REVS-UP MAPLE Lab 4 Summer 2014

Before you start, in the text mode, enter

Your name
Date

Then, switch to math mode, enter
> with(student) :with(plots) :with(numtheory) :

to load the student, plots and numtheory packages.
The while loop

In Lab 1, we tried to find the first integer with more than 6 divisors, and we used a for loop
to achieve the task, when we break the loop once a number reaches more than 6 divisors.
However, if say, we need to find the first number that has 50 factors, how should we specify
the for loop? How far do we need to go?

Such a problem can be solved by using the while loop instead. Consider the same problem
using the for loop:

> for i from 1 to 60 do
if tau(i)>6 then print(i); break;
else continue;
fi;
od;

And now, the while loop can be written as follows:

> 1:=0;
while(true) do
i:=i+1;
if (tau(i)>6) then break; fi;
od:
print(i);

In this while loop, we break when ¢ has more than 6 divisors. Note that in every run of the
loop (in between while.. do .. od) that the value of ¢ is incremented by 1 (by the line
i:=i+1). At the end of the loop, when a value is found, we print the value that breaks the
loop by using the print command. Also note that the initial condition i:=0; is absolutely
essential to tell Maple where the starting point for ¢ should be.

Another way to write this while loop is as follows:



REVS-UP MAPLE Lab 4 Summer 2014

> i:=1;
while(tau(i)<=6) do
i:=i+1;
od:
print(i);

Note the difference here is that we put the condition to continue running after the keyword
while. Hence, the value of i keeps on incrementing (inside the loop) until the condition
tau(i) <= 6 is not true anymore, that is, when tau(i)> 6. In other words, we are putting
in the negation of the break condition in the while(...)

Exercises:

(1) Write the two while loops from above. Can you explain the difference between the
initial condition i:=0; and i:=1; in the two different loops? (Note: they do not
change the computations involved, but there is a subtle difference why the first loop
starts at 0 and the second one starts at 1)

(2) Write a while loop to find the smallest power 7 such that 2 is bigger than 1 million.

(3) From question 1, modify your code so that we have a procedure, that on input integer
n, it outputs the smallest integer with exactly n divisors.

Planning a code

When we write a procedural code, the best approach is to first write a pseudocode detailing
the steps to be taken, before proceeding to write the code. For example, suppose we need
to write a procedure for the Euclidean Algorithm. Suppose the inputs are d_s, d_1, then, we
need to do the following:

d,Q = a0d71+d0
d_l = a1d0—|—d1

dp—o = apdp_1 +dyg
dp-1 = app1dy +0

Then ged(d_o,d_1) = d.



REVS-UP MAPLE Lab 4 Summer 2014

Note that the intermediate steps are the same in every step, namely we need to evaluate,
for two numbers m, n, that
m=qn-—+r

where r is the remainder, and ¢ is the quotient, and that the values of m, n are the values
of d’s from the previous division.

Therefore, we can generate a while loop for this purpose:

while(remainder is not 0) do the following
let m and n be the d’s from the previous division
find the quotient and remainder in m=qn+r
od
When remainder is 0O, the gcd is the last non-zero remainder.

Now, we can incorporate the rest of the procedural code as follows:
findgcd:=proc(a,b)

let m:=a, n:=b
do the first division to find the remainder in m=qn+r
while(remainder is not 0) do the following
let m:=n and n:=r (so that we can do the next division)
find the remainder in m=qn+r
od
RETURN(n) (which is the last non-zero remainder)

end:
Exercises:

(4) Use the above pseudocode to develop the procedure findged. You can use the function
mod to find the remainder. Look at the help page for the use of mod.

(5) The Maple procedure isprime(n) returns true if n is prime, and false otherwise. Let
a,b be positive integers that are co-prime. Write a procedure that finds the smallest
integer n such that a 4+ bn is a prime.



