

DATABASE SYSTEMS 342

 Drew Dishman

 Jacob Owen

 2

Table of Contents

 PAGE #

PHASE I:
1. Fact-Finding Techniques and Information Gathering

1.1 Description Fact-Finding Techniques... 3

1.3 Introduction to Enterprise/Organization ..3

1.4 Describe entity/relationship sets... 3

1.5 Itemized descriptions of Entity/Relationship Sets.. 3-4

1.6 User Groups, Data views and Operations..4

2. Conceptual Database Design

2.1 Entity Set Descriptions.. 4-14

2.2 Relationship Set Descriptions... 14-16

2.3 Related Entity Set... 14-16

2.4 E-R Diagram... See Attached

PHASE 2:

(3.1) E-R Model and Relational Model Descriptions..16-18

(3.2) Relational Model (Diagram).. See Attached

(3.3) Relation Instances (Tuples)..19-25

(3.4/3.5) Queries..25-28

PHASE 3:

(1) Normalization of Relations...38-40

PHASE 4:

A. Common Features in Oracle PL/SQL and MS-Trans-SQL..40-41

B. Oracle PL/SQL..41-45

 3

C. Oracle PL/SQL Subprogram Code/Documentation..45-49

PHASE 5:

A. Description of Daily Activities of the User Group..49

B. Relations/Views/Subprograms related to the activities..49-59

C. Interface Screen Shots...60-68

D. Description of Code..68

E. Major Steps of Designing and Implementing a Database Application..69

 1.1 Fact-Finding Techniques:

 Employee enters each transaction made into the database. Manager enters employee, inventory,

and purchases into the database. The database will generate a monthly income and expense, and

inventory reports. In our fact-finding, we contacted various business owners of coffee shops in order to

find out their database needs.

 1.3 Introduction to Enterprise/Organization:

 Coffee shop that sells food/drinks and resupplies inventory from the distributor. We've been in

business for a number of years and it is becoming difficult to access necessary data in a timely manner.

For these reasons we have decided to develop a database in order to better store our company's

information in a more secure and efficient manner.

 1.4/ 1.5 Designing a conceptual database to keep records of financial information.

 Major Entity Sets:

 Supplier: Name, phone number, address.

 Inventory: Date/Time, employee who completed the inventory

 Inventory information: The ID of every item, total in inventory, amount sold since

 previous month, amount purchased from previous month, and total amount

 4

 unaccounted for.

 Item: Name, price per unit, ItemID.

 Employee: SSN, name, phone number, address, date hired, pay.

 Purchase: TransactionID, Time and Date, Employee's Social, Price and Supplier's name.

 Purchase Info: The TransactionID, ItemID and quantity of item bought.

 ItemSold: TransactionID, Time and Date, Employee's Social, and price of transaction.

 ItemSoldInfo: TransactionID, ItemID and quantity of item bought.

 Relationship Sets:

 The relationship between the entities Transaction:Supplier is Purchased From. The

 quantity and price is stored within Purchased From. Transaction:Supplier is a M:M ratio.

 The relationship between the entities Transaction:Item is Item Purchased. The quantity

 and price is stored within Item Purchased. Transaction:Item is a M:M ratio.

 The relationship between the entities Sale:Item is Item Sold. The quantity and price

 is stored within Item Sold. Sale:Item is a M:M ratio.

 The relationship between the entities Transaction:Employee is Sold By to distinguish

 which employee made the sale. Transaction:Employee is a M:M ratio.

 The relationship between the entities Employee:Inventory is Completed By to

 distinguish which employee completed the inventory. Employee:Inventory is a M:M

 ratio.

1.6 User Groups, Data views and Operations:

 The two groups who will use the database are the manager and employee. Manager will have

access to every entity and be able to do add, remove, change, and reporting operations. Employees will

only have access to the Sale entity and be able to do add operations.

2.1Entity Set Description

 5

 1. Transaction

 The purpose of the transaction entity is to keep a record of all purchases and sales made

 by the business. It will hold data for the date and time of the transaction, the employee

 who made the purchase or sale, the ID number for the transaction and the supplier if the

 transaction was a purchase. It will also keep track of whether the transaction was a

 purchase or a sale.

 Attribute Name: Transaction ID

 Description: Gives a number to each transaction.

Domain/

Type

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Integer 1 - 10,000 Next Integer Not Allowed Yes Single Simple

 Attribute Name: Date/Time

 Description: Gives the date and time of each transaction.

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

 6

Date/Time Date/Time

Current

Date

Not Allowed No Single Simple

 Attribute Name: Purchase/Sale

 Description: States whether the transaction was a purchase or a sale, denoted by a 1 for

 sale and a 2 for purchase

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Integer 1 - 2 1 Not Allowed No Single Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Transaction ID Transaction ID Strong Transaction ID

 2. Supplier

 The purpose of the supplier entity is to keep a record of the suppliers the store uses

 7

 regularly as well as keep track of which supplier was used for each purchase.

 Attribute Name: Name

 Description: The name of the company the store is buying their products from.

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

A character

string

A - Z, 0 - 9

(Length of

20)

' ' Not Allowed Yes Single Simple

 Attribute Name: Number

 Description: The phone number of the company the store is buying products from

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

string

0 - 9

(Length of

10)

NULL Allowed Yes Single Simple

 8

 Attribute Name: Address

 Description: The address of the company the store is buying products from.

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

string

0 - 9, A - Z

(Length 30)

NULL Allowed Yes Single Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Name, Number,
Address

Name Strong Name

 3.Item

 The item entity will keep track of all of the items the coffee shop will sell as well as the

 ingredients used to make those items they have in their inventory. It has the Attributes

 Item name, price per unit and total amount of items in the inventory.

 Attribute Name: Name

 Description: The name of the item

 9

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

string

0 - 9, A - Z

(Length 30)

' ' Not Allowed Yes Single Simple

 Attribute Name: Price Per Unit

 Description: The total price per unit of the item

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Decimal

(Monetary

Value)

$0.00 -

$1,000.00

$0.00 Not Allowed No Single Simple

 Attribute Name: Total Units

 Description: The total amount of the item in inventory updated every inventory

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

 10

Double 1 - 1,000 0 Not Allowed No Single Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Name Name Weak Name

 4. Employee

 The employee entity is for keeping a record of all employees in the database and their

 information such as their name, SSN, phone number, address, date hired and pay so that

 the employer can easily have access to any of this information.

 Attribute Name: SSN

 Description: The employee's social security number

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

0 - 9

(Length of

9)

NULL Allowed Yes Single Simple

 11

 Attribute Name: Fname

 Description: The first name of the employee

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

A - Z

(Length of

15)

' ' Not Allowed Yes Single Simple

 Attribute Name: Lname

 Description: The last name of the employee

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

A - Z

(Length of

15)

' ' Not Allowed Yes Single Simple

 Attribute Name: Phone Number

 Description: The phone number of the employee

 12

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

0 - 9

(Length of

10)

NULL Allowed Yes Single Simple

 Attribute Name: Address

 Description: The address of the employee

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

0 - 9, A - Z

(Length of

30)

NULL Allowed Yes Single Simple

 Attribute Name: Date Hired

 Description: The date the employee was hired

 13

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Date
Time and

Date

Current

Date

Not Allowed No Single Simple

 Attribute Name: Pay

 Description: The employee's pay

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Decimal

(Monetary

Value)

$8.00 -

$20.00

$8.00 Not Allowed No Single Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Fname, Lname, SSN SSN Strong SSN

 14

 5. Inventory

 The inventory entity's purpose is to provide the company with a way to make an

 inventory every month/week etc. They can then use the data to compare with previous

 inventories to find out how much loss they experienced in that time period. It will

 accomplish this by having a field for the date as well as a field for all of the items.

 Attribute Name: Date

 Description: The date the inventory was completed

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Date
Time and

Date

Current

Date

Not Allowed Yes Single Simple

 Attribute Name: Items

 Description: The total units and names for all items in inventory

 15

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String,

Integer

A - Z,

0 - 10,000

' '

0

Not Allowed No Multiple Composite

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Date Date Strong Date

 3.Item

 The item entity will keep track of all of the items the coffee shop will sell as well as the

 ingredients used to make those items they have in their inventory. It has the Attributes

 Item name, price per unit and itemID.

 Attribute Name: Name

 Description: The name of the item

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

 16

Character

string

0 - 9, A - Z

(Length 30)

' ' Not Allowed Yes Single Simple

 Attribute Name: Price Per Unit

 Description: The total price per unit of the item

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Decimal

(Monetary

Value)

$0.00 -

$1,000.00

$0.00 Not Allowed No Single Simple

 Attribute Name: ItemID

 Description: The ID number of every item we have inventoried.

 17

Domain/Ty

pe

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number(9)
A nine digit

number

0 Not Allowed Yes Single Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Name Name Weak Name

 4. Employee

 The employee entity is for keeping a record of all employees in the database and their

 information such as their name, SSN, phone number, address, date hired and pay so that

 the employer can easily have access to any of this information.

 Attribute Name: SSN

 Description: The employee's social security number

 18

Domain/Ty

pe

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number(9)

0 - 9

(Length of

9)

000000000 Not Allowed Yes Single Simple

 Attribute Name: Fname

 Description: The first name of the employee

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

A - Z

(Length of

15)

' ' Not Allowed Yes Single Simple

 Attribute Name: Lname

 Description: The last name of the employee

 19

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

A - Z

(Length of

15)

' ' Not Allowed Yes Single Simple

 Attribute Name: Phone Number

 Description: The phone number of the employee

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

0 - 9

(Length of

10)

NULL Allowed Yes Single Simple

 Attribute Name: Address

 Description: The address of the employee

 20

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String

0 - 9, A - Z

(Length of

30)

NULL Allowed Yes Single Simple

 Attribute Name: Date Hired

 Description: The date the employee was hired

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Date
Time and

Date

Current

Date

Not Allowed No Single Simple

 Attribute Name: Pay

 Description: The employee's pay

 21

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Decimal

(Monetary

Value)

$8.00 -

$20.00

$8.00 Not Allowed No Single Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Fname, Lname, SSN SSN Strong SSN

 5. Inventory

 The inventory entity's purpose is to provide the company with a way to make an

 inventory every month. They can then use the data to compare with previous

 inventories to find out how much loss they experienced in that time period. It will

 accomplish this by having a field for the date as well as a field for all of the items.

 Attribute Name: Date

 Description: The date the inventory was completed

 22

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Date
Time and

Date

Current

Date

Not Allowed Yes Single Simple

 Attribute Name: ItemIDs

 Description: The total units and ID numbers for all items in inventory

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Character

String,

Integer

A - Z,

0 - 10,000

' '

0

Not Allowed No Multiple Composite

Attribute Name: Employee SSN

 23

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number(9)
9 Digit

Number

Null Allowed Yes Single Simple

Attribute Name: Total Number in inventory

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number 0 - 10000 0 Not Allowed No Multiple Simple

Attribute Name: Purchased Since Last

 24

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number 0 - 10000 0 Not Allowed No Multiple Simple

Attribute Name: Sold Since Last

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number 0 - 10000 0 Not Allowed No Multiple Simple

Attribute Name: Amount unaccounted for

 25

Domain/T

ype

Value-

Range

Default

Value
Null Value Unique

Single or

Multiple

Value

Simple or

Composite

Number 0 - 10000 0 Not Allowed No Multiple Simple

Candidate Keys Primary Key Strong/Weak Entity Fields to be Indexed

Date Date Strong Date

2.2/2.3 Relationship Set Description

 RESUPPLY:

 Relationship between the entities Transaction & Supplier which stores the quantity and price of

the supplies we purchased from.

Entity Sets Involved Mapping Cardinality Descriptive Field
Participation

Constraint

Transaction &
Supplier

M:M Quantity & Price Total

 ITEM BOUGHT:

 26

 Relationship between the entities Transaction & Item which stores the quantity and price of the

items we purchased.

Entity Sets Involved Mapping Cardinality Descriptive Field
Participation

Constraint

Transaction & Item M:M Quantity & Price Total

 ITEM SOLD:

 Relationship between the entities Transaction & Item which stores the quantity and price of the

items we sold.

Entity Sets Involved Mapping Cardinality Descriptive Field
Participation

Constraint

Transaction & Item M:M Quantity & Price Total

 SELLS:

 Relationship between the entities Transaction & Employee to keep track of which employee

made the sale.

Entity Sets Involved Mapping Cardinality Descriptive Field
Participation

Constraint

Transaction &
Employee

M:M Employee Partial

 COMPLETES:

 27

 Relationship between the entities Employee & Inventory to keep track of which employee

completed inventory checks.

Entity Sets Involved Mapping Cardinality Descriptive Field
Participation

Constraint

Employee &
Inventory

M:M ? Partial

PHASE 2:

(3.1) E-R Model and Relational Model

 Conceptual modeling is a very important phase in designing a successful database application.

Generally, the term database application refers to a particular database and the associated programs that

implement the database queries and updates. These programs provide user-friendly graphical user

interfaces (GUIs) utilizing forms and menus for the end users of the application. A major part of the

database application will require the design, implementation, and testing of these application programs.

 The Entity-Relationship (ER) model is a popular high-level conceptual data model. This model

is frequently used for the conceptual design of database applications. Also used to create a ER-Diagram

of your conceptual database using various entity types, sets, keys, and attributes.

 The relational data model was first introduced by Ted Codd of IBM research in 1970, and it

attracted immediate attention due to its simplicity and mathematical foundation. The model uses the

concept of a mathematical relation -- which looks somewhat like a table of values -- as its basic

building block, and has its theoretical basis in set theory and first-order predicate logic. SQL query

language is the standard for commercial relational DBMSs. Relational Algebra and relational calculus

are two formal languages associated with the relational model. The relational calculus is considered to

be the basis for the SQL language, and the relational algebra is used in the internals of many database

implementations for query processing and optimization.

ER MODEL RELATIONAL MODEL

Entity type Entity Relation

1:1 or 1:N relationship type Foreign key (or relationship relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type Relationship relation and n foreign keys

Simple Attribute Attribute

Composite Attribute Set of simple component attributes

Multivalued Attribute Relation and foreign key

 28

Value Set Domain

Key Attribute Primary (or secondary) key

 In order to convert an Entity-Relationship model into a Relational model you must follow this 7

step algorithm:

 Step 1: Mapping of Regular Entity Types

 Step 2: Mapping of Weak Entity Types

 Step 3: Mapping of Binary 1:1 Relationship Types

 Step 4: Mapping of Binary 1:N Relationship Types

 Step 5: Mapping of Binary M:N Relationship Types

 Step 6: Mapping of Multivalued Attributes

 Step 7: Mapping of N-ary Relationship Types

Conversion Issues:

 For each strong entity type E in the ER schema, create a relation R that includes all the simple

attributes of E. Include only the simple component attributes of a composite attribute. Choose one of

the key attributes of E as the primary key for R. if the chosen key of E is a composite, then the set of

simple attributes that form it together will form the primary key of R.

 For each weak entity type W in the ER schema with owner entity type E, create a relation R and

include all simple attributes of W as attributes of R. In addition, include as foreign key attributes of R,

the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s); this takes care

of mapping the indentifying relationship type of W. The primary key of R is the combination of the

primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

Constraints:

 A referential constraint is usually used in the context of relationships and asserts that exactly

one value exists in a given context. If R is a (M:1 or 1:1) relationship from E to F, we require that the

entity in F related by R to an entity in E must exist.

 A entity constraint is a constraint placed on an entity in how it relates to another entity.

 A primary key constraint is a rule that says that the primary key fields cannot be null and cannot

contain duplicate data.

 A foreign key constraint specifies that the data in a foreign key must match the data in the

primary key of the linked table.

3.3

 29

EMPLOYEE

SSN NAME PHONE # ADDRESS DATE

HIRED

PAY

100000000 Billy Bob 234-9548 212 Maple

Avenue

05/21/87 $17.00 an hour

110000000 John Jay 982-2312 7901

Revelstoke

Way

04/02/91 $12.00 an hour

111000000 Dish Man 723-0932 400 Woodrow 08/27/11 $8.50 an hour

111100000 Kyle Hamster 120-2345 895 Cliffspring

Drive

03/14/09 $8.50 an hour

111110000 Luke Paper 687-9123 3242

Evergreen

Terrace

07/06/98 $12.00 an hour

111111000 Trashcan

James

432-6507 2301 Alley St 02/17/04 $10.00 an hour

111111100 Clifford Red 586-1946 3485 Mountain

Vista Rd

12/25/06 $8.50 an hour

111111110 Scuba Steve 834-1968 109 Seapines 11/22/01 $10.00 an hour

111111111 Teapot Sally 518-5205 921

Mothergoose

Ave

01/30/10 $8.50 an hour

200000000 Negative

Nancy

407-5248 1239 Hate

Drive

06/06/06 $8.50 an hour

 30

TRANSACTION
ID DATE/TIME PURCHASE/SALE ESSN

1000 10/23/11 at 8:01 A.M. SALE 100000000

1001 10/23/11 at 8:15 A.M. SALE 110000000

1002 10/23/11 at 8:31 A.M. SALE 111000000

1003 10/23/11 at 8:35 A.M. SALE 111100000

1004 10/23/11 at 8:43 A.M. SALE 111110000

1005 10/23/11 at 9:05 A.M. SALE 111111000

1006 10/23/11 at 9:10 A.M. SALE 111111100

1007 10/23/11 at 9:13 A.M. SALE 111111110

1008 10/23/11 at 9:27 A.M. SALE 1111111111

1009 10/23/11 at 9:38 A.M. SALE 200000000

SUPPLIER
NAME PHONE # ADDRESS

Grounds Distribution 102-2394 1234 17th St.

The Black Seeds 583-4785 0981 Trident Drive

Johnson's & Co 348-9450 231 Enchilada Way

Java Express 709-3240 7129 Coca Cola St.

Cool Beans Delivery 234-8071 182 Clydesdale

Hot Transportation 625-2349 094 Beach St.

Make Believe Utilities 041-4389 1283 Singapore

The Grid 216-3987 3274 Awesome St.

Interior Crocodile Alligator 853-1092 915 Africa

Chevrolet Movie Theater 123-0987 1800 Edwards

ITEM

 31

NAME ITEM ID PRICE PER UNIT

Vanilla Frappuccino 100001 $3.50

Pastry 100002 $2.00

Latte 100003 $3.00

Cappuccino 100004 $3.00

Decaf 100005 $2.50

Iced Coffee 100006 $3.00

Cafe Mocha 100007 $3.25

Blueberry Muffin 100008 $3.00

Macchiato 100009 $4.00

Irish Coffee 100010 $4.00

ITEM SOLD

TRANSACTION ID QUANTITY PRICE ITEM ID

1000 1 $3.50 100001

1001 1 $2.00 100002

1002 1 $4.00 100009

1003 2 $4.00 100002

1004 3 $9.00 100008

1005 1 $3.00 100003

1006 2 $5.00 100005

1007 1 $4.00 100010

1008 1 $3.00 100004

1009 2 $6.50 100007

INVENTORY

ItemId Total PurchasedSin

ceLast

SoldSinceLast Date/Period Amount

Unnaccounted

For

ESSN

100000

100002

100003

100004

100005

100006

100007

100008

100009

100

15

234

350

12

13

56

24

32

30

10

100

200

5

3

14

20

30

70

4

96

100

6

7

17

24

31

4/01/2011 -

4/30/2011
0

1

32

50

1

2

12

3

0

100000000

 32

100010

495

495

495

0

100000

100002

100003

100004

100005

100006

100007

100008

100009

100010

101

17

233

345

13

9

55

32

33

485

31

99

100

255

4

7

23

21

35

476

71

5

93

102

5

12

18

19

28

400

5/01/2011 -

5/31/2011
1

2

12

45

2

12

4

5

1

0

100000001

100000

100002

100003

100004

100005

100006

100007

100008

100009

100010

96

88

224

346

9

10

53

35

32

484

32

96

103

216

3

7

14

31

17

488

64

13

91

140

8

9

15

22

36

463

6/01/2011 -

6/30/2011
2

1

22

30

3

1

9

2

1

0

100000002

100000

100002

100003

100004

100005

100006

100007

100008

100009

100010

101

17

233

345

13

9

55

32

33

485

31

99

100

255

4

7

23

21

35

476

70

4

96

100

6

7

17

24

31

495

7/01/2011 -

7/31/2011
0

1

32

50

1

2

12

3

0

0

100000005

100000 115 32 65 8/01/2011 - 3 100000001

 33

100002

100003

100004

100005

100006

100007

100008

100009

100010

108

223

335

14

10

33

34

26

478

103

100

235

7

4

26

22

36

476

4

92

100

3

22

36

22

36

430

8/31/2011 1

30

15

2

3

6

0

2

1

100000

100002

100003

100004

100005

100006

100007

100008

100009

100010

101

17

233

345

13

9

55

32

33

485

31

99

100

255

4

7

23

21

35

476

70

4

96

100

6

7

17

24

31

495

9/01/2011 -

9/30/2011
0

1

32

50

1

2

12

3

0

0

100000000

PURCHASE

Quantity TID Price Sname IID

100

23

32

400

360

1001 $2,570.36 Coffee Suppliers 10000000001

10000000003

10000000005

10000000007

10000000009

123

395

66

54

32

1002 $3,624.35 Coffee R Us 10000000002

10000000004

10000000006

10000000008

100000000010

 34

71

12

32

15

64

1003 $3,732.77 Coffee Suppliers 10000000001

10000000002

10000000003

10000000005

10000000007

200

25

63

22

134

1004 $2,934.55 Coffee Suppliers 10000000008

10000000005

10000000004

10000000006

10000000002

78

493

62

300

124

1005 $2,876.32 Coffee Max 10000000001

10000000010

10000000002

10000000009

10000000003

123

14

36

51

12

1006 $3,151.60 Coffee R Us 10000000004

10000000003

10000000006

10000000009

10000000002

9

101

105

64

28

1007 $3,333.33 Coffee Suppliers 10000000002

10000000003

10000000004

10000000005

10000000006

37

462

398

17

77

1008 $2,432.23 Coffee R Us 10000000001

10000000010

10000000003

10000000007

10000000005

8

72

1009 $2,323.23 Coffee Suppliers 10000000004

10000000001

 35

209

370

64

10000000006

10000000010

10000000005

223

47

17

23

495

1010 $4,264.78 Coffee Max 10000000010

10000000003

10000000002

10000000004

10000000008

(3.4/3.5) QUERIES

1.The most expensive purchase from a supplier.

Relational Algebra:

PROJECT (Purchase(p) - (Purchase(p1) JOIN Purchase(p2)))
 p.* (p1.Sname = p2.Sname ^ p1.price < p2.price)

Tuple Calculus:

{ p.* | (Ep)purchase(p) ^ NOT((Ep2)purchase(p2) ^ (p2 > p1)}

Domain Calculus:

{<q,t,p,s,i> | purchase(q,t,p,s,i) ^ (Ep)(purchase(_,t,p,_,_) ^ NOT (Ep2)(purchase<_,t,p,_,_) ^ (p2 > p1)

2.All Employees who made no sales last week.

Relational Algebra:

PROJECT (Employee(e) - PROJECT(Employee(e1) JOIN Transaction))
 e.* e1.* (SSN = ESSN ^ date > 10/7/2011 ^

 date < 10/14/2011)

Tuple Calculus:

Domain Calculus:

{<s,n,ph,a,d,p> | employee(s,n,ph,a,d,p) ^ NOT((Es)employee(s,_,_,_,_,_) ^ (Ee)transaction(_,d,_,e)

 ^ s = e ^ (d > 8/31/1011 ^ d < 10/1/2011))}

 36

{e.* | (Ee)employee(e) ^ NOT((Et)transaction(t) ^ e.SSN = t.ESSN ^ t.date > 8/31/2011 ^

 t.date < 10/01/2011)}

3. Suppliers we have bought every item from at least once.

Relational Algebra:

PROJECT (Purchase) / PROJECT (Item)
 Sname, ItemID ItemID

Tuple Calculus:

{s.* | (Es)supplier(s) ^ NOT((Ep)purchase(p) ^ (Ei)item(i) ^ i.ItemID != p.IID)}

Domain Calculus:

{<n,p,a> | supplier(n,p,a) ^ NOT((Ei)purchase(_,_,_,s,i) ^ (Ei2)item(i2,_,_,_,_,_,_) ^ i != i2)}

4. Most popular item in inventory last month.

Relational Algebra:

PROJECT (Inventory(in) - (Item NATURAL JOIN (Inventory(I1) JOIN Inventory(I2)))
 Item.* (I1.date > 8/31/2011 ^

 I1.date < 10/1/2011 ^

 I2.date > 8/31/2011 ^

 I2.date < 10/1/2011 ^

 I1.soldsincelast < I2.soldsincelast)

Tuple Calculus:

 {i.* | item(i) ^ inventory(y) ^ y.date >= 10/1/2011 ^ y.date <= 10/31/2011 ^ NOT(inventory(y2) ^

 y2.sold > y.sold ^ (y2.date >= 10/1/2011 ^ y2.date <= 10/31/2011))}

Domain Calculus:

{<n,i,p> | item(n,i,p) ^ ((Es)inventory(i,_,_,s,d,_,_) ^ d >= 10/01/2011 ^ d <= 10/31/2011) ^ NOT

 ((Es2)inventory(i,_,_,s2,d2,_,_) ^ s2 > s ^ (d2 >= 10/01/2011 ^ d2 <= 10/31/2011))}

5. Smallest number of items purchased in one transaction.

Relational Algebra:

PROJECT (Purchase(p) - (Purchase(p1) JOIN Purchase(p2)))

 37

 p.quantity p1.quantity > p2.quality

Tuple Calculus:

 {p.quantity | (Ep)purchase(p) ^ (Ep2)purchase(p2) ^ NOT((Ep3)purchase(p3) ^

 p3.quantity < p2.quantity)}

Domain Calculus:

{<q> | purchase(q,t,p,s,i) ^ (Eq)(purchase(q,t,_,_,_)) ^ NOT ((Eq2)(purchase(q,_,_,_,_)) ^ q2 > q1)}

6. All employees who make exactly ten dollars an hour.

Relational Algebra:

PROJECT (Employee) / $10.00
 name, pay

Tuple Calculus:

 {e.* | (Ee)employee(e) ^ e.pay = $10.00}

Domain Calculus:

{<s,n,ph,a,d,p> | employee(s,n,ph,a,d,p) ^ ((Ep)employee(_,_,_,_,_,p) ^ p = $10.00)}

7. The second largest amount of money made in one sale

Relational Algebra:

AllButLargest <= (Sale(s1) JOIN Sale(s2)))
 s1.price < s2.price

PROJECT (AllButLargest(a) - (AllButLargest(a1) JOIN AllButLargest(a2)))
 a.price a1.price < a2.price

Tuple Calculus:

{s2.price | (Es)sale(s) ^ (Es2)sale(s2) ^ s2.price < s.price ^ NOT((Es3)sale(s3) ^ (s3.price < s.price)

 ^ (s3.price != s2.price))}

Domain Calculus:

{<p,t> | sale(i,q,p,t) ^ ((Ep)sale(_,_,p,_) ^ (Ep2sale(_,_,p2,t) ^ p2 < p^ NOT(Ep3)sale(_,_,p3,_)

 38

 ^ (p3 < p) ^ (p3 != p2))}

8. The average price per sale last month.

Relational Algebra:

PROJECT (AGGREGATE (SELECT (Transaction X Sale)))
 price AVERAGE Price date > 8/31/2011 ^ date < 10/01/2011

Tuple Calculus:

{ AGGREGATE Aggregate s.price | (Es)sale(s) ^ (Et)transaction(t) ^ t.date > 8/31/2011 ^

 t.date < 10/01/2011 ^ t.ID = s.TID

Domain Calculus:

 {<AGGREGATE Average p> | sale(_,_,p,t) ^ ((Ed)transaction(i,d,_,_) d > 8/31/2011 ^

 d < 10/01/2011 ^ t = i)}

PHASE 3:

1. Normalization of Relations

(1)

 A.

 The First Normal Form (1NF) was historically defined to disallow multivalued attributes,

composite attributes, and their combinations. It states that the domain of an attribute must include only

atomic (simple, indivisible) values and that the value of any attribute in a tuple must be a single value

from the domain of that attribute. In other words, 1NF disallows relations within relations or relations

as attribute values within tuples.

 The Second Normal Form (2NF) is based on the concept of full functional dependency. A

functional dependency X -> Y is a full functional dependency if removal of any attribute A from X

means that the dependency does not hold any more. A functional dependency X -> is a partial

dependency if some attribute A E X can be removed from X and the dependency still holds. Definition:

A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the

primary key of R.

 The Third Normal Form (3NF) is based on the concept of transitive dependency. A functional

dependency X -> Y in a relation schema R is a transitive dependency if there exists a set of attributes Z

in R that is neither a candidate key nor a subset of any key of R, and both X -> Z and Z -> Y hold.

 39

Defintion: According to Codd's original definition, a relation schema R is in 3NF if it satisfies 2NF and

no nonprime attribute of R is transitively dependent on the primary key.

 Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to

be stricter than 3NF. That is, every relation in BCNF is also in 3 NF; however, a relation in 3NF is not

necessarily in BCNF. Definition: A relation schema R is in BCNF if whenever a nontrivial functional

dependency X _> holds in R, then X is a superkey of R.

 B.

 Storing natural joins of base relations leads to an additional problem referred to as update

anomalies. these can be classified into insertion anomalies, deletion anomalies, and modification

anomalies.

 Insertion Anomalies: Place Null values where the primary key is not allowed.

 Deletion Anomalies: If you delete a row from a table that information is lost from the

Database.

 Modification Anomalies: If you change an attribute in one row you must update that whole

row or the information will become inconsistent.

(2)

 A. Which normal forms are the relations in?

 Employee: First normal form (1NF)

 Supplier: First normal form (1NF)

 Item: 2nd normal form (2NF)

 Inventory: 2nd normal form (2NF)

 Inventory Info: 2nd normal form (2NF)

 Item Sold: 2nd normal form (2NF)

 Item Sold Info: 2nd normal form (2NF)

 Purchase: 2nd normal form (2NF)

 Purchase Info: 2nd normal form (2NF)

 B. Do any modification anomalies exist?

 Yes, there will be Deletion/Modification anomalies when the Item Id attribute from the

relation Item becomes deleted. Thus losing the info in the relations ItemSold Info and Purchase Info.

Delete the ESSN from employee and Inventory/Item Sold/Purchase results in a loss of info. If the

Date/Time is deleted in Inventory then that info will be lost in Inventory Info. Same goes for the

attribute TID.

4.

 40

(1)

 SQL * Plus: an Oracle command-line utility program that can run SQL and PL/SQL commands

interactively or from a script. SQL*Plus operates as a relatively simple tool with a basic command-line

interface. Programmers and DBAs commonly use it as the default available fundamental interface in

almost any Oracle Software installation.

(2)

 A schema is a collection of logical structures of data, or schema objects. A schema is owned by

a database user and has the same name as that user. Each user owns a single schema. Schema objects

can be created and manipulated with SQL and include the following types of objects: Tables, Views,

Indexes, and Clusters. Tables are the basic unit of data storage in an Oracle database. Data is stored in

rows and columns. A view is a tailored presentation of the data contained in one or more tables or

other views. A view takes the output of a query and treats it as a table. Therefore, a view can be thought

of as a stored query or a virtual table. You can use views in most places where a table can be used.

PHASE 4:

A. Common Features in Oracle PL/SQL and MS Trans-SQL

(1) Components which consist of PL/SQL and Trans-SQL:

 A Oracle PL/SQL is a block structured language in which functions, procedures and anonymous

blocks are the basic blocks. Blocks can be defined with another block.

 A block consists of three parts:

 Declaration: declare variables, constraints, cursors, and user-defined

expressions.

 Executable: consists of SQL/SQLPLUS statements.

 Exception Handling: A predefined or user-defined warning or error handled by

the PL/SQL program.

 (2) Purposes of Stored subprograms:

 A stored procedure is a subroutine available to applications that access a relational database

system. A stored procedure is stored by the DBMS in the server. They are typically used to process data

validation or access control mechanisms. Also, stored procedures can consolidate and centralize logic

that was originally implemented in applications. Furthermore, stored procedures can receive variables,

return results or modify variables and return them, depending on how and where the variable is

declared.

 (3) Benefits of calling stored subprogram over sending a dynamic SQL to front- end DBMS

server:

 41

 If a database program is needed by several applications, it can be stored at the server and

invoked by any of the application programs. This reduces duplication of effort and

improves software modularity.

 Executing a program at the server can reduce data transfer and communication cost

between the client and server in certain situations.

 These procedures can enhance the modeling power provided by views by allowing more

complex types of derived data to be made available to the database users. Additionally,

they can be used to check for complex constraints that are beyond the specification

power of assertions and triggers.

 When comparing it with dynamic SQL a stored program will remove overhead, avoid network

traffic, protection against SQL injection attacks, delegation of access-rights, and encapsulation of

business logic.

B. Oracle PL/SQL

(1) PL/SQL program structure, control statements, cursors:

 PL/SQL program structure:

 A program structure is a block that consists of three parts:

1. Declaration: declare variables, constraints, cursors, and use-defined

expressions.

2. Executable: consists of SQL/SQLPLUS statements.

3. Exception Handling: A predefined or user-defined warning or error

handled by the PL/SQL program.

 Control statement: Consists of conditional, iterative, and sequential controls.

 Conditional Controls:

 If condition THEN

 Statements;

 END IF

 IF condition THEN

 Statements;

 ELSEIF condition THEN

 Statements;

 ELSE

 Statements;

 END IF;

 EXIT-WHEN condition;

 42

 Iterative Controls:

 LOOP

 Statements;

 END LOOP

 FOR I IN lowerbound .. upperbound LOOP

 Statements;

 END LOOP;

 For cursor_variable IN cursor_name LOOP

 Statements;

 END LOOP;

 WHILE condition LOOP

 Statements;

 END LOOP;

 Sequential Control:

 GOTO label;

 .

 <<label>>

 Cursors:

 Cursors are used by database programmers to process individual rows returned

by database system queries. Cursors enable manipulation of whole result sets at once—a capability that

most procedural programming languages lack. In this scenario, a cursor enables the rows in a result-set

to be processed sequentially.

Syntax:

 DECLARE

 CURSOR cursor_name [(parameter_name TYPE [, parameter_name TYPE])]

 IS select_statement;

(2)What is a stored procedure and syntax of creating a stored procedure:

 A stored procedure is a saved section of code which handles a specific task which

 must be repeated regularly. It is similar to a function in a procedural language such as

 C. The syntax for creating a stored procedure is:

 CREATE [OR REPLACE] PROCEDURE procedure_name ([parameters])

 IS

 43

 [delclare any variables]

 BEGIN

 [enter procedural code]

 EXCEPTION

 [handle any exceptions]

 END;

(3) What is a stored function and Syntax of creating a stored function:

 A stored function is similar to a stored procedure except that it returns a value

 where a procedure does not. The syntax for creating a function is:

 CREATE [OR REPLACE] FUNCTION function_name ([parameters])

 RETURN

 [specify datatype to return]

 IS

 [delclare any variables]

 BEGIN

 [enter procedural code]

 EXCEPTION

 [handle any exceptions]

 END;

(4) What is a package and Syntax of creating a package:

 A package in PL/SQL is a schema object which contains many different types,

 procedures, functions etc which can then be shared by many users who may need them

 for various different applications within the same company. The syntax for a package is:

 CREATE [OR REPLACE] PACKAGE package_name

 44

 [AUTHID {CURRENT_USER | DEFINER}]

 {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition]

 [record_type_definition]

 [subtype_definition]

 [collection_declaration]

 [constant_declaration]

 [exception_declaration]

 [object_declaration]

 [record_declaration]

 [variable_declaration]

 [cursor_spec]

 [function_spec]

 [procedure_spec]

 [call_spec]

 [PRAGMA RESTRICT_REFERENCES(assertions) …]

 END [package_name];

(5) What is a trigger and Syntax of creating a trigger:

 A trigger in PL/SQL is a section of code that is excecuted when a statement such

 as delete or update is inserted. It is automatically done when the statement is excecuted.

 The syntax for a trigger is:

 CREATE [OR REPLACE] TRIGGER trigger_name

 {BEFORE | AFTER | INSTEAD OF }

 45

 {INSERT [OR] | UPDATE [OR] | DELETE}

 [OF col_name]

 ON table_name

 [REFERENCING OLD AS o NEW AS n]

 [FOR EACH ROW]

 WHEN (condition)

 BEGIN

 --- sql statements

 END;

C. Code and Documentation

Procedure for inserting an employee:

create or replace procedure ddjo_addemployee(p_ssn in number, p_name in varchar2,

 p_phone in number, p_address in varchar2,p_hdate in date, p_pay in number) as

 begin

 insert into ddjo_employee values(p_ssn, p_name, p_phone, p_address, p_hdate, p_pay);

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode ||

 '-ERROR-' || sqlerrm);

end ddjo_addemployee;

/

 46

Procedure for deleting a supplier:

create or replace procedure ddjo_deletesupplier (supname in varchar2) is

 begin

 delete from ddjo_supplier where name = supname;

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

 end ddjo_deletesupplier;

/

Function to return average purchase price:

create or replace function ddjo_avgPrice (n in number) return number is

 s number(9, 2) := 0.0;

 p number(7, 2);

 cursor c1 is select price from ddjo_purchase order by price desc;

begin

 47

 open c1;

 for i in 1 .. n loop

 fetch c1 into p;

 s := s + p;

 end loop;

 close c1;

 return s / n;

exception

when others then

 raise_application_error(-40001, 'An error occured in ' || sqlcode ||

 '-ERROR-' || sqlerrm);

end;

/

 48

Trigger to be fired on deletion of employee:

create or replace trigger ddjo_deleteEmployee

before update or delete on ddjo_employee

for each row

begin

 insert into ddjo_logtable

 values (to_char(:old.ssn) || ' ' || to_char(:old.name) || ' ' ||

 to_char(:old.phone#) || ' ' || to_char(:old.address) || ' ' ||

 to_char(:old.date_hired) || ' ' || to_char(:old.pay)

 ,to_char(:new.ssn) || ' ' || to_char(:new.name) || ' ' ||

 to_char(:new.phone#) || ' ' || to_char(:new.address) || ' ' ||

 to_char(:new.date_hired) || ' ' || to_char(:new.pay));

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

 49

end ddjo_deleteEmployee;

/

PHASE 5:

 A. Description of Daily activities of the user group.

 In our DBMS, the manager will be the only user group of the Coffee Shop. The manager

will be able to perform the following functionalities: add, delete, or update tables/reports from any of

the following tabs: employee, item, supplier, inventory, purchase, and sales.

 B. Relations, views and subprograms related to the activities:

CREATE TABLE ddjo_employee(

 SSN NUMBER(9) not null,

 NAME VARCHAR2(30) not null,

 phone# varchar2(10) not null,

 address varchar(30) not null,

 date_hired date not null,

 pay number not null,

 CONSTRAINT pk_employee PRIMARY KEY(SSN)

)

 PCTfree 5

 PCTUSED 15

 TABLESPACE cs342index

/

create table ddjo_inventoryinfo(

 ItemID number(9),

 Total number,

 PurchasedSinceLast number,

 SoldSinceLast number,

 unnaccountedfor number,

 period date,

 CONSTRAINT fk_inventory_item FOREIGN KEY (itemID) REFERENCES

ddjo_item(itemID),

 CONSTRAINT fk_inventory_info FOREIGN KEY (period) REFERENCES

ddjo_inventory(period)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

 50

create table ddjo_inventory(

 period date,

 ESSN number(9),

 CONSTRAINT pk_inventory PRIMARY KEY(period),

 CONSTRAINT fk_inventory_employee FOREIGN KEY (ESSN) REFERENCES

ddjo_employee(SSN)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

create table ddjo_itemsoldinfo(

 TID number(9),

 quantity number,

 itemID number(9),

 CONSTRAINT fk_itemsold_info FOREIGN KEY (TID) REFERENCES ddjo_itemsold

(TID),

 CONSTRAINT fk_itemsold_item FOREIGN KEY(itemID) REFERENCES ddjo_item

(itemID)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

create table ddjo_ItemSold(

 TID number(9),

 sdate_time date,

 ESSN number(9),

 Price number,

 CONSTRAINT pk_ItemSold PRIMARY KEY(TID),

 CONSTRAINT fk_ItemSold_employee FOREIGN KEY (ESSN) REFERENCES

ddjo_employee(SSN)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

create table ddjo_item (

 name varchar2(30) not null,

 itemID number(9) not null,

 priceperunit number not null,

 51

 CONSTRAINT pk_item PRIMARY KEY(itemID)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

create table ddjo_logtable(

 oldVal varchar(40),

 newVal varchar2(40)

)

pctfree 5

pctused 15

tablespace cs342index

/

create table ddjo_purchaseinfo(

 IID number(9),

 quantity number,

 TID number(9),

 CONSTRAINT fk_purchase_item FOREIGN KEY (IID) REFERENCES

ddjo_item(itemID),

 CONSTRAINT fk_transaction FOREIGN KEY (TID) REFERENCES

ddjo_purchase(TID)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

create table ddjo_Purchase(

 TID number(9),

 pdate_time date,

 essn number(9),

 price number,

 Sname varchar2(30),

 CONSTRAINT pk_Purchase_key PRIMARY KEY(TID),

 CONSTRAINT fk_purchase_employee FOREIGN KEY (ESSN) REFERENCES

ddjo_employee(SSN),

 CONSTRAINT fk_purchase_supplier FOREIGN KEY (Sname) REFERENCES

ddjo_supplier(name)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

 52

/

create table ddjo_supplier(

 name varchar2(30),

 phone# varchar2(10),

 address varchar2(30),

 CONSTRAINT pk_supplier PRIMARY KEY(name)

)

 PCTFree 5

 PCTUSED 15

 TABLESPACE cs342index

/

CREATE VIEW ddjo_PURCHASES AS

 SELECT p.tid,p.sname, e.name, p.pdate_time, p.price, i.itemid, pi.quantity

 from ddjo_purchase p, ddjo_purchaseinfo pi, ddjo_item i, ddjo_employee e

 where p.tid = pi.tid and e.ssn = p.essn and pi.iid = i.itemid

 order by p.pdate_time;

create view ddjo_inventory_view as

 select i.period, i.essn, it.name, ii.total, ii.purchasedsincelast

 ,ii.soldsincelast, ii.unnaccountedfor

 from ddjo_inventory i, ddjo_inventoryinfo ii, ddjo_item it

 where i.period = ii.period and it.itemid = ii.itemid

 order by i.period;

create view ddjo_sales as

 select i.tid, i.essn, i.sdate_time, i.price, it.name, ii.quantity

 from ddjo_itemsold i, ddjo_itemsoldinfo ii, ddjo_item it

 where i.tid = ii.tid and it.itemid = ii.itemid

 order by sdate_time;

--Function to return average purchase price

create or replace function ddjo_avgPrice (n in number) return number is

 s number(9, 2) := 0.0;

 p number(7, 2);

 cursor c1 is select price from ddjo_purchase order by price desc;

begin

 53

 open c1;

 for i in 1 .. n loop

 fetch c1 into p;

 s := s + p;

 end loop;

 close c1;

 return s / n;

exception

when others then

 raise_application_error(-40001, 'An error occured in ' || sqlcode ||

 '-ERROR-' || sqlerrm);

end;

/

--stored procedure for inserting an employee

create or replace procedure ddjo_addemployee(p_ssn in number, p_name in

varchar2,

 p_phone in number, p_address in varchar2,p_hdate in date, p_pay in number)

as

 begin

 insert into ddjo_employee values(p_ssn, p_name, p_phone, p_address,

p_hdate, p_pay);

exception

when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode ||

 '-ERROR-' || sqlerrm);

end ddjo_addemployee;

/

--stored procedure for deleting a record

create or replace procedure ddjo_deletesupplier (supname in varchar2) is

 begin

 delete from ddjo_purchaseinfo pi where exists (select * from

ddjo_purchase p where pi.tid = p.tid and p.sname = supname);

 delete from ddjo_purchase where sname = supname;

 delete from ddjo_supplier where name = supname;

 exception

 when others then

 54

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

 end ddjo_deletesupplier;

/

create or replace procedure ddjo_deleteemployee (ename in varchar2) is

 begin

 delete from ddjo_inventoryinfo ii where exists (select * from

 ddjo_inventory i where exists (select * from ddjo_employee e where

 e.ssn = i.essn and ii.period = i.period and e.name = ename));

 delete from ddjo_inventory i where exists (select * from ddjo_employee

 e where e.name = ename and e.ssn = i.essn);

 delete from ddjo_itemsoldinfo ii where exists (select * from

 ddjo_itemsold i where exists(select * from ddjo_employee e where

 e.name = ename and i.essn = e.ssn and ii.tid = i.tid));

 delete from ddjo_itemsold i where exists (select * from ddjo_employee e

 where ename = e.name and i.essn = e.ssn);

 delete from ddjo_purchaseinfo pi where exists (select * from

 ddjo_purchase p where exists (select * from ddjo_employee e where

 ename = e.name and p.essn = e.ssn and pi.tid = p.tid));

 delete from ddjo_purchase p where exists (select * from ddjo_employee e

 where ename = e.name and p.essn = e.ssn);

 delete from ddjo_employee e where e.name = ename;

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

 end;

/

create or replace procedure ddjo_deleteinventory (idate in date) is

begin

 delete from ddjo_inventoryinfo i where i.period = idate;

 delete from ddjo_inventory i where i.period = idate;

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

end ddjo_deleteinventory;

/

 55

create or replace procedure ddjo_deleteitem (iname in varchar2) is

begin

 delete from ddjo_inventoryinfo ii where exists (select * from ddjo_item i

 where iname = i.name and i.itemid = i.itemid);

 delete from ddjo_purchaseinfo p where exists (select * from ddjo_item i

 where iname = i.name and p.iid = i.itemid);

 delete from ddjo_itemsoldinfo ii where exists (select * from ddjo_item i

 where iname = i.name and ii.itemid = i.itemid);

 delete from ddjo_item i where iname = i.name;

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

end;

/

create or replace procedure ddjo_deletepurchase (npid in number) is

begin

 delete from ddjo_purchaseinfo p where npid = p.tid;

 delete from ddjo_purchaseinfo p where npid = p.tid;

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

end ddjo_deletepurchase;

/

create or replace procedure ddjo_deletesale (sid in number) is

begin

 delete from ddjo_itemsoldinfo i where sid = i.tid;

 delete from ddjo_itemsold i where sid = i.tid;

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

end ddjo_deletesale;

/

 56

--Trigger to be fired on deletion of employee

create or replace trigger ddjo_deleteEmployee

before update or delete on ddjo_employee

for each row

begin

 insert into ddjo_logtable

 values (to_char(:old.ssn) || ' ' || to_char(:old.name) || ' ' ||

 to_char(:old.phone#) || ' ' || to_char(:old.address) || ' ' ||

 to_char(:old.date_hired) || ' ' || to_char(:old.pay)

 ,to_char(:new.ssn) || ' ' || to_char(:new.name) || ' ' ||

 to_char(:new.phone#) || ' ' || to_char(:new.address) || ' ' ||

 to_char(:new.date_hired) || ' ' || to_char(:new.pay));

 exception

 when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode

 || '-ERROR-' || sqlerrm);

end ddjo_deleteEmployee;

/

--stored procedure for inserting an employee

create or replace procedure ddjo_addemployee(p_ssn in number, p_name in

varchar2,

 p_phone in number, p_address in varchar2,p_hdate in date, p_pay in number)

as

 begin

 insert into ddjo_employee values(p_ssn, p_name, p_phone, p_address,

p_hdate, p_pay);

exception

when others then

 raise_application_error(-40001, 'An error occurred in ' || sqlcode ||

 '-ERROR-' || sqlerrm);

end ddjo_addemployee;

/

--The most expensive purchase from a supplier

select * from ddjo_purchase p where not exists(select * from ddjo_purchase p2

where (p2.price > p.price))

/

 57

--employees who have made no sales last month

select * from ddjo_employee e where exists(select * from ddjo_itemsold i where

e.SSN = i.ESSN

 and

i.sdate_time > to_date(

'08/31/2011','mm/dd/yyyy')

 and

i.sdate_time < to_date(

'10/01/2011','mm/dd/yyyy'))

/

--Suppliers from whom we've bought every item

select * from ddjo_supplier s where not exists(select * from ddjo_item i where

exists(select * from ddjo_purchaseinfo p where not exists(select * from

ddjo_purchase p1

where

(p1.tid = p.tid and s.name = p1.sname) and (i.itemid = p.iid))))

/

--most popular item last month

select i.name

 from ddjo_item i

 where (select max(s.itemid)

 from ddjo_sales s

 where (s.sdate_time > to_date('08/31/2011','mm/dd/yyyy') and

s.sdate_time < to_date('10/01/2011','mm/dd/yyyy'))) = i.itemid

/

--smallest number of items purchased in one transaction

select min(quantity)

from ddjo_purchaseinfo

/

 58

--employees who make 10 dollars an hour

select *

from ddjo_employee

where pay = 10

/

--least expensive sale

select s.*

from ddjo_sales s

where not exists(select s2.price

 from ddjo_sales s2 where s2.price < s.price)

/

select avg(i.price)

from ddjo_itemsold i

where i.sdate_time > to_date('08/01/2011','mm/dd/yyyy') and i.sdate_time <

to_date('10/01/2011','mm/dd/yyyy')

/

--The most expensive purchase from a supplier

CS342 SQL> @q1

 TID PDATE_TIM ESSN PRICE SNAME

---------- --------- ---------- ---------- ------------------------------

 11 04-JAN-11 100000000 4264.78 Chevrolet Movie Theater

CS342 SQL> @q2

 SSN NAME PHONE# ADDRESS

DATE_HIRE PAY

---------- ------------------------------ ---------- --------------------------

---- --------- ----------

 59

 111111111 Teapot Sally 6615185205 921 Mothergoose Ave

30-JAN-10 8.5

CS342 SQL> @q3

no rows selected

CS342 SQL> @q5

MIN(QUANTITY)

 8

CS342 SQL> @q6

 SSN NAME PHONE# ADDRESS

DATE_HIRE PAY

---------- ------------------------------ ---------- --------------------------

---- --------- ----------

 111111000 Trashcan James 6614326507 2301 Alley St

17-FEB-04 10

 111111110 Scuba Steve 6618341968 109 Seapines Ln

22-NOV-01 10

CS342 SQL> @q7

 TID ESSN SDATE_TIM PRICE NAME

QUANTITY

---------- ---------- --------- ---------- ------------------------------ -----

 2 110000000 23-FEB-11 2 Vanilla Frappuccino

1

 2 110000000 23-FEB-11 2 Pastry

1

CS342 SQL> @q8

AVG(I.PRICE)

 3.5

 60

 C. Screen shots of our Menu Display/Descriptions of the screen shots:

 This the Suppliers tab of our GUI where you can add/delete suppliers from the Database.

 61

 This is the Employee tab where you can add/delete Employees from the database.

 62

 This is the Purchase tab, where you can make purchases/delete purchase info from the database.

 63

 This is the Sales tab, where you can add new sale/delete sale info from the database.

 64

 This is the Inventory Tab, where you can enter inventory information/delete from the Database.

 65

 This is the Items tab, where you can add/ delete items from the Database.

 66

 This is the Inventory Information tab, where you insert new inventory information.

 67

 This is the Sale Information tab, where you insert new sales.

 68

 This is the Purchase Info tab, where you can

 D. Description of our Code:

 2. Descriptions of major classes: We do not have most of the classes asked for in phase 5

because we were not able to establish a connection on Microsoft Visual Studios 2010 to the Oracle

Database, so we added Oracle as a datasource.

 3. Major features of our GUI program:

 Our GUI program features a single form with 6 different tabs: supplier,

employee, item, inventory, purchase, and sales. Then we have 3 other forms with a single tab: sale info,

purchase info, and inventory info. Users can reload data by clicking on the data grid.

 69

 4. Studied a C# book in order to learn more about Microsoft Visual Studio and C#

 language.

 E. /D(1.) Major steps of designing and implementing a database application:

 In 6 Phases:

 Phase 1: Requirements Collection and Analysis: Analyze the expectations of the

 users and the intended uses of the database in as much detail as

 possible.

 Phase 2: Conceptual Database Design: Examine the data requirements resulting

 from Phase 1 and produce a conceptual database schema.

 Phase 3: Choice of a DBMS

 Phase 4: Logical Database Design (Data Model Mapping): Create a conceptual

 schema and external schemas in the data model of the selected DBMS

 by mapping those schemas produced in Phase 2. The result of this phase

 should be DDL (data definition language) statements in the language of

 the chosen DBMS that specify the conceptual and external level

 schemas of the database system.

 Phase 5: Physical Database Design: The process of choosing specific file storage

 structures and access paths for the database files to achieve good

 performance for the various database applications.

 Phase 6: Database System Implementation and Tuning: Language statements in

 the DDL, including the SDL of the selected DBMS, are compiled and

 used to create the database schemas and database files. The database

 can then be loaded (populated with the data. If data is to be converted

 from an earlier computerized system, conversion routines may be

 needed to reformat the data for loading in the new database.

