The function ϕ in RSA key generation is a **counting function**. There are a few well-known counting functions and are defined as follows.

 $\tau(n) =$ number of divisors of n

 $\sigma(n) = \text{sum of divisors of } n$

 $\phi(n)$ = number of positive integers not exceeding n that are coprime to n

For example, the divisors of 12 are 1, 2, 3, 4, 6, 12 and the numbers that are coprime to 12 are 1, 5, 7, 11. Therefore,

$$\tau(12) = 6$$

 $\sigma(12) = 28$

 $\phi(12) = 4$

(1) Find the τ, σ, ϕ values for the following integers

(a) 18	(d) 48	(g) $2 \cdot 3 \cdot 5 \cdot 7$
(b) 36	(e) 128	(h) 2^{12}
(c) 47	(f) 144	(i) $2^3 \cdot 3^4 \cdot 5^7$

- (2) Let p be a prime, what are the values of $\tau(p), \sigma(p)$ and $\phi(p)$?
- (3) If $n \ge 2$, what is the minimum value for $\tau(n)$? What about maximum value? Use your calculator to generate some values of $\tau(n)$ and give a conjecture. Can you argue why they are true?
- (4) Can you repeat the previous part and argue the same for $\sigma(n)$? What about $\phi(n)$?
- (5) If the factorization of n is known, then there are formulas for $\tau(n)$, $\sigma(n)$ and $\phi(n)$. Find the formulas.
- (6) Suppose you do not know the factorization of n, but you know $\phi(n)$, would that compromise the security?
- (7) The generalized version of Fermat's Little Theorem is the Euler-Fermat Theorem. Let $n \ge 2$ be an integer and gcd(m, n) = 1, then

$$m^{\phi(n)} \equiv 1 \pmod{n}.$$

Use this theorem to show that when $c \equiv m^e \pmod{n}$ and $m' \equiv c^d \pmod{n}$, then $m \equiv m' \pmod{n}$. (This is to verify that the RSA algorithm does work.)

(8) Extend the RSA encryption to a product of three primes n = pqr. What has to be changed in the algorithm? Can you extend this further? What do you think of the security and the practicality in these extensions?