Database Systems Project

Phase V: GIS Attribute Set Template Website

Eric England
Richard Dominguez

Jason “Jay Jay” Williams

http://cmps342.psychopup.net/

Table of Contents

Phase I: GIS Attribute Set Template Sharing ... —————————— 5
1.1 TEChNIQUES USEU ..ucieieriiiiinisciississsesmsssssssssssssssssss s s e AR AR AR RR R RS R R AR R AR R R AR AR R R AR AR R AR 5
1.3 Introduction to Enterprise and Organization ... 5
1.4 Structure Of the ENTerPriSe. .. e e a e 5
1.5 Itemized Description 0f Major ODJECtS ... sas s 6
1.6 Data Views and Operations fOr USETr GIOUPScumimmmmmmsmmsmssassssssssassssssssassssssssassssens 6
2.1 ENtity Set DeSCriPtion. iR R AR AR AR RN SRR e R R R R R AR 7

L8173 PP 7
AT ULTES L ettt s e s s s s R R AR R R AR AR AR AR 7
ATETIDULE vttt s es s s e s s s s R RS £ AR R AR R AR R AR AR 8
0o 01l 74 0TS 9
08 U {0) oy 9
D OWNIOAATTACKING. et evurreeermseeserserseesseeseessesseessesssesssesss s s s seessees s sesss s s8R SRR R8RSR R RS Ra nE 10
2.2 Relationship Set DeSCIiPtioN ... e e 10
HaS AT I D ULESELS couveeveeetceeesetse ettt s s bbb s RS R £ 10
HaSD OWIIOAAEM ...ueeeeeieeeereiseiseeseiss et ssesses s sesses st st s s R£ER R s 10
HaSD OWNIOAATTACKITIES ...uvuureureruserserseerseesseeseessesssesssesssesssesssessesssesssesssessss s s ssss s s s s s es s R s R s 10
E 0 8- 1 Y=) o7 11
HASATTIDULES ...ceiteeeeesereiseesesssssessessssssesses s ssesse s s s s s s s s s SE£ER £ R R AR A AR bR 11
LS O A T I D UL T Y P ureereieeeeererseiseesee e s s s bR SRR AR AR AR R s 11
2.4 Entity Relational DIa@Iam: ...icciccumsssmsmssmsessessssesssss sasssssssssssssssensssssssssnnssssnsans 12

Phase II: Relational Database Model.........coummmmmmmsmssmssanss

2.1 ER Model And Relational Model.........cimimimmsmssnssnsssessssssssssssssssnsans
TR0 1 015 () ¢ L
L0000 0 T= 1 o 1) o I
Conversion from ER Model to Relational Model
L0100 0 153 o= T 0 LTS

2.2 ER Database to Relational Database Conversion Overview
L8573 PP
AT UTES EE ettt st s et s s bR AR AR R R R AR AR R R
ATETIDULE oottt e s s bbb R AR AR R R R AR R R R
o0 o 01l 74 oY
L8 U 10) oy
DownloadTracking

2.3 ER Database to Relational Database Conversion Data........cummmmssssssssssssns 21
L8573 PP 21
AT UTES EE ettt st s et s s bR AR AR R R R AR AR R R 22
ATETIDULE vttt es s st s s s AR R R R AR AR AR AR 23
o0 o 01l 74 oY 24
L8 U 10) oy 25
D OWNIOAATTACKINE. c.etevurreeermseeserserseesseesseessesseessesssesssessse s s sesssess s sesss s8R SRR R8RSR R R 26

0 T T T o 27

LA 011 1= w20 =] 00 QT8 T=) 112 0 L0 28

Phase III: Implementation of the Relational Database ... 30
3.0 Relation NOIMAliZAtion ...ccciccisssssmsssmssssnssesssssssssssasssssssssssnsssensssnnnsssnnsssnnssns 30

WHeEn @ tADIE 1S IN LN F ..t s bbb s R ER AR AR R 30

WHeEN @ tADIE 1S 1N BINF ..ottt bbb R SRR AR R R 30
When a table 1S i BCINF .. ssssses s s essss s s s s s £ R £ R s RE e R e 30
3.1 ADOUL SQL¥PLUS ..cucititiessrssmssssnsesmsssssssessssssssssssssssass st s s R A AR AR SRR R R AR AR R R AR AR R R R AR AR R E AR AR R R R R RS 31
R0) - ol L= Yol ¢ L= 41 B0 0 T . 31
TADLES ceureuritreaeserses st s s RS E R R R AR AR SRR AR 31
ITUA@XES cuveureereeseeueesessesssessesssssse s s s s s s s sse s s s eSS E R R R AR AR AR AR AR AR R 31
StOred ProCEAUIES / FUNCHIONS coouivircireeseeereeseessessesssss st seessesssesss s s es s s s R s 31
P2 0] 444 41 32
VIBWS cotietreteureseee s ses s s sse et s s ess s s s s R4 S8 s R AR e eE 428 SR AR R 4S8 HEE AR AR SRR EAS R E AR AR SRR RS EneE e AR E R R AR E R E s 32
L84 T=5 13 10) o 1S 32
DataDASE LINKINE ...oueeieereeerermeessersereesseeseesseessessessssss s s s s sess s sesss s s 888 £8 RS e R RnEnens e R R 32
SEQUENCE GENETATION ittt bR bR RS R R 32
PACKAZES ..vvvueruerueereeseesseesses e eess s es s s s s s s R8RSR R SRR R SRR R R R RS 32
3.3 Instances and Relation SCHEMAS......cccuimimmn s ———————— 34
B T 0 0) o 41
Phase IV: Implementation of the Relational Database (Continued)c.coocreresmssmssmsmssesmsessssssssssssesesess 44
4.1 Common Features in Oracle PL/SQL and MS Trans-SQLccuummmmmmmmeissmsssssssssssssssssssssssssssssssssssns 44
Components which consist of PL/SQL and MS Trans-SQL ... sessssssesssssssesssesssenns 44
PUIPOSES Of StOTEA SUDPIOZIAINS w.cuvceucererseereesseesrersserssesseeseesseeseessessss s s s s s s s R s s s 44
Benefits of subprograms over Dynamic SQL ... sessssss s sssssesssesssssssesssssssssssesssenns 44

L 2 0) o Tl U o 0L 45
General Format of @ PL/SQL PrOZIami. ... e seesesssesseessessssssssssessessseessesssesssssssesssessssssse s ssssssesssesssssssesssssssssssesassenns 45
CONTIO] STALEIMEINES: .ouvueeeeerseesseeseesessessessesssesses st st s s s s Sses £ ESsEEER AR AR AR AR b 45
SEOTEA PrOCEAUIES:...eiieeeeeretseieesei s s s bbb SRR £ R AR AR R R s 46
SEOTEA FUNCHIOMNS: 1uveueeeteereesessessesses s s ssesse s s s s s s s s s s s R ss £ SE £ ER £ R AR AR AR AR bR 47
08 T4 47
00D oY) PP 48
PACKAZES - eueruerreereer et s s s s R R SRR RS RR SRR R R 48
4.3 Oracle PL/SQL SUD-PIrOZIamSccuumuimsmsmssisissssssssisssssssssssssssssssssssssssssssss st s st s s sssas s sssssassesssasssasssssassenenes 49
STOTEA PTOCEAUIES ...cueieeecereiseeeiset et ssesesses s s s s £ SsEEER £ R AR AR R bR 49
STOTEA FUNCHIOMNS couveuretreteeeeesessessessessssssesse s sssesses s st ssessses s s £ EsE £ S £ R R AR AR bR 51
8140 52
Phase V: Implementation of the Relational Database..........n———— 53
5.1 DAIly USer ACHIVITIES .cuciiieieicisissssrssmsmssssssssssssssss s s R AR AR R AR AR R AR AR R AR AR AR R AR R AR R 53
y N4 10) 037 0 0N D R U] 53
REGISTEIEA USEI'S ..vueeressesermseeserserssesssesseesseesssessessssssse s s s sees s s ss 8RR SRR RS R s seRR R 53
AQMINISTIATIVE USEIS curcuirrireeurirrerseesessesssessessesssssssssessssssessessssssessesssssssssesssssssssesssassssssssasssssssssssssssssssssssssssessssasssssssssssssnssssssssnsssesssssnssnees 53
5.2 Relations, Views, and SUDPIroOSramsccuuumimmmsmmmmiss sassssssssssssssessssssssssssssssssans 54
RELATIOTNIS c.vetrrtueueerereeusessetss s st s s s s sse s s s s s eSS R AR AR AR R R AR AR R 54
VIBWS cotietreteureseee s ses s s sse et s s ess s s s s R4 S8 s R AR e eE 428 SR AR R 4S8 HEE AR AR SRR EAS R E AR AR SRR RS EneE e AR E R R AR E R E s 54

Y 0] 0] 0 <3 ¢ ' 13PTSR 54
5.3 Application Screenshots and DeSCIriPtioNs ... —————————————— 55
3 000 LYol (Y o PP 55
0T o0 Y oF o) ¢ P 56
REGISTIAtION SCIEM ...ttt bR SRR SRR R R R R 57

L8 ST= 5 0 00 LN =X) o USSP 58
EQItING MY ACCOUNT .ccouvurieeermseeserserseesseesseessessssessesssesssesssesssssssessesssessseessesssssssesssesssesssessesssessseessesssesssesssesssesssesasssseesesssesssenssessesssessesasesans 59
EdIting MY ATITIDULE SEES oouurvuirrercereerecsreeseessesssessesssesssss s sesssesssesssessss s s sss s s s s s s s s s 60
Editing Attributes FOr AN ATEIIDULE SET ... sess st sess s s s s s 61
SEATCRING ATLITDULE SETS ...eureeiierer et rees s ses e s s s e s s R s RS S R R R ReRR s 62
Previewing Attributes fOr an AtIITDULE St...... s s s s 63

DOWNI0AAING JSON OF XML ...cuivurieuereerseesseesseessessseessesssesssssssessesssesssesssesssssssesssssssssssessssssesssess sesssssssesssesssssssesasssssessesssesssesssesssesssessesassenss 64

REPOITS fOI AQMUINISTIATOIS ovuvivureruereerseesreeseessessseessesssessss s s eessess s sess s R e R8RSR R 65
LateST SITE ACTIVITY i bR R 66
LI 000 T L D LT b {42 () o 67
Data ACCESS LAYET [DAL) weurieurierercereereesseeseessessssessesssessssssessesssesssesssessssessesss s s s s s sessss s sessss st sesssenssesssesssssssesasesans 67
PreSentation LAYl . RS R R 68
5.5 DEVEIOPIMENT PIrOCESS ...iiuiuisciissisrsesssssssssssssssssssssssss et s E A AEEEE AR AR R AR E AR AR AR R AR AR R AR AR AR R 70
Phase 1: INformation GatRETINEGo sees e s s s s es s e s s s e 70
Phase 2: Data ACCESS LAYET = DTO...crereeeesersersssssesessseesesssesssssssesssssssssss s sesssesssesssssssssssssssssss s ssesssesssesssesssssssesssesasssnns 70
Phase 3: Data Access Layer — Repository and Extension Methods ... seessesssesssesssesssesssenns 70
Phase 4: Presentation Layer — DesSign and VIEWS ... ssesesssessess s ssessssssesssssssssssssssssssessssenns 70
Phase 5: Presentation Layer — Putting [t All TOZENET ...t sessess s sasseans 71
L 00 4 Tod L1 1) o 72

Phase I: GIS Attribute Set Template Sharing

1. Fact-Finding Techniques

1.1 Techniques Used

The interview process for this project involved interviewing myself (Richard Dominguez). Talking
through exactly what Richard wanted helped us develop the model for the project. Part of this
interviewing helped Eric and Jason learn the complexity of the application suite, what exactly they are
designing the database for, and which servers and related technologies were involved. After listing out
exactly what types of data we were serializing, it was much easier to conceptually design the data needed
and ultimately the ERM.

1.3 Introduction to Enterprise and Organization

Summer 2011 Richard Dominguez developed a mobile application to run on iOS, PsychoGIS
Scratchpad. The application allows users to create Data Sets to collect GIS data. One of the applications
features is the ability to create “Attribute Sets”. Attribute sets are nothing more than a template of
common attributes that would be associated with a feature on earth. For example, let’s say you're
collecting coordinate and attribute data for the trees on school campus. Trees may have the following
attributes: height, age, and species, etc. After creating this attribute set for trees, wouldn'’t it be nice to
share them with other organizations that would like to collect their own tree data?

This is where “GIS Scratchpad Template Sharing” website project (and related database) steps in.
Registered users will be able to upload, create, modify, publish, and share their Attribute Set templates
with other registered users.

1.4 Structure of the Enterprise

Richard Dominguez is the creator of the original program used on iOS platform. There is only one
developer, publisher, and company involved. There are several servers needed that form the bulk of the
application suite:

= SVN Server: Server that holds the versioned projects. The purpose is to share the project data
between future developers / students.

= Web Server: Server that sits on the Internet. The purpose is to be the “Company” web server, as
well as the application server (web services) to serve JSON and XML.

= Backup Server: Server that sits at home and makes incremental backups of the SVN and Web
server in case of server-failure.

1.5 Itemized Description of Major Objects

The two main entities are the User and AttributeSet. A user will be able to create many Attribute
Sets. An Attribute Set will belong to a single Category. Balancing Attribute Sets, the user will be able to
add many related Attributes. Each Attribute will have a single AttributeType. The DownloadTracking
entity will keep track of downloads of AttributeSets by Users.

1.6 Data Views and Operations for User Groups
There will only be two types of users: Admins and Registered Users.

» Users: will only have access to editing their own respective AttributeSet and Attribute entities.
They can request to publish their AttributeSets, assign a Category, as well as un-publish their
AttributeSets should they not wish to share the data.

» Administrators will have access to deactivate users (via the User entity), publish and un-publish
Attribute Sets, and modify Category data. An Administrator will also be able to delete ANY
information on the website they deem inappropriate or redundant.

2. Conceptual Database Design

2.1 Entity Set Description

User

= This entity type describes all the users that will have access to the site. This entity holds login,
contact and access information for each user to the website.

= Candidate keys: Userld, UserName.

* Primary key: Userld.

= Strong/Weak Entity: Strong.

= Fjelds to be indexed: Userld, UserName

= Attributes:

Name: Userld UserName Password EmailAddress DateCreated DateCancelled
Description: Primary key. User’s login for Password for login. Email address to Date account Date account

logging in. send notifications opened. cancelled.

to.

Domain/Type: Unsigned Integer String String String DateTime DateTime
Value Range: 0..2"32 Any Any Any Any Any
Default Value: None None None None None None
Nullable? No No No No Yes Yes
Unique? Yes Yes No No No No
Single / Multiple: Single Single Single Single Single Single
Simple or Simple Simple Simple Simple Simple Simple
Composite:
AttributeSet

= This entity type describes is one of many user’s Attribute Sets. An example of an Attribute Set
would be “Building Attributes”, which would relate to things that describe a building.

= (Candidate keys: AttributeSetld.

* Primary key: AttributeSetld.

= Strong/Weak Entity: Weak.

= Fields to be indexed: AttributeSetld, Description, IsPublished, Name

= Attributes:

Name: AttributeS Description DateLastModifi IsPublishe Name DateCreated Categoryld Userld
etld ed d
Description: Primary What the Date last edited. Is set Name of Date created. Category this set Owner of set.
key. AttributeSet is published AttributeSet belongs to.
for. (public?)
Domain/Typ Unsigned String DateTime Boolean String DateTime Unsigned Integer ~ Unsigned Integer
e: Integer
Value Range: 0 ...2732 Any Any 0,1 Any Any 0..2732 0..2732
Default None None None None None None None None
Value:
Nullable? No No No No No No No No
Unique? Yes Yes No No No No Yes Yes
Single / Single Single Single Single Single Single Single Single
Multiple:
Simple or Simple Simple Simple Simple Simple Simple Simple Simple
Composite:
Attribute
= This entity type describes is one attribute of an AttributeSet. L.e., one attribute of a “Buildings”
AttributeSet may be “Square Footage”.
= (Candidate keys: Attributeld, AttributeSetld
= Primary key: Attributeld.
= Strong/Weak Entity: Weak.
= Fjelds to be indexed: Attributeld, Name
= Attributes:
Name: Attributeld Description DateLastModified = Name AttributeSetld AttributeTypeld
Description: Primary key. Description of this Date last edited. Name of Attribute. AttributeSet this Attribute type of
attribute for the Attribute belongs this Attribute.
template. to.
Domain/Type: Unsigned Integer String DateTime String Unsigned Integer Unsigned Integer
Value Range: 0..2732 Any Any Any 0..2732 0..2732
Default Value: None None None None None None
Nullable? No Yes No No No No
Unique? Yes No No No Yes Yes
Single / Multiple: Single Single Single Single Single Single
Simple or Simple Simple Simple Simple Simple Simple
Composite:

AttributeType

= This entity type describes an attribute’s type. L.e., String, Integer, Double.

Candidate keys: AttributeTypeld

* Primary key: AttributeTypeld.

= Strong/Weak Entity: Strong.

= Fields to be indexed: AttributeTypeld, Name

= Attributes:

Name: AttributeTypeld DateLastModified Name

Description: Primary key. Date last edited. Name of Attribute type.
Domain/Type: Unsigned Integer DateTime String

Value Range: 0..2"32 Any Any

Default Value: None None None

Nullable? No No No

Unique? Yes No No

Single / Multiple: Single Single Single

Simple or Composite: Simple Simple Simple

Category

= This entity type describes a category for Attribute Sets. l.e., “Flora” and “Fauna” are examples of

categories.

= (Candidate keys: Categoryld

* Primary key: Categoryld.

= Strong/Weak Entity: Strong.

= Fields to be indexed: Categoryld, Name

= Attributes:

Name: Categoryld Name DateCreated DateLastModified

Description: Primary key. Category name. Date category was added. Date category was last
modified.

Domain/Type: Unsigned Integer String DateTime DateTime

Value Range: 0..2"32 Any Any Any

Default Value: None None None None

Nullable? No No No No

Unique? Yes Yes No No

Single / Multiple: Single Single Single Single

Simple or Composite: Simple Simple Simple Simple

DownloadTracking

» This entity type describes a download that occurred by a user for a particular attribute set. This
data used for analytical purposes both public and private. Candidate keys: DownloadTrackingld,
AttributeSetld

* Primary key: DownloadTrackingld.
» Strong/Weak Entity: Weak.
* Fields to be indexed: DownloadTrackingld, AttributeSetld

= Attributes:

Name: DownloadTrackingld DateDownloaded Userld AttributeSetld

Description: Primary key. Date downloaded. User who downloaded the Attribute set downloaded.
Attribute Set.

Domain/Type: Unsigned Integer DateTime Unsigned Integer Unsigned Integer
Value Range: 0..2732 Any 0..2732 0..2732
Default Value: None None None None

Nullable? No No No No

Unique? Yes No Yes Yes

Single / Multiple: Single Single Single Single

Simple or Composite: Simple Simple Single Simple

2.2 Relationship Set Description

HasAttributeSets

* Mapping Cardinality: 1.M
* Description Field: A user can create many AttributeSets. Only one user owns an AttributeSet.
» Participation Constraint: Optional for User, Mandatory for AttributeSet

HasDownloaded

* Mapping Cardinality: 1.M

» Description Field: A user can download many AttributeSets. A DownloadTracking can only have
one user.

» Participation Constraint: Since this is for historical purposes, it is optional for both User and
DownloadTracking. This is up to the database manager whether this information is kept.

HasDownloadTrackings
» Mapping Cardinality: 1.M

10

» Description Field: An AttributeSet can be downloaded many times. A DownloadTracking can only

have one AttributeSet.
» Participation Constraint: Since this is for historical purposes, it is optional for both AttributeSet
and DownloadTracking. This is up to the database manager whether this information is kept.

IsOfCategory
» Mapping Cardinality: 1.M
» Description Field: An AttributeSet can only have one Category. A category can have many related

AttributeSets.
» Participation Constraint: Optional for Category, Mandatory for AttributeSet

HasAttributes
* Mapping Cardinality: 1.M
» Description Field: An AttributeSet can have many Attributes. An Attribute can only have one

AttributeSet.
» Participation Constraint: Mandatory for both AttributeSet and Attribute

IsOfAttributeType
* Mapping Cardinality: 1.M
» Description Field: An Attribute can have one AttributeType. An AttributeType can have many

related Attributes.
» Participation Constraint: Mandatory for both AttributeType and Attribute

11

2.4 Entity Relational Diagram:

2 User R) —.
(): AttributeSet R o I\
Category R
= Properties o %
= Properties
¥ Userld ; i =
5 DateCancelled ¥4 AttributeSetld a’°Pe“'e‘
“7 DateCreated 5 Description SR ‘ﬂ ([Z)att:%oryic:d
¥ EmailAddress . HasAttributeSets 4 DatelastModified [oBOEY o DateCreated
' Password [1 * “ IsPublished 1 7 DatelastModified
24 UserName f Name = e) Na"Te .
A O " DateCreated = Navigation Properties
s UL 2 Categoryld % AttributeSets
ﬂ AttributeSets B Userld "
Tracki
S Downlosdliacking: > = Navigation Properties
1 =l Attributes
: ; % DownloadTrackings
HasDownloadTrackings @ 2 2
| B % categony . HasAuributes G 5
%=, User 1 %
i | S / = Properties
HasDownloaded 74 Attributeld
5 : ' Description
| 1 “F DateLastModified
i P ' Name
@ Dwm,lv“lm- . M ' AttributeSetld
£ g = 42 AttributeType 2) 7 AttributeTypeld
T =
= Properties o ' IsOfAttributeType. Navigation Properties
= Properties : [:
7% DownloadTrackingld pe ' 1 . % Attr!buteSet
' DateDownloaded 24 AttributeTypeld % AttributeType
2 AttributeSetld “F DateLastModified < J
9 Userld . e 1y lflam.e :
= Navigation Properties = Navigation Properties
=] AttributeSet =l Attributes y
=l User

\. y, *Red Text Denotes Relationship

Phase lI: Relational Database Model

2.1 ER Model and Relational Model

2.1 ER Model And Relational Model

Description

The Relational Model was invented and popularized by E.F. (Ted) Codd of IBM as a general model
of data. This model started to be used commercially due to its blatant simplicity and and mathematical
background. It is so popular in fact that it is still widely used since its inception back in the 1970s known
as System R. The model revolves around and provides a declarative method in creating data and
querying the database for data.

Simply put, the designer or user can command directly in what information the database will
contain and what information they want from it. In a relation, data grabbed is known as “tuples” which
contain the data needed. The data in these tuples are labeled as attributes. All-in-all, the Relational
Model will be the detailed blueprint to read from when the database is created.

Comparison

During the conceptual design period of a database, the Entity-Relationship model is used to paint
the idea. This high level design is most useful because of its visual aspect. This will make it easier for
anybody else, especially non-technical personal to get an idea of the database. The closer the concept of
the database gets to creation, the relational data model is the logical next step. All of the relationships in
the Entity-Relationship Model gets made into a relation. These will contain the attributes of each exact
piece of data, and each instance of the relations is a tuple. Each tuple will contain the attributes of any
needed tuple. The Entity-Relationship Model will be easier to visualize, but the the Relational Data Model
will be the closest thing to the final database product.

Conversion from ER Model to Relational Model

When creating a database, it is entirely possible to skip the conversion from an E-R Model to a
Relational Model. Itis even entirely possible to skip the E-R Model in general. However, this is very bad
practice and there is a need for any database designer to follow the flow from a high level
conceptualization such as the E-R Model to the lower lever Relational Model and then finally to the
database. It is through this process where a designer or any onlooker can fine detail and understand the
structure of the database so it can be as perfect as possible.

One of the pertinent conversions is the conversion of strong entity types. One primary key will be
used and composite attributes will be broken into simple components. Weak entity types will similarly
be dealt with. The biggest difference is that the weak entity will contain the primary key of its owner
entity and it will be labeled as a foreign key for use in relations. Although the use of foreign keys is
easiest and most popular, there are still other ways of going about this conversion.

e Merged Relation Approach: This merges two entity types into one relation so it will include all of
the attributes.

13

e Cross-Reference Approach: This creates a relation that will contain the two entity keys as
attributes.

As mentioned before, the use of a foreign key is the simplest way. The approach will make use of
the 1 side primary key in a 1:1 or 1:M and add it to the other side. Now each relationship instance will be
a tuple containing both of the primary keys for both entities. The other approaches can be used, but are a
little more demanding on memory. If one wishes to do so, they can multiply the number of records by the
memory size to see if memory permits. There is one exception, do to cardinality constraints, binary M:N
relationship types must use the Cross-Reference Approach.

Constraints

The constraints that are to be put upon a database are to make sure that the functionality of the
database is consistent through all operations and no unexpected anomalies will occur. One of the main
reasons constraints are put into place is that so no two tuples will be duplicated. A database can achieve
this by use of a primary for each tuple in a relation. This primary key must be unique and it cannot be
null. The use of a primary key will come into play when multiple tuples are selected and compared.
Similar to a primary key, the database will also use foreign keys. These foreign keys must have the same
domain of the primary key in order for the correct tuple to be referred. The foreign key will also be the
primary key in a reference relation. All values must fall in line with these constraints and the business
rules in order for the application of its use to work as intended.

14

2.2 ER Database to Relational Database Conversion

2.2 ER Database to Relational Database Conversion Overview

User

Userld: Domain: Unsigned int 0 to 2/32-1. Must not be NULL.

DateCancelled: Domain: Datetime. Any range. Can be NULL.

DateCreated: Domain: Datetime. Any range. Can be NULL.

EmailAddress: Domain: String. Must contain a valid email format with “@”. Must not
be NULL.

Password: Domain: String. Any value between 6 and 12. Must not be NULL.

UserName: Domain: String. Any value between 6 and 12. Must not be NULL

Constraint - Primary Keys:

Constraint - Candidate Keys:

Business Rule:

UserID. Must be unique and not NULL.
UserID, UserName

User must fill out non-null able fields as well as be unique. Must pass
email verification after signing up via the signup screen.

15

AttributeSet

AttributeSetld: Domain: Unsigned int 0 to 2/32-1. Must not be NULL.
DateLastModified: Domain: Datetime. Any range. Can be NULL.

DateCreated: Domain: Datetime. Any range. Can be NULL.

Categoryld: Domain: Unsigned int 0 to 2”32-1. Must not be NULL.

Name: Domain: String. Any value between 3 and 50. Must not be NULL.
Userld: Domain: Unsigned int 0 to 2”32-1. Must not be NULL.
IsPublished: Domain: Bit. Must not be NULL.

Description: Domain: String. Any value between 3 and 255. Must not be NULL.

Constraint - Primary Keys:
Constraint - Candidate Keys:

Business Rule:

AttributeSetld. Must be unique and not NULL.

AttributeSetld.

All fields are required as this information will be searchable and
viewable by the public. The Name must be unique. Must select
category to place AttributeSet in as well as (eventually) publish the
AttributeSet.

16

Attribute

Attributeld: Domain: Unsigned int 0 to 2/32-1. Must not be NULL.
DateLastModified: Domain: Datetime. Any range. Can be NULL.

AttributeSetld: Domain: Unsigned int 0 to 2”32-1. Must not be NULL.

Name: Domain: String. Any value between 10 and 50. Must not be NULL.
AttributeTypeld: Domain: Unsigned int 0 to 2”32-1. Must not be NULL.
Description: Domain: String. Any value between 3 and 255. Must not be NULL.

Constraint - Primary Keys:

Constraint - Candidate Keys:

Business Rule:

Attributeld. Must be unique and not NULL.
AttributeTypeld, Attributeld

No fields may be null. All the user will be able to fill out is the
Attribute Name, Attribute Description, and AttributeTypeld.

17

AttributeType

AttributeTypeld: Domain: Unsigned int 0 to 2#32-1. Must not be NULL.
DateLastModified: Domain: Datetime. Any range. Can be NULL.
Name: Domain: String. Any value between 10 and 50. Must not be NULL.

Constraint - Primary Keys:

Constraint - Candidate Keys:

Business Rule:

AttributeTypeld. Must be unique and not NULL.
AttributeTypeld

These rows are not editable by any user and are standard to GIS data.
There will only every be: String, Integer, and Double as values of
data.

18

Category

Categoryld: Domain: Unsigned int 0 to 2#32-1. Must not be NULL.
DateLastModified: Domain: Datetime. Any range. Can be NULL.

DateCreated: Domain: Datetime. Any range. Can be NULL.

Name: Domain: String. Any value between 10 and 50. Must not be NULL.

Constraint - Primary Keys:

Constraint - Candidate Keys:

Business Rule:

Categoryld. Must be unique and not NULL.
Categoryld.

Categories are not manageable by normal users. Only Admins have
the ability to delete and modify this data. .

19

DownloadTracking

DownloadTrackingld: Domain: Unsigned int 0 to 2/32-1. Must not be NULL.
DateDownloaded: Domain: Datetime. Any range. Can be NULL.
AttributeSetld: Domain: Unsigned int 0 to 2”32-1. Must not be NULL.
Userld: Domain: Unsigned int 0 to 2”32-1. Must not be NULL.

Constraint - Primary Keys:

Constraint - Candidate Keys:

Business Rule:

DownloadTrackingld. Must be unique and not NULL.
DownloadTrackingld, AttributeSetld.

Generated by the system when a user downloads someone else’s
AttributeSet. This information will be view statistically by users
when viewing categories and actual AttributeSets.

20

2.3 ER Database to Relational Database Conversion

2.3 ER Database to Relational Database Conversion Data

User

(Userld, UserName, Password, EmailAddress, DateCreated, DateCancelled)

Userld | UserName Password EmailAddress DateCreated | DateCancelled
1 Domiguezr 133702 cyclebiff@gmail.com 2011-10-01 | NULL

2 Pinkerchook | 1234567 chuckyyou@yahoo.com 2011-09-02 | 2011-10-03
3 Erice [failatlife pitselee@gmail.com 2011-08-03 | NULL

4 Jjwilliams Ba8y10nsux jjwilliams@gmail.com 2011-07-02 | NULL

5 vanmatreT 9876553 tvanmatre@Kkern.co.ca.us 2011-10-01 | NULL

6 Mystique Xmen4lfe mystique@gmail.com 2011-10-07 | NULL

7 Sjobs Applerxz0Or sjobs@apple.com 2011-10-06 | 2011-10-08
8 Bgates whyamlh3r3 bgates@microsoft.com 2011-06-05 | NULL

9 Ahugandkiss | 123123j2 amandah@yahoo.com 2011-10-04 | NULL

10 Janiced 118vk3j Jdominguez@yahoo.com 2011-10-03 | 2011-10-04
11 Icanhackthis | Haxz0r245 icanhackthis@gmail.com 2011-05-02 | 2011-10-04
12 Smellycat Whatrthe8 komakazeee@apple.com 2011-10-01 | 2011-10-04
13 Jlo Iowntheworld jlo@shesucks.com 2011-10-02 | NULL

14 Britneyspears | Tilltheworldends | bspears@sellout.com 2011-10-03 | NULL

15 Amozart 1101110111 amozart@gmail.com 2011-07-07 | NULL

16 Schoolrocks Inmyo023232 schoollyperson@gmail.com | 2011-10-08 | NULL

17 Chrisatwork 1234623gj1 chrisperson@kern.co.ca.us | 2011-03-09 | NULL

18 Jayz Jayzisthes810 jayz@jayz.com 2011-02-02 | NULL

19 Theamerican | Wkofit8 Theamerican@yahoo.com | 2011-01-01 | NULL

20 Puertovallarta | Icantspellit mexico@rocks.com 2011-08-09 | NULL

21

AttributeSet

(AttributeSetld, Description, DateLastModified, IsPublished, Name, DateCreated, Categoryld, Userld)

Attribute | Description Date Last | Is Name Date Category | Userld
Set Id Modified | Published Created Id
1 Building 2011-10- |1 CSUB - Buildings | 2011-10-01 | 3 10
attributes. 01
2 Plants. 2011-09- |1 CSUB - Plants 2011-09-02 | 1 2
02
3 Walkways. 2011-08- |1 CSUB - Walkways | 2011-08-03 | 2 5
03
4 Parking lots. 2011-07- |1 BC - Parking Lots | 2011-07-02 | 4 5
02
5 Plants at BC. 2011-10- |1 BC - Plants 2011-10-01 | 1 12
01
6 Buildings at BC. | 2011-10- | 0 BC - Buildings 2011-10-07 | 3 1
07
7 CSUB walkways | 2011-10- | 0 CSUB - Walkways | 2011-10-06 | 2 3
and bike paths. | 06
8 Normal Area 2011-06- |1 Cabin - Buildings | 2011-06-05 | 3
05
9 Normal plants 2011-10- |1 Cabin - Plants 2011-10-04 | 1
04
10 Normal 2011-10- | O Cabin - Snake 2011-10-03 | 5
Sightings of 03 Sightings
rattlers.

22

Attribute

(Attributeld, Description, DateLastModified, Name, AttributeSetld, AttributeTypeld)

Attribute | Description Name DatelLastModified | AttributeSetld | AttributeTypeld

Id

1 No. Of Floors NoOfFloors 2011-10-01 1 1

2 No. Of Rooms NoOfRooms 2011-09-02 1 1

3 Total Square SqFtTotal 2011-08-03 1 2
Footage

4 Building Number BldgNo 2011-07-02 1 1

5 Date Building DateOpened 2011-10-01 1 3
Opened its doors.

6 Species of plant. Species 2011-10-07 2 3

7 Date planted. DatePlanted 2011-10-06 2 3

8 Watering frequency | WaterFreq 2011-06-05 2 1
(days).

9 Length of path. LengthOfPath | 2011-10-04 3 2

10 Type of pathway TypeOfMaterial | 2011-10-03 3 3
material

11 Date installed / set. | DateSet 2011-05-02 3 3

12 Name of path. Name 2011-10-01 3 3

13 Name of school LotSchool 2011-10-02 4 3

14 Name of lot. LotName 2011-10-03 4 3

15 Number of lot. LotNumber 2011-07-07 4 1

16 Number of cars LotCapacity 2011-10-08 4 1
fittable.

17 Date lot opened. DateOpened 2011-03-09 4 3

18 Date planted. DatePlanted 2011-02-02 5 3

19 Plant species. Species 2011-01-01 5 3

20 Watering Freq. WaterFreq 2011-08-09 5 1

23

AttributeType

(AttributeTypeld, DateLastModified, Name)

AttributeTypeld DatelLastModified Name
1 2010-01-01 Integer
2 2010-01-01 Double
3 2010-01-01 String

24

Category
(Categoryld, Name, DateCreated, DateLastModified)

Categoryld Name DateCreated DatelLastModified
1 Flora 2011-10-01 2011-10-01
2 Walkways and Paths 2011-09-02 2011-09-02
3 Buildings 2011-08-03 2011-08-03
4 Parking Lots 2011-07-02 2011-07-02
5 Fauna 2011-10-01 2011-10-01

25

DownloadTracking

(DownloadTrackingld, DateDownloaded, Userld, AttributeSetld)

DownloadTrackingld DateDownloaded Userld AttributeSetid
1 2011-10-01 1 1
2 2011-09-02 1 2
3 2011-08-03 3 3
4 2011-07-02 2 4
5 2011-10-01 10 5
6 2011-10-07 20 4
7 2011-10-06 17 3
8 2011-06-05 1 2
9 2011-10-04 5 1
10 2011-10-03 5 3

26

2.4 Queries

2.4 Queries Used

1.

2.

AN

8.
9.

Select Users that were created after 2011-10-09.

Select Users that have downloaded the highest number of AttributeSets.
Select Users that have never downloaded any AttributeSets.

Select Users that have more than one AttributeSets.

Select Categories that have the highest number of AttributeSets.

Select Categories that have no Attributes.

Select Attribute that has the largest number of Attributes.

Select AttributeSets that are not published.

Select AttributeSets for a specific Category with Name = “Flora”.

10. Select AttributeSet that has a name like “CSUB”.

11. Select AttributeSets for User where UserName = “dominguezr”

27

2.5 Query Representation

2.5 Query Representation

Where “a” is Relational Algebra and “b” is domain calculus.

1. Select Users that were created after 2011-10-09

a. OpDateCreated = 2011-10-09(User)
b. {u.UserName | User(u) * u.DateCreated = 2011-10-09}

2. Select Users that have downloaded the highest number of AttributeSets
a. User * (F max(No_0f Downloads) (Userld, No_0f Downloads F count(*) DownloadTracking))
b. {u.UserName | User(u) * AttributeSets (s1) * AttributeSets(s2) * s1.Userldj, ..., s1.Userld, *
s2.Userldy, ..., s2.Userldm * m > n * s1.Userld != s2.Userld " s1.Userld = u.Userld}

3. Select Users that have never downloaded any AttributeSets
a. puserName((User = DownloadTracking) - (User * DownloadTracking))
b. {u.UserName | User(u) * = (3t)(DownloadTracking(t) *t.DownloadTrackingld =
u.DownloadTrackingld) }

4. Select Users hat have more than one AttributeSets
a. puuserName(User (u) * (DownloadTracking d1 ™ g1.Userld = d2.Userld AND d1.DownloadTrackingld !=
d2.DownloadTrackingld DownloadTracking d2))
b. {u.UserName | User(u) * DownloadTracking(t1) * DownloadTracking(t2) " t1.Userld =
t2.Userld * d1.DownloadTrackingld != d2.DownloadTrackingld}

5. Select Categories that have the highest number of AttributeSets
a. pcname(Categories () * (Fmax(No_of Sets)(Categoryld, No_0f setsF count(x)AttributeSets))))
b. {c.Name | Categories(c) * AttributeSets (s1) " AttributeSets(s2) * s1.Categoryldy, ...,
s1.Categoryld, * s2.Categoryldy, ..., s2.Categoryldm * m > n # s1.Category != s2.Categoryld *
s1.Categoryld = c.Categoryld}

6. Select Categories that have no Attributes
a. pcnName(Category (c) * ((AttributeSet = Attribute) - (AttributeSet * Attribute)))
b. {c.Name | Category(c) * = (Js)(AttributeSets(s) *c.Categoryld = s.Categoryld)) }

7. Select AttributeSet that has the largest number of Attributes
a. psName(AttributeSet (s) * (Fmax(No_of Attributes) (AttributeSetld, No_0f Attributes F count(+) Attribute)))
b. {s.Name | AttributeSets(s) * Attribute(al) * Attribute(a2) * al.Attributeldy, ...,
al.Attributeld, » a2.Attributelds, ..., a2.Attributeldm * m > n » al.Attributeld !=
a2.Attributeld * al.Attributeld = s.Attributeld}

8. Select AttributeSets that are not published

d. ps.Name(Gs.IsPublished = no(AttribUtESEt(S)))
28

b. {s.Name | AttributeSet(s) " s.IsPublished = no}
9. Select AttributeSets for a specific Category with Name = “Flora”
a. psName(AttributeSet (s) * (0c.Name = “Flora”(Category(c))))
b. {s.Name | AttributeSet(s) * Category(c) * c.Name = “Flora” * s.Categoryld = c.Categoryld}

10. Select AttributeSet that has a name like “CSUB Buildings”
a. XsName = “CSUB Buildings” (AttributeSet(s))
b. {s| AttributSet(s) * s.Name = “CSUB Buildings”}

11. Select AttributeSets for User where UserName = “Buffy”
d. ps_Name (Attrlbuteset(s) * (O-u_UserNamez "Buffy"(User (u))))
b. {s.Name | AttributeSet(s) * User(u) * u.UserName = “Buffy”}

29

Phase lll: Implementation of the Relational Database

3.0 Relation Normalization

3.0 Relation Normalization

When a table is in 1NF:

A table is in 1NF when all the key attributes are defined (no repeating groups in the table) and
when all remaining attributes are dependent on the primary key. However, a table in 1NF still may
contain partial dependencies, i.e., dependencies based on only part of the primary key and/or transitive
dependencies that are based on a non-key attribute.

When a table is in 2NF:

A table is in 2NF when it is in 1NF and it includes no partial dependencies. However, a table in 2NF
may still have transitive dependencies, i.e., dependencies based on attributes that are not part of the
primary key.

When a table is in 3NF:
A table is in 3NF when it is in 2NF and it contains no transitive dependencies.

When a table is in BCNF:

A table is in Boyce-Codd Normal Form (BCNF) when it is in 3NF and every determinant in the
table is a candidate key. For example, if the table is in 3NF and it contains a nonprime attribute that
determines a prime attribute, the BCNF requirements are not met. (Reference the text's Figure 6.8 to
support this discussion.)This description clearly yields the following conclusions:

e [f a table is in 3NF and it contains only one candidate key, 3NF and BCNF are equivalent.
* BCNF can be violated only if the table contains more than one candidate key. Putting it another
way, there is no way that the BCNF requirement can be violated if there is only one candidate key.

30

3.1 SQL with SQL*PLUS

3.1 About SQL*PLUS

When interacting with a database management system, the language of choice is Structured Query
Language - SQL for short. The generalized form of SQL is a quick and efficient language to know that can
be used with Oracle, SQL, MySQL, PostgreSQL, etc. The more popular DBMS’, Oracle and Microsoft SQL
Server, utilize the language to interface with the database. Microsoft SQL uses Enterprise Management
Studio, while Oracle uses SQL*PLUS to execute SQL scripts/run queries. This is, albeit dangerous, an
effective way to manage the DBMS and related databases.

3.2 Oracle / Schema Objects

A schema is a logical set of logical data structures. They are stored within an oracle table space, which can
exist within one or more physical files (data files). Utilizing mainly Table objects, oracle has the following
data structures available:

3.2 Oracle Schema Objects

Tables

The most basic schema object is the table. Referring back to relational algebra/calculus, tuples
make up rows, while attributes make up columns. An attribute/column consists of a unique identifier,
data type, and a width/size. After creating a table’s columns and attributes, you can apply constraints to
limit acceptable values that certain columns may contain.

Indexes

Indexes, while optional, are EXTREMELY useful in shortening access time to frequently accessed
tables. A database index stores associations between columns based on specified logical indexing
schemes. Indexes are best used on tables where you frequently retrieve data, and not tables that are used
for transactional purposes (ie, tables that have data frequently inserted).

Stored Procedures / Functions

Functions are much like C++ functions; they accept arguments and return scalar values. Like
functions, stored procedures also accept arguments, however, they can return actual result sets (much
like a SQL SELECT statement can).

31

Synonyms

Oracle uses synonyms as aliases for other schema objects. A synonym itself is a schema object so
you can create synonyms of synonyms. Like views, only a synonym’s definition is stored in the database
so very little space is used. Synonyms are useful when you are trying to hide certain schema objects or
need a shorter (or longer) representation of said object.

Views

Views are customizable structures of data contained in tables or other views. They can be made
very granular. You can interact with a view as you would a Table, but certain limitations may apply. Only
the view’s definition is stored in the DBMS, which is efficient in terms of disk space and database storage.

Dimensions

A dimension is a hierarchical relationship between columns. This relationship does not have data-
storage associated with it.

Database Linking

Database links are read-only links that allow users to see data, but not manipulate data on another
server. They are constants that do not change and are best used to quickly see data on another DBMS
without needing to authenticate as a user in that database.

Sequence Generation

Sequence generators allow efficient throughput when multiple users are utilizing the database. It
works by avoiding unnecessary serialization when two transactions are accessing the same data at the
same time.

Packages

A package groups logically related schema types, items and subprograms. They contain a
specification, declares data types, variables, subprograms, and exceptions. Packages also, although
sometimes unnecessary, contain a body - which defines cursors, subprograms, and an implementation of
the specification.

32

33

3.3 Instances and Relation Schemas

3.3 Instances and Relation Schemas

Our project’s tables were created using the following relation as an example (Our Users table):
CREATE TABLE RDEEJW_USERS
C
USERID NUMBER NOT NULL
, DATECANCELLED DATE
, DATECREATED DATE NOT NULL
, EMAILADDRESS VARCHARZ2(S5©@) NOT NULL
, USERNAME VARCHARZ(25) NOT NULL
, PASSWORD VARCHARZ(S5@) NOT NULL
, CONSTRAINT RDEEJW_USERS_PK PRIMARY KEY
C
USERID
)
using index TABLESPACE cs342index
ENABLE

DK
COMMIT;

ALTER TABLE RDEEJW_USERS
ADD CONSTRAINT RDEEJW_USERS_UK1 UNIQUE
(
EMAILADDRESS
, USERNAME
)
using index TABLESPACE cs342index
ENABLE;

COMMIT;

Our Project’s relation names were in the format RDEEJW_RelationName. Below you will find a
description and select * from for each relation.

34

RDEEJW_USERS:

DESC RDEEJW_USERS

Nane Null Type
USERID NOT NULL NUIMBER
DATECANCELLED DATE

DATECREATED NOT NULL DATE
EMAILADDRESS NOT NULL YARCHARZ(50)

USERNAIE NOT NULL YARCHARZ(25)
PASSWORD NOT NULL YARCHARZ(50)
USERID DATECANCELLED DATECREATED EMAILADDRESS | USERNAME PASSWORD
2 08-NOV-11 cyclebiff@gmail. com userl 12345
3 08-NOV-11 userzZ@gmail. com userz 12345
4 05-NOV-11 user3@gmail. com user3 12345
5 08-NOV-11 user4@inail. com user4 12345
6 08-NOV-11 userS5@gnail. com users 12345
7 08-NOV-11 user6@gmnail. com user6 12345
8 05-NOV-11 user7@gwail. com user? 12345
9 08-NOV-11 user8@gnail. com users 12345
10 08-NOV-11 user9@inail. com user9 12345
11 08-NOV-11 userl0@gwail. com userio 12345
1z 05-NOV-11 userll@mail. com useril 12345
13 08-NOV-11 userl2@gnail. com userilz 12345
14 08-NOV-11 userl3@gnail. com userils 12345
18 08-NOV-11 userld@gmail. com userid 12345
16 053-NOV-11 userlb@imail. com userib 12345
17 08-NOV-11 userl6@gnail. com userile6 12345
18 08-NOV-11 userl7@gnail. com userl? 12345
19 08-NOV-11 userl18@gwail. com useris 12345
20 05-NOV-11 userl9@gumail. com userl9 12345
21 08-NOV-11 userz20@gnail. com userzi 12345

35

RDEEJW_CATEGORIES:

DESC RDEEJW_CATEGORIES

Nane Null Type
CATEGORYID NOT NULL NUMBER
DATECREATED DATE
DATELASTMODIFIED DATE

NAME NOT NULL VARCHARZ({50)

CATEGORYID DATECREATED DATELASTMODIFIED NAIME

3 08-NOY-11 08-NO¥-11 Flora

4 03-NOY-11 08-NO¥-11 Walkways and Paths
5 08-NOV-11 08-NOY-11 Buildings

6 08-NOV-11 08-NOY-11 Parking Lots

7 08-NOV-11 08-NOYV-11 Fauna

RDEEJW_ATTRIBUTETYPES:

DESC RDEEJW_ATTRIEUTETYPES

Nane Null Type
ATTRIBUTETYPEID NOT NULL NUMBER
DATELASTIIODIFIED NOT NULL DATE

NAINE NOT NULL YARCHARZ(50)

ATTRIBUTETYPEID DATELASTIODIFIED NAIE

2 08-NOvV-11 Integer
3 08-NOV-11 Double
4 08-NOV-11 String

37

RDEEJW_ATTRIBUTESETS:

DESC RDEEJW_ATTRIBUTESETS

Nane Null Type
ATTRIBUTESETID NOT NULL NUMBER
DESCRIPTION NOT NULL VARCHARZ({50)
DATELASTMODIFIED NOT NULL DATE
ISPUBLISHED NOT NULL CHAR{1)

NAIME NOT NULL YARCHARZ({50)
DATECREATED NOT NULL DATE
CATEGORYID NOT NULL NUMBER
USERID NOT NULL NUMBER

ATTRIBUTESETID DESCRIPTION

2 Building Attributes.

3 Plants.

4 Walkways.

5 Parking Lots.

6 Plants at EC.

7 Buildings at EBC.

§ CSUB Walkways and bike paths.
9 Normal Area.

10 Normal Plants.

11 Normal sightings of rattlers

10 rows selected

ATTRIEUTESETID ISPUELISHED NAME

DATELASTIHMODIFIED

08-NOV-11
08-NOV-11
08-NOV-11
08-NOY-11
08-NOY-11
08-NOY-11
08-NOY-11
08-NOV-11
08-NOV-11
08-NOV-11

DATECREATED CATEGORYID USERID

CSUB - Buildings

CSUE - Plants

CSUB - Walkways

BC - Parking Lots

BC - Plants

BC - Buildings

CSUB - Walkways

Cabin - Buildings
Cabin - Plants

Cabin - Snake Sightings

[N RN S JUTRY N
ORPOORRPRRREE

e

10 rows selected

05-NOY¥-11
05-NOY-11
08-NOY¥-11
08-NOY¥-11
08-NOY¥-11
08-NOY-11
08-NOY-11
08-NOY-11
08-NOY-11
08-NOY¥-11

EREAY. INNYL FRY. SCTRY |
=
ST R SRR, . YR N

Il

38

RDEEJW_ATTRIBUTES:

DESC RDEEJW_ATTRIBUTES

Nane Null Tvpe
ATTRIBUTEID NOT NULL NUMBER
DESCRIPTION NOT NULL VARCHARZ2{50)
NAME NOT NULL VARCHARZ({50)

DATELASTIMODIFIED NOT NULL DATE
ATTRIBUTESETID NOT NULL NUIMBER
ATTRIBUTETYPEID NOT NULL NUIMBER

ATTRIBUTEID DESCRIPTION NAIME
1 No. Of Floors NoOfFloors
2 No. Of Rooms NoOfRoons
3 Total Square Footage SgFtTotal
4 Building Number EldgNo
5 Date Building Opened DateOpened
6 Species of Plant. Species
7 Date Planted DatePlanted
8 Watering freqg (davys) WaterFreq
9 Length Of Path LengthOfPath
10 Type Of Pathway laterial TypeOfllaterial
11 Date installed / set DateSet
12 Name of path. Nane
13 Name of school LotSchool
14 Name of Lot LotNane
15 Number Of Lot LotNumber
16 Number of cars max LotCapacity
17 Date lot opened DateOpened
158 Date Planted DatePlanted
19 Plant Species Species
20 Watering Freq. WaterFreqg
21 Age Age

21 rows selected

ATTRIBUTEID DATELASTIMODIFIED ATTRIBUTESETID ATTRIBEUTETYPEID

1 08-NOV-11 2 2
2 08-NOV-11 2 2
3 08-NOV-11 2 3
4 08-NOV-11 2 2
5 08-NOV-11 2 4
6 08-NOV-11 3 4
7 08-NOV-11 3 4
8§ 08-NOV-11 3 2
9 08-NOV-11 4 3
10 08-NOV-11 4 4
11 08-NOV-11 4 4
12 08-NOV-11 4 4
13 08-NOV-11 5 4
14 08-NOV-11 5 4
15 08-NOV-11 5 2
16 08-NOV-11 5 2
17 08-NOV-11 5 4
18 08-NOV-11 6 4
19 08-NOV-11 6 4
20 08-NOV-11 6 2
21 08-NOV-11 6 2

21 rows selected

RDEEJW_DOWNLOADTRACKINGS:

DESC RDEEJW_DOWNLOADTRACKINGS

Nane Null Tvpe
DOWNLOADTRACKINGID NOT NULL NUMBER
DATEDOWNLOADED NOT NULL DATE
ATTRIBUTESETID NOT NULL NUIMBER
USERID NOT NULL NUMBER

DOWNLOADTRACKINGID DATEDOWNLOADED ATTRIBUTESETID USERID

08-NOV-11
08-NOV-11
05-NOV-11
05-NOV-11
05-NOV-11
05-NOV-11
05-NOV-11
05-NOV-11
05-NOV-11
08-NOV-11

OWL-IIA WM

[=

10 rows selected

MW T WD

40

3.4 SQL Queries

3.4 SQL Queries

1. Select Users that were created after 2011-10-09
-- Select Users created after 2011-L0-09
select w USERID, u.USERNAME, u.DATECREATED from RDEEJW_Users u
WHERE u.DateCreated == '09-0CT-11';

USERID USERNAIME DATECREATED
2 userl 05-NOV-11
3 userz 08-NOV¥-11
4 user3 08-NOV-11
5 userd 05-NOV-11
6 userb 08-NOV¥-11
7 user6 08-NOV-11
§ user? 08-NOV-11
9 users 08-NOV¥-11

10 user9 08-NOV-11
11 useril 08-NOV-11
12 useriil 08-NOV-11
13 useriz 08-NOV¥-11
14 useri3 08-NOV-11
15 userid 08-NOV-11
16 userihs 08-NOV¥-11
17 userié 08-NOV-11
18 useri? 08-NOV-11
19 useris 08-NOV¥-11
20 useri9 08-NOV-11
21 userz0 08-NOV-11

20 rows selected

2. Select Users That have never downloaded any AttributeSets

|- Select Users that have never downloaded any AttributeSets
select U.UserId, U.UserName

FROI RDEEJW _Users U

WHERE NOT EXISTS ¢

SELECT *

FROIT RDEEJW_DownloadTrackings D

WHERE U.UserId = D.UserId

)

USERID USERNAIME

13 rows selected

3. Select Users that have more than one AttributeSet
- Select Users that have more than one AttributeSet
SELECT U.UserId, U.UserName, count{*) as "Number Of AttributeSets"
FROIT RDEEJW Users U inner join RDEEJW_AttributeSets Al ON U.UserId = Al.UserId
GROUP EY U.UserId, U.UserNane
HAYING count{*) > 1.

USERID USERNAIE Number Of AttributeSets

6 userb 2

Select Categories that have the highest number of AttributeSets

-- Select Categories that have the highest number of AttributeSets
SELECT Data.CategoryName, count(Data.CategoryName) count
FROM

SELECT A.MName, C.MNane as CategoryName, A CategoryId as CategoryId
’ A INNER JOIN RDEEJW Categories C on A.CategoryIld = C.CategoryId

COUNT
Flora 3
Buildings 3
Walkways and Paths 2
Fauna 1
Parking Lots 1

Select Categories that have no AttributeSets
- Select Categories that have no AttributeSets
SELECT C.CategoryId, C.Nane

FROIT RDEEJW _Categories C

WHERE NOT EXISTS (

SELECT *

FROI RDEEJW_AttributeSets A

WHERE C.CategoryId = A CategoryId

).

CATEGORYID NAIME

8 An Unused Category

Select AttributeSet that has the largest number of Attributes

-- Select AttributeSets that have the largest number of Attributes
SELECT Data.AttributeSetName, count(Data.AttributeSetName) count
FROI

SELECT Al . MNanme, A2 MNane as AttributeSetName, Al AttributeSetId as AttributeSetId

FROIT RDEEJW_Attributes A1l INNER JOIN RDEEJW_AttributeSets AZ on Al AttributeSetId = A2 AttributeSetId
) Data
GROUP EY Data.AttributeSetNane
ORDER BY count DESC;

ATTRIBUTESETNALIE COUNT
BC - Parking Lots 5
CSUB - Buildings 5
CSUB - Walkways 4
BC - Plants 4
CSUE - Plants 3

Select AttributeSets that are not published
- AttributeSets that are not published

SELECT A AttributeSetId, A Name, A. IsPublished
FROI RDEEJW_AttributeSets A

WHERE A.IsPublished <= '1';

ATTRIEUTESETID NAIME ISPUBELISHED
7 BC - Buildings 0
§ CSUB - Walkways 0
11 Cabin - Snake Sightings]

42

Select AttributeSets for a specific Category with Name = “Flora”

-- AttributeSets for a specific Category with Category Name = "Flora"

SELECT A AttributeSetId, A MName as "Attribute Set Name", C.Nane as "Category Namne"

FROI RDEEJW_AttributeSets A4 INNER JOIN RDEEJW Categories C on A CategoryId = C.CategoryId
WHERE C.Name = 'Flora';

ATTRIBUTESETID Attribute Set Nanme Category Nane
3 CSUB - Plants Flora
6 BC - Plants Flora
10 Cabin - Plants Flora

Select AttributeSet that has a name like “CSUB Buildings”
-- AttributeSets that have a name like "CSUEB Buildings"
SELECT A AttributeSetId, A Name as "Attribute Set Name"
FROIT RDEEJW_AttributeSets A

WHERE A.Name like '¥CSUB%Buildings®';

ATTRIBUTESETID Attribute Set Nanme

2 CSUB - Buildings

10.Select AttributeSets for User where UserName = “Buffy”

-- AttributeSets for Users Where UserName = "Buffy"

SELECT A.AttributeSetId, A Name as "Attribute Set Name", U.UserName as "Owned By User"
FROI RDEEJW_AttributeSets A INNER JOIN RDEEJW Users U on A UserId = U. UserId

WHERE U.UserName = 'Buffvy';

ATTRIBEUTESETID Attribute Set Name Owned By User

7 BC - Buildings Buffy

43

Phase IV: Implementation of the Relational Database (Continued)

4.1 Common Features in Oracle PL/SQL and MS Trans-SQL

4.1 Common Features in Oracle PL/SQL and MS Trans-SQL

Components which consist of PL/SQL and MS Trans-SQL

PL/SQL and MS Trans-SQL, while syntactically different, share many of the same features as
procedural languages. Both refer to their schema objects with the same keywords: procedures, functions,
tables, and triggers. Also, both are used in stored procedures and subprograms. Both extend the
functionality of SQL itself by creating re-usable code and using additional functionality.

Purposes of Stored subprograms

A stored subprogram’s purpose is to efficiently run/execute a query without needing to create the
entire query for each execution. Much like a function in object-oriented function/method, a stored sub-
program accepts arguments (parameters), which it the utilizes along with an actual query. Such queries
can be INSERT, UPDATE, or DELETE.

Also similar to object-oriented methods, it hides the implementation from the user. This means
that the user can see the name of the subprogram, it's parameters, and return types but not the actual
query being used.

Benefits of subprograms over Dynamic SQL

One advantage of a subprogram over Dynamic SQL is that it utilizes the server’s resources by
building the actual SQL query. The advantage here is that the user doesn’t need to know the tables and
columns needed or waste their own resources creating the query.

Another advantage to subprograms over Dynamic SQL is that subprograms promote reusability
and maintainability. By re-using subprograms you don’t need to re-create the wheel every time you need
to run a specific function or procedure. Also, it’s easier to maintain code at the DBMS level if you're the
DBA.

44

4.2 Oracle PL/SQL

4.2 Oracle PL/SQL

To the casual C++ developer, the basic structure of a PL/SQL program can be generalized into the
following three sections:

1. Declaration, keywords: “AS” or “IS”, This part of the program follows any arguments the
program may take, as well as declare cursors, local variables, or user defined expressions.

2. Execution, keywords: “BEGIN” and “END”, This part of the program contains queries, logical
operators, and utilizes the variables and arguments defined in the declaration section.

3. Exception, keyword “EXCEPTION”, This part of the program allows the user to handle any
errors that may arise in the event of an exception.

General Format of a PL/SQL Program:

Referring to the previous section, the general format of a PL/SQL Program is as follows:

<TYPE> <Name> IS
BEGIN -- executable part starts here
[EXCEPTION]

END;

Control Statements:

PL/SQL includes control statements that can theoretically be used to program/handle any
situation. The following control statements can be found in most other languages (such as C++, C#,
Java, Objective-C, etc). Below is the syntax of PL/SQL control statements:

IF --true/false condition
THEN -- statement

ELSEIF -- true/false condition
THEN -- statement

ENDIF;

[<<label_name>>]

CASE selector
WHEN expressionl THEN sequence_of_statementsl;
WHEN expression2 THEN sequence_of_statements2;

WHEN expressionN THEN sequence_of_statementsN;
[ELSE sequence_of_statementsN+1;]
END CASE [label_name];

LOOP

45

EXIT WHEN -- can be used similar to a “break” command
END LOOP;

WHILE condition LOOP
sequence_of_statements
END LOOP;

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP
sequence_of_statements
END LOOP;

Stored Procedures:

Stored procedures allow the execution of commands that aid in the usage of DELETE, UPDATE,

SELECT and INSERT SQL statements. They are excellent for extending out the functionality of SQL.

The syntax is as follows:

CREATE [OR REPLACE] PROCEDURE <NAME>
[parametername] [datatype]
IS

-- Declare constants and variables in this section.
-- Example: <Variable Identifier> <DATATYPE>

== <Variable Identifier> CONSTANT <DATATYPE>
-- varEname VARCHAR2(49);

== varComm REAL;

== varSalary CONSTANT NUMBER:=1000;

-- comm_missing EXCEPTION;

BEGIN -- executable part starts here
-- Write PL/SQL and SQL statements to implement the processing logic

-- of subprogram. Example:
-- SELECT ENAME,

== COMM

== INTO varEname,
== varComm
-- FROM EMP

= WHERE EMPNO = 7369;

== IF varComm IS NULL THEN
-- RAISE comm_missing;
-- END IF;

[EXCEPTION] -- exception-handling part starts here
-- WHEN comm_missing THEN
-- dbms_output.put_line('Commision is NULL');

END;

46

Stored Functions:

Stored functions act identically to stored procedures. One major difference is that stored functions

will always return scalar variables, which are returned at the end of a function.

CREATE [OR REPLACE] FUNCTION <NAME> (
[parametername] IN [datatype]) RETURN [datatype] IS

-- Declare constants and variables in this section.
-- Example: <Variable Identifier> <DATATYPE>

== <Variable Identifier> CONSTANT <DATATYPE>
-- varEname VARCHAR2(49);

== varComm REAL;

== varSalary CONSTANT NUMBER:=1000;

-- comm_missing EXCEPTION;

BEGIN -- executable part starts here
-- Write PL/SQL and SQL statements to implement the processing logic

-- of subprogram. Example:
-- SELECT ENAME,

== COMM

== INTO varEname,
== varComm
-- FROM EMP

-- WHERE EMPNO = 7369;

== IF varComm IS NULL THEN

-- RAISE comm_missing;

ac END IF;

RETURN <returnvalue>;

-- EXCEPTION -- exception-handling part starts here
-- WHEN comm_missing THEN

-- dbms_output.put_line('Commision is NULL');

END;

Triggers:

Triggers are extremely helpful schema objects that run when “triggered” by an event that occurs

on specific tables. There are many ways this can be useful, such as determining what to do just
after an insert has occurred on a table. We can also validate data by calling a function or stored

procedure.

CREATE [OR REPLACE] TRIGGER <Name>
<BEFORE,AFTER> <INSERT,[OR]JUPDATE,[OR]DELETE> ON <tablename>
FOR EACH ROW
[WHEN] [condition]
DECLARE
[variable(s)]
BEGIN
<code>
END;

47

Cursors:

A cursor can be thought of like pointers in C++ or Objective-C - they point to rows in a SQL

SELECT statement.

CURSOR cursor_name (parameter_list)
IS
SELECT_statement;

Packages:

A package groups together similar procedures, functions, variables tables, etc. As with procedures

and functions, re-use of code is encouraged using OOP techniques, such as function/method

overloading.

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID {CURRENT_USER | DEFINER}]
{IS | As}
[PRAGMA SERIALLY_REUSABLE;]
[collection_type_definition ...]
[record_type_definition ...]
[subtype_definition ...]
[collection_declaration ...]
[constant_declaration ...]
[exception_declaration ...]
[object_declaration ...]
[record_declaration ...]
[variable_declaration ...]
[cursor_spec ...]
[function_spec ...]
[procedure_spec ...]
[call_spec ...]
[PRAGMA RESTRICT_REFERENCES(assertions) ...]
END [package_name];

[CREATE [OR REPLACE] PACKAGE BODY package name {IS | AS}
[PRAGMA SERIALLY_REUSABLE;]
[collection_type_definition ...]
[record_type_definition ...]
[subtype_definition ...]
[collection_declaration ...]
[constant_declaration ...]
[exception_declaration ...]
[object_declaration ...]
[record_declaration ...]
[variable_declaration ...]
[cursor_body ...]

[function_spec ...]
[procedure_spec ...]
[call_spec ...]

[BEGIN
sequence_of_statements]

END [package_name];]

48

4.3 Oracle PL/SQL Sub-Programs

4.3 Oracle PL/SQL Sub-Programs

Below are our stored procedures, stored functions, and triggers used in our project. We have

placed additional convenience PL/SQL subprograms on the DELPHI server, which can be viewed on the
server.

Stored Procedures

RDEEJW_INSERTUSER

This stored procedure takes are required fields needed to create a user record. The USERID is
generated at insertion time, as the trigger TRIGGER_RDEEJW_USERS creates the id from sequence

SEQ_RDEEJW_USERS. The stored procedure also utilizes the stored function RDEEJW_ISUSERUNIQUE to
determine whether to insert the record or not.

-— PROCEDURE RDEEJW_INSERTUSER
CREATE OR REPLACE PROCEDURE RDEEJW_INSERTUSER
{
ARG_USERNAME IN VARCHARZ
. ARG_PASSWORD IN VARCHARZ
. ARG_DATECREATED IN DATE
, ARG_EMATILADDRESS IN VARCHARZ

) AS
USERCOUNT NIUIMEER ;
BEGIN
USERCOUNT := RDEEJW_ISUSERUNIQUE(ARG_USERNANE, ARG_EMAILADDRESS):
IF USERCOUNT = 0 THEN
INSERT INTO RDEEJW_USERS
(USERNAME, PASSWORD, EMAILADDRESS, DATECREATED)
{iLRgESERNAME ARG_PASSWORD, ARG_EMAILADDRESS, ARG_DATECREATED):
END TF

END RDEEJW_INSERTUSER:

RDEEJW_DELETEATTRIBUTESET

This stored procedure takes the primary key of the RDEEJW_ATTRIBUTESETS table
(ATTRIBUTESETID). Note that the table RDEEJW_ATTRIBUTES has a foreign key constraint on the
ATTRIBUTESETID and is set to CASCADE delete. In short, this helps us delete all child
RDEEJW_ATTRIBUTES for a given record in RDEEJW_ATTRIBUTESETS

49

|- PROCEDURE RDEEJW_DELETEATTRIBUTESET
CREATE OR REPLACE PROCEDURE RDEEJW_DELETEATTRIBUTESET

ARG_ATTRIBUTESETID IN NUMEER
y AS

BEGIN

DELETE FROIT RDEEJW_ATTRIBUTESETS
WHERE ATTRIBUTESETID = ARG_ATTRIBUTESETID;

COIMMIT;
END RDEEJW_DELETEATTRIBUTESET:

50

Stored Functions

RDEEJW_AVGATTRFORALLSETS

This function accepts a CategorylID as an argument and returns the average number of attributes
for all sets within that category. This is useful for reporting purposes of the admins of the site by
providing insight to lower-attribute sets.

|- Function RDEEJW_AVGATTRFORCATEGORY
CREATE OR REPLACE FUNCTION RDEEJW_AVGATTRFORCATEGORY

ARG_CATEGORYID IN NUIEER
) RETURN VARCHARZ AS

FINALAVERAGE NUIEER
BEGIN

SELECT AVG{COUNT)

INTO FINALAVERAGE

FROM

{

SELECT COUNT{*) AS COUNT, Al.ATTRIBUTESETID

FROIT RDEEJW_ATTRIBUTESETS Al INNER JOIN RDEEJW_ATTRIEUTES AZ
ON Al ATTRIBUTESETID = AZ. ATTRIBUTESETID

WHERE Al. CATEGORYID=ARG_CATEGORYID

GROUP EY Al ATTRIEUTESETID

)

RETUEN FINALAVERAGE ;
END RDEEJW_AVGATTRFORCATEGORY ;

RDEEJW_ISUSERUNIQUE
This function accepts a USERNAME and EMAILADDRESS as arguments. It returns a scalar variable
of COUNT(*). Basically, this function returns the number of records that match USERNAME OR
EMAILADDRESS.
F- RDEEJW_ISUSERUNIQUE
CREATE OR REPLACE FUNCTION RDEEJW_ISUSERUNIQUE
ARG_USERNAIE IN VARCHARZ
. ARG_EMAILADDRESS IN VARCHARZ
) RETURN NUIMBER AS
RETURNVALUE NUIEER ;
BEGIN
SELECT count{*) INTO RETURNYALUE
FROIT RDEEJW_USERS
WHERE USERNAME=ARG_USERNAME OR EMAILADDRESS=ARG_EMAILADDRESS:
RETURN RETURNVALUE ;

END RDEEJW_ISUSERUNIQUE

51

Triggers

TRIGGER_RDEEJW_USERS_UPDATE

This trigger executes whenever a RDEEJW_USERS record is update or deleted. If the record has an
update EmailAddress or UserName, these records are reflected in the log entry. This is useful for keeping
a history of the user’s emailaddress’ and usernames in the past.

CREATE OR REPLACE TRIGGER TRIGGER_RDEEJW_USERS_UPDATE
AFTER
UPDATE OF "USERNAME", "EMAILADDRESS" OR DELETE
ON RDEEJW_USERS
FOR EACH ROW
DECLARE
BEGIN

INSERT INTO RDEEJW_LOG_USERS

(OLDUSERNAINE, NEWUSERNAINE, OLDEMAILADDRESS, NEWENAILADDRESS)

YALUES

(:0ld. USERNAIME, :new.USERNAME, :old.EMAILADDRESS, :new.EMAILADDRESS):

END;

TRIGGER_RDEEJW_TABLENAME

These triggers are used when inserting records into any table that requires an auto-generated
primary key. It utilizes the SEQ_RDEEJW_TABLENAME to grab the next available value in the sequence. In
the example below, the trigger is made on RDEEJW_USERS and is executed when an insert is performed.

§_USERS

- TRIGGER_RDE
create or rep
TRIGGER TRIGGER_RDEEJW_USERS

before insert on RDEEJW_USERS

for each row

begin

select SEQ_RDEEJW_USERS.nextwval into :new. USERID from dual;
end

52

Phase V: Implementation of the Relational Database

5.1 GUI Design and Implementation

5.1 Daily User Activities

There are two user groups for our web-based application. All login-based users data is stored in
the table RDEEJW_Users. “Anonymous Users” have limited access to site functionality, while “Registered
Users” have access to other functionality more pertinent to the web site. There is a third group that has a
yet-to-be-implemented interface, the “Administrative Users”.

Anonymous Users

The anonymous users are anybody who wants to view the site. They are potential GIS
Administrators, GIS Hobbyists, and Computer Science professors. They are able to search and filter
published Attribute Sets as well as view the tutorials and non-user information.

Registered Users

Registered users are users that, in addition to what Anonymous Users can do, however they are
allowed to download XML, JSON, Excel, as well as connect to and consume web services.

Administrative Users

For brevity of this presentation and additional coding, Administrative User features are shown to
all as an example of our knowledge of the product. There is currently no validation enabled (purposely),
but as this project picks up we will review membership roles. Administrators will be able to edit
Categories, create Sub-Categories, enable / disable users, etc.

53

5.2 Relations, Views, and Subprograms

5.2 Relations, Views, and Subprograms

Relations

The common daily activities will involve most of the tables in the database. Our database keeps
limited historical data on tables, mainly RDEEJW_Users. The following tables are unlikely to be operated
on as they contain referential data:

1. RDEEJW_CATEGORIES
2. RDEEJW_ATTRIBUTESETYPES

The following tables are very likely to be operated on daily:
1. RDEEJW_USERS

2. RDEEJW_ATTRIBUTESETS

3. RDEEJW_ATTRIBUTES

4. RDEEJW_DOWNLOADTRACKINGS

Views

Views are extremely helpful for storing frequently ran queries in a database. Because our database
is normalized, it is a pain to frequently create queries with JOINS. This is where views come in - they
create a comprehensive set of de-normalized data that a user or program can work with on a daily basis.
The views we created for our database are used mainly in reporting or searching from the website, and
for brief bits of statistical data on the site. The following list of views are used in our own website:

1. RDEEJW_VW_CATEGORYATTR
2. RDEEJW_VW_USERATTR
3. RDEEJW_VW_LATESTUPDATED

Subprograms

Our project’s subprograms were an incredible help when creating, updating and deleting data. It
allowed us to safely avoid any database insertion anomalies by wrapping the INSERT, UPDATE, and
DELETE commands into Functions or Procedures. Below is the list of subprograms used in our database:

RDEEJW_DELETEATTRIBUTE
RDEEJW_DELETEATTRIBUTESET
RDEEJW_DELETEUSER
RDEEJW_INSERTATTRIBUTE
RDEEJW_INSERTATTRIBUTESET
RDEEJW_INSERTDOWNLOAD
RDEEJW_INSERTUSER

N s W

54

5.3 Application Screenshots and Descriptions

5.3 Application Screenshots and Descriptions

The design of this is not as professional as it could have been - No one in the group is a graphic

designer or Ul experience designer. That being said, the following screen shots and descriptions are part

of our project.

Home Screen

The home page gives a brief introduction to the site. It allows you to traverse the site with or
without logging in. Note below that the site recognizes that the user is not logged in, and adds emphasis

to have the user LOGIN or REGISTER.

IS Templates

Attribute Template Sharing System

Welcome to our CMPS342 Project!

We see you're not logged in. When you register for an account,

you will have access to:

* Create common Geo-spatial Attribute Sets Templates.

e Share your Attribute Set Templates

e Download via XML, JSON, and SOAP Web Service formats.

Latest Site Activity

Last Modified

11/18/2011 8:23:40 PM
11/18/2011 9:45:04 AM
11/18/2011 9:37:01 AM
11/18/2011 9:36:59 AM

11/14/2011 12:53:32 AM

User
derps
Eric
jason

jason

Attribute Set Name
asdf

Watches

Asetl

Aset2

cyclebiff Hummm

Not Logged in?

Click the button below
or above to access this
wonderful site!

Not A Member?
Click the button below
to sign up!

-

2011 Fall CMPS 342 Database Systems Project

Eric England, Richard Dominguez, Jason "Jay Jay" Willlams

55

Login Screen

The login screen is a JavaScript popup page that is accessible from the “Login” button at the top of
the page. Note that client-side validation is used to ensure the user types in something an not waste an

HTTPPOST server transaction.

Login

Please input User Name and Password Below.

Login

User Name
Please Enter A User Name!

Password

Please Enter A Password!

56

Registration Screen

Our registration popup allows a user to create an account for the site. Like the Login screen, the

Registration screen, the registration screen requires the user to input data for all fields. The information
from this form is submitted to an MVC controller and is verified on the server side. If the username exists

and error is raised and presented back to the user

m Register

Please enter the information below.

Registered User Form

User Name

| UserName Required!

Confirm User Name

Email Address
Please Enter An Email Address!

Confirm Email Address

Password
Password Required!

Confirm Password

57

User Home Screen

The user’s home screen allows the user access their own admin functions, to download JSON /XML,

etc. Note the test-Admin dropdown that was not initially available to Anonymous Users.

Attribute Template Sharing System

My Attribute Sets

My Download History

!
Welcome back, test! My User Settings are logged in.

You are now logged in. Please navigate using the "Admin" To logout, click the
dropdown above, or follow these handy links below. logout button above.

My Attribute Sets My Download History
Account Settings Find Attribute Sets

Latest Site Activity

Last Modified User Attribute Set Name

58

Editing My Account

The Edit Account for user screen allows a user to edit his or her settings (previously entered in the
Registration Screen). It allows for a user to change his/her username, email address, and password. If
another user already has the email address or username, an error is returned to the client.

Edit Account For test

Editing User

User Name

test

Confirm User Name

test

Email Address

test@test.com

Confirm Email Address

test@test.com

Password

Confirm Password

59

Editing My Attribute Sets

After logging in, click “My Admin” - “My Attribute Sets” from any page of the site. This page
allows you to create, publish, un-publish, edit, and delete any of the current user’s attribute sets. It’s the
main starting point for forming a user’s Attribute Set to create Attributes.

Attribute Sets For test
Add new record
Drag a column header and drop it here to group by that column
N N d N N
& asfasfa safasfds M 0 v @
,/ ' Q} CSUB Roads Roads Walkways and Paths true 7S X
,/ v \ dsfs sdfsf Fauna false 7 X
,f v % ii kk An Unused Category false 7 X
,f v % Test safasdfas Flora false 2 X
‘/ € § Test asdf Flora false 72 X
B | W« b M Displaying items 1 - 9 of 9

60

Editing Attributes For An Attribute Set

By clicking the 4
editing Attribute Sets, editing Attributes is identical in every way.

CSUB Roads :: Editing Attributes

icon, you can begin editing Attributes for an Attribute Set. Note that, like

===
Drag a column header and drop it here to group by that column
N N N
Hello! Testing Double VA
Walkways General Walkways String 7 X
| W« @ M Displaying items 1 - 2 of 2

61

Searching Attribute Sets

On of the advantages of the system is searching other user’s published Attribute Sets. This screen

4
allows users (logged in or not) to search and filter the data below. By clicking the .__Jicon, you can filter
results and submit a new search. This makes for a quicker and nicer user experience by not having a
HTTPPOST.

Search Attribute Sets

Drag a column header and drop it here to group by that column

0,0,
SON XM

0, .0
SON Xmr

asdf

Asetl

BC - Plants

CSUB Roads

| g | g g

asdf

Desc

Plants at BC.

Roads

Fauna derps
Flora jason
Flora useri2
Walkways and

test
Paths

Y]

Displaying items 1- 7 of 7

62

Previewing Attributes for an Attribute Set

Previewing Attributes can occur from the “Search Templates” and “My Attribute Sets” screens. You

can preview the underlying Attributes by clicking the S button. It engages a popup via an AJAX request
for an improved user experience.

Display Attributes For CSUB Roads

Name Description DateLastModified Attribute Type
Hello! Testing 2011-11-20 Double
Walkways General Walkways 2011-11-20 String

63

Downloading JSON or XML

After being logged in, a user can download JSON or XML via the Search Templates screen. The

icons that are used

50‘ bo1
JSON XML

. These downloads serialize Attribute Set data to the client for their own

usage. Below is an example of serialized JSON from a created Attribute Set.

AttributeSetId: 6,

Name: "BC - Plants"”,

Description: "Plants at BC.",

IsPublished: true,

DateCreated: "/Date(1320739200000)/",
DateLastModified: "/Date(1320739200000)/",
CategoryId: 3,

UserId: 13,

- Attributes: |

-{
AttributeId: 21,
Name: "Age",
Description: "Age",
DateLastModified: "/Date(1320739200000)/",
AttributeSetId: 6,
AttributeTypeld: 2,
- AttributeType: {
AttributeTypeld: 2,
Name: "Integer"”,
DateLastModified: "/Date(1320739200000)/"

AttributeId: 18,
Name: "DatePlanted”,
Description: "Date Planted",
DateLastModified: "/Date(1320739200000)/",
AttributeSetId: 6,
AttributeTypeld: 4,
- AttributeType: {
AttributeTypeld: 4,
Name: "String”,
DateLastModified: "/Date(1320739200000)/"

AttributeId: 19,
Name: "Species”,
Description: "Plant Species”,
DateLastModified: "/Date(1320739200000)/",
AttributeSetId: 6,
AttributeTypeld: 4,
- AttributeType: {
AttributeTypeld: 4,
Name: "String”,
DateLastModified: "/Date(1320739200000)/"

64

Reports for Administrators

The following reports are an example of real-time querying via views from the database. It allows
administrators to see reports based data from the database. Clicking the raw “Reports” link at the top of

any screen can access these reports.

Number of Attribute Sets by Category

An Unused Category

Buildings

Fauna

Flora

Walkways and Paths

0

Number of Attribute Sets by User

Bob
buffys
cyclebiff
cyclebiffé
derps
Eric
jason
John Doe
test
userl2
userl4
userl5
user3
user7

1
W # Of Published Attribute Sets W # Of Un-Published Attribute Sets

2

3

0 1

W # Of Published Attribute Sets B # Of Un-Published Attribute Sets

2

3

4

5

65

Latest Site Activity

The “Latest Site Activity” area can be seen from the “Home” page near the bottom. It utilizes a view

from the database to show the last 5 published Attribute Sets updated in the database.

Latest Site Activity

Last Modified

11/20/2011 4:01:50 PM
11/20/2011 4:01:40 PM
11/20/2011 3:44:56 PM
11/20/2011 3:29:40 PM
11/20/2011 3:26:25 PM

User
John Doe
John Doe
test
test

test

Attribute Set Name
plants

Farm

CSUB Roads
asdfsadf

asdfsad

66

5.4 Code Description

5.4 Code Description

The website and related DLL’s for our project was created with Microsoft Visual Studio, .NET
Framework, .NET MVC Framework, and Telerik MVC Framework. We utilized a two-tier approach to
developing the interface - a Data Access Layer (DAL), and a Presentation Layer (Microsoft MVC). We also
utilized the C# and JavaScript languages. Below is the diagram of how our project’s web project is
architecture:

Attribute Set Sharing Architecture

Presentation Layer
NET MVC, .NET, Telerik MVC, Javascript, CSS, HTML

Data Access Layer

Oracle Data Access Components, Repository, DTO,
Extensions

Data Access Layer (DAL)

When deciding on how to organize the classes we were going to use to INSERT, EDIT, SELECT, and
DELETE data, we chose to create a DLL project within our Visual Studio. Our namespaces for the DAL
include PsychoGISScratchPad.Data (the root of DAL project), PsychoGISScratchPad.Data.DTO (The data
transfer objects used to send to other applications), PsychoGISScratchPad.Data.Repositories (The
repository-pattern used to retrieve DTO’s), and PsychoGISScratchPad.Data.Extensions (The extensions
that help convert the Typed data sets generated by Microsoft to our DTOs.

Data Transfer Objects (DTO’s) are sent to the web project. They are simplified objects that
represent the database relations:
* DTOUser: This class represents the RDEEJW_USERS relation of the database.
¢ DTOCategory: This class represents the RDEEJW_CATEGORIES relation of the database.
¢ DTOAttributeType: This class represents the RDEEJW_ATTRIBUTETYPES relation.
* DTOAttributeSet: This is a representation of the RDEEJW_ATTRIBUTESETS relations.

* DTOAttribute: This class represents the RDEEJW_ATTRIBUTES relation of the database.
67

* DTODownloadTrackings: This class represents the RDEEJW_DOWNLOADTRACKINGS
relation.

Extension Static Classes/Static Methods are the bridge used in converting between Typed Data
Set objects (which are converted from Oracle Data Access Components) to our DTO objects. They
include:

* ExtensionAttribute

* ExtensionAttributeSet

* ExtensionAttributeType

* ExtensionCategory

* ExtensionDownloadTracking

* ExtensionUser

Data Repository Objects are classes with created convenience methods used to SELECT, INSERT,
UPDATE and DELETE DTO objects. The Repositories query our Typed Datasets (XSD), which
interfaces with Oracle Data Access Components. They also convert between our DTO and Typed
Datasets objects using the extension methods mentioned previously. This level of abstraction is
necessary to avoid headaches at the presentation layer. Our repository objects include:

* RepositoryAttributes

* RepositoryAttributesSets

* RepositoryAttributeTypes

* RepositoryCategories

* RepositoryDownloadTrackings

* RepositoryUsers

Presentation Layer
After designing our DAL, we decided to use Microsoft MVC as the project to create our website. We
also decided to use the open-source Telerik MVC toolset for professional, state-of-the-art
controllers.

.NET MVC Razor: Microsoft MVC is an open source extension framework to the ASP.NET
framework. MVC stands for Model, View, and Controller. The controllers control what gets sent
and routed to which views and enforce business rules (we do not have a business layer). The
views receive models from the controllers for display purposes. The models are referenced mainly
form our DAL as DTOs. Razor syntax is the syntax used in the views to render HTML. It is very
different from ASP.NET in that it is less complicated and cleans up the Ul by not using expensive
ASP.NET controls.

Telerik MVC: Used alongside .NET, the Telerik MVC toolset is also open source framework. It
contains controls for the RAZOR syntax that assist in making a clean, professional design. Below is
a list of the controls that we used:

68

* Telerik Menu: Our site’s usage of the Menu control can be seen on every page - it’s the blue
menu on every screen.

* Telerik Grid: We utilize a grid in the Template Search, My Attribute Sets, and Edit
Attributes pages. This grid is bound to an AJAX-method from their respective MVC
controllers. Data bound to the Telerik Grid are respective lists of DTO objects.

* Telerik Window: These controllers are used in many pages. They are the modal pop-ups
seen to Login, Register, or preview certain data.

* Telerik Chart: These controllers are used in the “Reports” page for demonstration purposes
of displaying our data.

HTML, JavaScript, and CSS are all used in the MVC Views. They, along with the MS MVC
Controllers and Telerik MVC Controllers, are rendered together at run-time.

Major Features:

One major feature of the site is the use of the default Membership Provider that ships with
MVC Applications. For our purposes, we utilized storing the logged in DTOUser object as a session
variable. This helps with security so users cannot update other user’s Attribute Sets or Attributes.

Another excellent feature of this site is the dynamic, real-time usage of the Telerik Grids to
display, sort, filter, update, delete and insert data. The fact that the site uses AJAX contributes to an
enjoyable user experience.

The reporting functionality is also a great feature for Administrators. It would allow

statistical analysis and help organize Categories better, or perhaps de-activate users who havn’t
been logged in after lengthy time has passed.

69

5.5 Development Process

5.5 Development Process

For our development process, we used an incremental approach to all aspects of the site as a
whole. These closely followed the 5-Phase process that this paper represents. As such, we decided to
follow Dr. Wang’s 5-Phase database project development as a guide to developing the user interface.

Phase 1: Information Gathering

For Phase 1, we decided what we wanted the actual site to do. This included brainstorming what
major functionality we wanted the site to accomplish. This also included compiling a list of user
groups and what each user group was allowed to do. Being that we already had an idea of what we
wanted to accomplish, this phase was trivial.

Phase 2: Data Access Layer — DTO

For Phase 2, we began creating the Visual Studio Project’s DAL. We started by creating simple
object-representations of the database relations as DTO objects. This phase of development was
extremely easy, as we followed our Entity-Relationship model to determine how to model our
DTO classes. These classes would later be used to pass data to the Presentation Layer and back to
the Data Access Layer.

Phase 3: Data Access Layer — Repository and Extension Methods

In Phase 3, we added to the DAL by learning how to “talk” to the Oracle Database. This was
EXTREMELY difficult to figure out. We learned how to install the Oracle Client as well as install
and utilize the Oracle Data Access Client objects.

We then developed C# Extension Class/Methods (methods to extend functionality to a class that
you don’t own). These classes were designed to convert between the typed data sets the ODAC
creates, and our DTO objects.

Our final part of Phase 3 was creating “Repositories” - Classes that establish connection to the
database, SELECT, INSERT, UPDATE, OR DELETE database columns based on input. These classes
are the main access point of data interaction from the Presentation Layer and Web Services.

Phase 4: Presentation Layer — Design and Views

For Phase 4, we created a Microsoft MVC Project as our GUI interface. This involved learning what
MVC is, how it works, and what its strengths and weaknesses are. For this phase we simply
designed the CSS, some HTML, and learned the Telerik MVC components. We also designed all the
views (which wouldn’t completely work, as we had not tied it together to the DAL yet). We also
opened up Adobe Photoshop to design some of the images used throughout the site.

70

Phase 5: Presentation Layer — Putting It All Together

For our final phase, we imported the DAL Repositories and DTO namespaces to each Controller
and View that required them. We then had to do rigorous testing to try to break each controller
and screen (which was easy to do, hey we were / are learning!).

71

5.6 Conclusion

5.6 Conclusion

This project allowed our group to learn a great deal about everything involved. While individually
we have A LOT to learn about databases in general, as a group we prevailed to design a unique concept
and functional implementation that is very abstract. Below is a list of the concepts we dived into during
the Quarter of 2011 in CMPS 342:

* Relational Algebra and Tuple/Domain Calculus.

* SQL - Practical and Theoretical.

* Oracle database objects.

* Oracle Functions, Procedures, Views, Triggers, and Sequences.
* (C# Language.

e NET Framework, .NET MVC Framework.

* Oracle Data Access Client.

* Oracle SQLPlus.

* Telerik Controls.

* (SS, HTML, JavaScript.

72

