s P-1, all

have their own unique strengths and weaknesses. Trial

DiǀisioŶ, for eǆaŵple, takes loŶger thaŶ ďoth Pollard’s Rho
aŶd Pollard’s P-1, however it yields more results. Many

other methods also exist, and many more are currently in

development. Obviously, the need for factoring still

reŵaiŶs, aŶd it ǁill still reŵaiŶ a ͞priŵe͟ goal of ŵaŶǇ
mathematicians.

The relationship between magnitude of
integers tested and the time in seconds to
factor closely follows an exponential growth
model; in other words, it takes considerably
longer each time the number is expanded
than the previous time.

Information about the tests:
All the tests conducted, while using
different methods of factoring, use
the same procedural method of
choosing the numbers to be factored
to maintain the integrity of the
experiment. The magnitude of
integer axis on the graphs, for
example, represents the range of
random prime numbers p and q
chosen by the computer. The range of
each is (1*10x…1*10x+1). These two
primes are then multiplied together to
get the number that will be factored
by each method (p*q).

Eve

Alice Bob

• Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of Applied

Cryptography

• Randall Munroe. XKCD

Pros Cons

Works best for smaller numbers

Loses efficiency with larger
numbers.

88% of all composite numbers
have a prime factor under 100

The most resource intensive
procedure for factoring

92% of all composite numbers
have a prime factor under 1000

Takes the most time.

Will always find a prime factor Must check every prime from 2 to
the square root of the number being
factored

 Trial Division is a factoring method involving testing various
primes less than the largest integer less than the square root of a
non-prime integer until a factor is found.

 In our example, we are testing a composite number “n” and
assigning the square root of n to “b”. We test each consecutive
prime number starting from 2, and output the number if it evenly
divides n.

trialDiv := proc (n)
 local b, i, d;
 d := 0;
 b := floor(sqrt(n));
 x := 1;
 while x < 2 to b do
 x := nextprime(x);
 if modp(n,x) = 0 then
 return x, n/x;
 fi;
 od;
end proc;

Here, each integer and the time it took to find its first non-trivial
factor is are plotted. This plot displays how trial division takes
considerably longer each time the number factored is expanded
another digit and how it is slower than both the other methods.
The simulation follows an exponential growth curve.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

T
im

e
 (

S
e

co
n

d
s)

Magnitude of Integer

Pros Cons

Can yield a number very quickly
depending on the chosen random
numbers

Can take a very long time to
yield simple factors based on
chosen numbers

Considerably more efficient than
trial division

Will not always yield a prime
factor

Offers a good balance between
running time and probability of
success

Multiple tests may be
necessary to generate a prime
factor
 Running multiple tests is easy;

variables can be manipulated easily

Pollard’s Rho Algorithm, invented by John Pollard in 1975, is used to
find small, non-trivial factors for composite integers. This is done by
creating a function that loops until a collision occurs within itself. A
collision is defined as an area the function has already encountered.

pollRho := proc (m)
 local a, b, i, d;
 a := 2;
 b := 2;
 for i to infinity do
 a := mod`(a^2+1, m);
 b := mod`(b^2+1, m);
 b := mod`(b^2+1, m);
 d := gcd(a-b, m);
 if 1 < d and d < m then
 return d;
 elif d = m then
 return 0;
 end if;
 end do;
end proc;

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

se
co

n
d

s)

Magnitude of Integer

