57

CS342
Fall 2011
DATABASE PROJECT

High Tech
Equipment Maintenance

For Military Bases
I – Fact-Finding, Information Gathering, Conceptual Database Design

II – Relational vs ER Model

III – Implementation of Relational Database

IV – Normalization, SQL*Plus, and the DBMS
V – Graphical User Interface Design and Implementation
Development Team
Blake Fischer

Brian Wilson

Gordon Griesel

[image: image1.png]

TABLE OF CONTENTS
Introduction……………………………………………………………………………….
5

Phase 1…………………………………………………………………………………….
5
1.1 Description…………………………………………………………………...
5
1.2 Introduction to Enterprise/Organization…………………………………
5
1.3 Enterprise Design Focus …………………………………………………..
6
1.4 Entity Set Description……………………………………………………….
6

1.4.1 Military Branch……………………………………………………..
6

1.4.2 Military Base………………………………………………………..
6

1.4.3 Location……………………………………………………………..
7

1.4.4 Equipment…………………………………………………………..
7

1.4.5 WorkOrder…………………………………………………………..
7

1.4.6 Technician………………………………………………………….
8

1.4.7 Purchase……………………………………………………………
8
1.5 Relationship Set Description………………………………………………
9

1.5.1 Branch Contains Base……………………………………………
9

1.5.2 Base Hires Technician……………………………………………
9

1.5.3 Base Has Location………………………………………………...
9

1.5.4 Location Contains Equipment…………………………………..
9

1.5.5 Technician Assigned Workorder……………………………….
9

1.5.6 Equipment Requires Purchase…………………………………
10

1.5.7 Workorder Repairs Equipment………………………………….
10
1.5.8 Location With Workorder………………………………………...
10
1.6 User Groups, Data Views, and Operations……………………………...
11

1.6.1 User Groups………………………………………………………..
11

1.6.2 Data Views………………………………………………………….
11

1.6.3 Access Types Granted……………………………………………
11
1.7 E-R Model Diagram………………………………………………………….
12
Phase 2……………………………………………………………………………………
13

2.1 Description of Relational Model and Conversion Methods…………
13

2.1.1 Description of Relational Model………………………………..
13

2.1.2 Comparison of E-R Model and Relational Model……………
13

2.1.3 Translation Methods from E-R to Relational…………………
14

2.1.4 Conversion Issues for entities and relationships…………...
15

2.1.5 Constraints…………………………………………………………
15

2.2 Relations……………………………………………………………………...
17

2.2.1 Military Branch…………………………………………………….
17

2.2.2 Base………………………………………………………………….
17

2.2.3 Technician………………………………………………………….
17

2.2.4 Hires…………………………………………………………………
18

2.2.5 Workorder…………………………………………………………..
18

2.2.6 Assigned……………………………………………………………
18

2.2.7 Location…………………………………………………………….
19

2.2.8 Equipment………………………………………………………….
19

2.2.9 Purchase……………………………………………………………
19

2.2.10 Repairs…………………………………………………………….
20

Relational Model…………………………………………………………………
21

2.3 Preliminary Table Definitions and Tuples……………………………...
22

2.4 Relational Algebra and Calculus Formulas…………………………….
27
Phase 3…………………………………………………………………………………….
32

3.1 Normalization………………………………………………………………...
32

3.1.1 First Form……………………………………………………………
32

3.1.2 Second Form………………………………………………………..
32

3.1.3 Third Form…………………………………………………………..
32

3.1.4 Boyce-Codd Form…………………………………………………..
32

3.1.5 Relation Normalization…………………………………………….
32

3.2 SQL*Plus………………………………………………………………………
33

3.2.1 Main Purpose of SQL*Plus………………………………………..
33

3.2.2 SQL*Plus Commands………………………………………………
33

3.2.3 Schema Objects Included in Our Project…………………………
33

3.2.4 Syntax for Creat Statements………………………………………
34

3.3 Relation Schema & Data……………………………………………………
35

3.3.1 BBG_MIL_BRANCH……………………………………………….
35

3.3.2 BBG_BASE………………………………………………………….
35

3.3.3 BBG_BASETYPE…………………………………………………..
35

3.3.4 BBG_TECH………………………………………………………….
36

3.3.5 BBG_HIRES…………………………………………………………
36

3.3.6 BBG_WORKORDER……………………………………………….
36

3.3.7 BBG_ASSIGNED……………………………………………………
37

3.3.8 BBG_LOCATION……………………………………………………
37

3.3.9 BBG_EQUIPMENT…………………………………………………
38

3.3.10 BBG_PURCHASE………………………………………………..
38

3.3.11 BBG_REPAIRS……………………………………………………
39

3.4 SQL Queries…………………………………………………………………..
40
Phase 4…………………………………………………………………………………….
43

4.1 Common Features in PL/SQL and Trans-SQL…………………………
43

4.1.1 Components of PL/SQL and Trans-SQL…………………………
43

4.1.2 Purposes of Stored Subprogram………………………………….
43

4.1.3 Benefits of Stored Subprogram……………………………………
43

4.2 Oracle PL/SQL………………………………………………………………..
44

4.2.1 PL/SQL Structure, Control Statements, and Cursors…………..
44

4.2.2 Stored Procedure Definition and Syntax……………..………….
44

4.2.3 Stored Function Definition and Syntax………………..………….
45

4.2.4 Package Definition and Syntax…………………………..……….
45

4.2.5 Trigger Definition and Syntax…………………………….……….
46

4.3 User Code…………………………………………………………….………
46
Phase 5…………………………………………………………………………………….
49

Components on Delphi Server…………………….…………………..…………
49

5.1 Graphical User Interface Design and Implementation ……………….
49

5.1.1 Description of User Groups……………………………..…………
50

5.2 Screen Shot of Main User Interface ………………………………….…. 51

5.3 Major Steps in Designing a User Interface ………………………….…. 52

5.4 Major Classes in the Application …………………………………………
52

5.4.1 Database Connection and Grid Population …………..…………
52

5.4.2 Call To Oracle Stored Procedure ……………………...…………
53

5.4.3 Example of Stored Procedure ………………………….…………
54

5.4.4 Example of Trigger ……….……………………………...………… 55

5.4.5 Example of Several Sequencers ………………………………… 55

5.5 Major Features of Our GUI Program …………………………………….
56

5.6 Learning a New Development Tool and Language …………..………. 56

5.7 Database Application Development Steps …………………………….
57

5.7.1 Identify the objectives………………………………………………
57

5.7.2 Database model and normalization………………………………
57

5.7.3 User Interface Design ……………………………………………
57

5.7.4 System Testing ……………………………………………………
57

5.7.5 Implementation and Training Plan ………………………………
57

5.7.6 Backup and Recovery Plans ……………………………………
57

5.7.7 Experience …………………………………………………………
57

[image: image2.png]

Maintenance of Electronic Equipment

Introduction

We have been contracted by the Pentagon to develop a database system to track waste and theft at U.S. Military Bases. The base commanders will be made privy to the nature of the system, but others will see it as just a Work-Order entry and Purchasing system.

The Pentagon thinks that much of the waste is due to pilfering and neglect of electronic equipment. Being small and valuable makes it easy to move to the black market.

Our database system will find centers of waste and attempt to tie it to personnel or contractors. A side-effect of the system will be better maintenance of the equipment and lower costs. This system could save a significant amount of money for Tax Payers.

[image: image3.png]

Phase 1: Information Gathering and Conceptual Database Design

1.1
Description

This system is being designed based on the need of Military Base Commanders to reduce the costs associated with the purchasing and maintenance of Electronic Equipment. Interviews are being conducted with military personnel and civilian employees at several Bases to get an overall picture of the system needed. A contact at the rank of Captain has been assigned to help us gather data.

1.2
Introduction to Enterprise/Organization

The business in question at the Military Base consists of researching, purchasing, maintaining, and disposing of large quantities of high tech electronic equipment. Without revealing classified information, the equipment includes computers, night-vision, GPS, weapons, surveillance, etc. Much of this equipment is small and easily damaged. A database system is needed to reveal who purchases it, handles it, uses it, and disposes of it.

1.3
Enterprise Design Focus

The database we will design for the company will be for the whole enterprise. The major entity sets for the enterprise will consist of bases that exist in all branches of government, and within those bases will keep track of all IT personnel who is hired at a base. Also all locations of electronic equipment is being stored or used will be recorded to help track the rooms which have the most issues with computers. From there we will keep track of all purchases made on any equipment. Also if equipment breaks down a workorder log will be created and will be kept track of.

[image: image4.png]

1.4
Entity Set Description
1.4.1
Military Branch Entity

This system will have the capability of being used at the Government or Pentagon level. A Main-Menu could contain Military Branch for quick access by interested personnel.

Primary Key: BranchID
Strong Entity

Indexed Fields:
Name

Common branch name, string, no nulls, unique

BranchID
Internal ID use only by this system, string, no nulls, unique
1.4.2
Military Base Entity

This system will be built for use at multiple military bases. A link to each base’s system could be requested by a high level at the Pentagon or a Base Commander. Reports submitted from a base will include base-specific information contained in this Entity.

Primary Key: BaseID
Strong Entity

Indexed Fields:

BaseID

Internal ID use only by this system, string, no nulls, unique

BaseName

Common base name, string, no nulls, unique
BaseType

Type of Base, integer, no nulls, unique

City

City base is located in, string, no nulls, unique

State

State base is located in, string, no nulls, unique

1.4.3
Location Entity

These are locations where electronic equipment resides, such as a room, building, vehicle, armored vehicle, aircraft, etc.

Primary Key: LocID
Strong Entity

Indexed Fields: LocType
LocID
Location identifier, integer, no nulls, unique

LocType
Type of location, string, no nulls

Bno

Building of location, integer, can be null

Rno

Room in Building of Location, integer, can be null

1.4.4
Equipment Entity

These are items such as computers, GPS, weapons, surveillance devices, etc.

Primary Key: EqID
Strong Entity

Indexed Fields: EqID
EqID

Equipment identifying number, integer, no nulls, unique

EqType

Equip type identifier, integer, no nulls

Cost

Individual Equipment cost, number, no nulls

Disposal Code
Disposal id, integer, no nulls
1.4.5
WorkOrder Entity

A Work Order is generated when maintenance, repair, or disposal of electronic equipment is needed. Sensitive equipment may contain classified data or toxic components requiring special disposal methods.

Primary Key: WoNum
Strong Entity

Indexed Fields: WoNum
WoNum

Work order number ,integer, no nulls, unique

Issue

Issue of workorder, string, no nulls

Initiator

Initiator of workorder, string, can be null

Entered date

Date workorder entered, date, no nulls

sDate

Start date of workorder, date, nulls accepted
eDate

Finish date of workorder, date, nulls accepted
1.4.6
Technician Entity

A technician can be a military person, government employee, contractor, or outside expert.

Primary Key: TechID
Strong Entity

Indexed Fields:

Name

Name of tech, string, no nulls, unique

TechID

Assigned number of tech, integer, no nulls, unique

Classification
Classification if military, string, can be null

1.4.7
Purchase Entity

A purchase can be generated in response to a need from a workorder, and will keep track of how many things are purchased, and then add the equipment to the equipment table.

Primary Key: Purchase_ID
Strong Entity

Indexed Fields:

PurchaseID

ID number of Purchase, integer, no nulls, unique

Initiator

Initiator of Purchase, string, no nulls

Type

Type of purchase,string, no nulls

Description

Description of Purchase, string, no nulls

Cost

Cost of purchase order, number, no nulls

Quantity

Number of Items Purchased, integer, no nulls

DateApproved
Date Purchase order approved, date, nulls accepted

[image: image5.png]

1.5
Relationship Set Description
1.5.1
Military branch contains bases

This relation links each base to the system at the military-branch level. It is a One-to-Many relationship with a branch having many bases, but a base falls under just one branch. Contains the MilitaryBranch & Base entities.

1.5.2
Base hires Technician

This relation links each base with the technicians they hire. It is a Many-to-Many relationship with multiple bases able to hire multiple technicians, and a technician can work at multiple bases. Contains the Base Entity and Technician Entity.

1.5.3
Base has Location

This relation links each base with the individual locations in the base. It is a One-to-Many relationship with one base able to have many locations. Contains the Base Entity and Location Entity.

1.5.4
Location contains Equipment

This relation links each location with multiple pieces of Equipment. It is a One-to-Many relationship with one location having multiple pieces of equipement. Contains the Location Entity and Equipment Entity.

1.5.5
Technician assigned to Workorder

This relation links each technician to a workorder. It is a Many-to-Many relationship with multiple technicians able to be assigned to multiple workorders. Contains the Technician Entity and the Workorder Entity.
1.5.6
Equipment requires Purchase

This relation links each piece of equipment to a purchase. It is a Many-to-One relationship with many pieces equipment being linked to one purchase order. Contains the Equipment Entity and the Purchase Entity.

1.5.7
Workorder repairs Equipment

This relation links each work order to the equipment in need of repair. It is a Many-to-Many relationship with many workorders able to repair many pieces of equipment, as well as many pieces of equipment involved in many workorders. Contains the Workorder Entity and the Equipment Entity.

1.5.8
Location with Workorder

This relation links each location to workorders created for it. It is a One-to-Many relationship with one location having many workorders. Contains the Location Entity and the Workorder Entity.

[image: image6.png]

1.6
User Groups, Data Views and Operations
1.6.1
User Groups:

This system will be designed for use by a group responsible for research, testing, distribution, and maintenance of high-tech electronic equipment on the base. Much of the equipment is classified or secretive in nature. Tight control of the components are needed. Ultimate responsibility of this group is at the base-commander level, and full system access will be available at this level.

1.6.2
Data Views:

The sensitive nature of this data requires limited access to by some members of the group. Technicians will see Workorders and locations, but have no need to make purchases. Purchasing agents will have access to the purchasing module, but have no need to see locations, location history, or Workorders. Authorized higher level personnel will have full access to all system components.

1.6.3
Access types granted:
Authorized Personnel: add, browse, change, remove, reports of all

Management Personnel: add, browse, reports of all

Purchasing Agents: add, browse, change, reports (Purchasing and Equipment only)

Technician: add Purchase, browse (Workorders, Locations only)

[image: image7.png]

1.7
E-R Model Diagram
[image: image8.png]Military Branch

BranchID
CommonName

Contains

Technician
TechiD

Name

Classffication

WorkOrder
WONum
Issue
Initiator
EnteredDate
sDate
eDate

Base
BaselD 1
BaseName @
BaseType
City M
State >
Location
1| LoD
Contains LocType
BuildingNo
RoomNo
M

Type
DisposalCode
Cost

M

DatePurchased

M
Require

Purchase

PurchaselD
Inttiator
Type

Reason
OrderCost
dApproved
Quantity

[image: image9.png]

Phase 2: Conversion from E-R Model to Relational Model
2.1.1 Description of Relational Model

The relational data model was first introduced by Ted Codd of IBM Research in 1970. Immediately, it gained much attention due to its simplicity and mathematical foundation. It’s based upon mathematical relation, in the sense that it induces set theory and first-order predicate logic. Since the 1980s, commercial implementations have grown and evolved, as well as having become increasingly popular. The relation model takes conceptual schema in the ER and EER models and maps them into a relation representation that s incorporated into database design. This model represents a collection of relations, in which each relation represents a table of values. Each row of the table is referred to as a tuple, each column header is an attribute, and the table itself is the relation.

2.1.2 Comparison of the E-R Model and the Relational Model

The ER Model provides a conceptual graphical summary of all the information, and how it will be arranged and stored in the Database. This model will depict the entities contained in the database, the attributes contained in the entities, and the relationships between those specific entities. It also maps the cardinality of the relationship between the two entities, allowing easy conceptual identification between two or more entities. The diagram graphically represents Entities by including the name in boxes, attributes by bubbles branching off either the entities or relationships, and relationships with a diamond with the description of the relationship between the two entities within the diamond. The cardinality of the relationship between the two entities is mapped with either 1 or M. Depending on how the database was designed determines the cardinality between the two entities. This is either 1..1 (1 to 1), 1..M (1 to Many), M..1 (Many to 1), or M..M (Many to Many). Given all these attributes of the diagram, the ER Model provides an easy diagram to understand how the database is being designed.

The Relational Model provides a visual summary of how the database will be structured, so that we can easily apply either Relational Algebra, Tuple Relational Calculus, or Domain Relational Calculus. Using the structure the relational model provides, we can easily structure queries to work with the database by filtering information, selecting specific groups of people, or other constraints we can put on the data. Using the methods described in the book we can easily convert the ER model into a relational model using the process described. The Main difference between the two diagrams is one is a graphical representation of all the data in the database, and the other is a way for the data to be structured to easily make specific queries on the data.
2.1.3 Translation Methods from E-R model to Relational model

The translation methods are a step by step process that start with the mapping of regular entity types and end with the Mapping of all the relationship types.

Step 1: Map all regular strong entity types where you create a separate relation and include in that relation all the simple attributes and choose one of the key attributes of the entity as the primary key for the new relation. If the key is a composite key then the attributes that make up the composite key will together form the primary key.

Step 2: Map Weak entity types by creating a new relation and include in that relation all simple attributes of the weak entity. Also include as foreign keys the primary keys of the relations that correspond to the owner entity type.

Step 3: Map Binary 1:1 Relationship types by using 1 of 3 different methods.
Method one is the foreign key approach where you have two relations S and T. These two relations correspond to the entity types participating in Relation R. Choose the relation with total participation in R and include as a foreign key say S, and include as a foreign key in S the Primary key of T.

Method two is the Merged relation approach, where you merge two entity tylpes and the relationship between those entities into one single relation.

Method 3 is the Cross-reference or Relationship relation approach, where you set up a third relation for the purpose of cross referencing the primary keys of the two relations S and T. You also include in the relation any attributes associated with the relationship between these two entities.

Step 4: Map the Binary 1:N relationship with any of the methods listed in step 3.

Step 5: Map the Binary N:N relationship with method 3, or the Relationship relation approach, only from step 3.

Step 6: Mapping of Multivalued attributes by creating a new relation which will include an attribute corresponding to the multivalued attribute A, plus the primary key of A as a foreign key in the new relation.
Step 7: Mapping of N-ary relationship types by creating a new relation S to represent the N-ary relationship, and include as foreign keys in S the primary keys of the relations of the participating entity types. The primary key of S will be the combination of foreign keys from the entities.

2.1.4 Conversion Issues for entities and relationships

Strong and Weak Entities:

Weak entity types do not have key attributes of their own. For this reason, a weak entity cannot be identified without an owner entity. For example, there can be many room numbers that are the same in the data set, so the room must be positively identified by relating it to a building or building number. The Building entity will be the parent in this relationship.

Simple, Composite and Multivalued Attributes:

Composite attributes are made up of multiple subparts which have their own meaning. If there is no need to address each subpart as a separate attribute, the fields can be combined into a unit and kept as one attribute. If the subparts each have their own meaning, then the subparts will comprise a new entity related to the parent, which is the original attribute.

Multivalued attributes must be eliminated in accordance with First Normal Form guidelines. The solution might be several new attributes in the relation, but will probably become a new relation containing a Primary Key linking it to a Foreign Key in the original entity. We have encountered at least one of these situations in our conversion from conceptual to relational.

2.1.5 Constraints

A relational database will typically consist of many relations, and each tuple is related in various ways within the relations. This brings the point that there are usually constraints on the values that can be implemented into the database. Implicit constraints are constraints that are inherent in the data model. Schema-based or explicit constraints are constraints that can be directly expressed in schemas of the data model. Application-based or business rules constraints are those of which cannot be directly expressed in schemas of the data model, therefore must be expressed by the application programs.

Entity Constraint

This constraint rules that no primary key can have a NULL value, because the primary key is used to identify individual tuples in the relation. Having NULL values implies that some of the tuples cannot be identified

Primary key & unique key constraints

A set of attributes in a relation schema is called a superkey. This specifies a uniqueness constraint which says that no two distinct tuples in the relation can have the same value for the given attribute. Generally, relation schemas may have more than one key, so each of the keys may then be called a candidate key, which can be designated as a primary key of the given relation. This primary key is used to actually identify tuples in the relation.

Referential constraints

Referential integrity constraints are specified between two relations to maintain consistency among the tuples in both relations. This says that a tuple one relation referencing another tuple in another relation, that referenced tuple must exist.

Check constraints and business rules

These constraints are needed to maintain business demands within the database. These constraints, therefore, push more limitations on the entries into the database because they require that certain entries be a certain type, depending on the given rules. For example, an entry may be required to not exceed a certain amount, or may be required to be above a certain amount.

[image: image10.png]

2.2
Relations

Keys: primary key, foreign key
2.2.1

MilitaryBranch

The Military branch is a strong Entity and by definition of the process of conversion from the E-R model to the relational model translates into a relation and included all simple attributes and chose branch_id as the primary key for the relation.
	Attribute
	Domain
	Description

	branch_name
	String
	Name of the branch

	branch_id
	Integer, no NULL
	Specifies branch number

2.2.2

Base

The Base Entity is a Strong Entity and by definition of the process of conversion from the E-R model to the Relational Model requires a separate relation where we include all simple attributes and chose Base_ID as the primary key. The relationship between them is a 1:M relationship and as such we chose the primary key of Branch as a foreign key in base.
	Attribute
	Domain
	Description

	base_id
	Integer, no NULL
	Specifies base number

	branch_id
	Integer
	Specifies branch number

	base_type
	Integer
	Code for type of base

	base_name
	String
	Name of the base

	City
	String
	City that base resides

	State
	String
	State that base resides

2.2.3

Technician

Technician is a Strong Entity and by definition of the process of conversion from the E-R Model to the Relational Model requires a separate relation in which we include all simple attributes and chose techID as primary key for the relation.
	Attribute
	Domain
	Description

	Name
	String
	Name of specific technician

	techID
	Integer, no NULL
	Specifies technician’s ID #

	Classification
	String
	Skill type technician

2.2.4

Hires

The Hires relationship between Base and Technician is a M:M relationship, and as such we created a separate entity with the primary key being both the primary keys of the participating entities, that being Base and Technician.
	Attribute
	Domain
	Description

	tech_ID
	Integer
	Specifie technician’s ID #

	baseID
	Integer
	Specifies base number

	hireDate
	String
	Date hired

2.2.5

WorkOrder

The Workorder Entity is a strong entity and as such by definition of the conversion from E-R Model to the relational model we create a separate relation in which we include all simple attributes and chose as the primary key WONum. We include as foreign keys in Workorder the Primary Key of Location because the relationship between the two entities is a 1:M.
	Attribute
	Domain
	Description

	WONum
	Integer, no NULL
	Specifies work order #

	Issue
	Description
	Describes issue/problem

	Initiator
	String
	Person who initiated order

	Sdate
	Date
	Start date

	Edate
	Date
	End date

	entered_date
	Date
	Date Workorder Entered

	locID
	Integer
	Location of the work order

2.2.6

Assigned

Assigned is the relationship between Technician and Workorder with a M:M cardinality. As such we created a separate relation in which we include in the relation the primary key of both Technician and Workorder as a composite Primary key along with including the simple attributes that are present within the relationship.
	Attribute
	Domain
	Description

	techID
	Integer
	Specified technician’s #

	WONum
	Integer
	Specifies work order #

	sDate
	Date
	Date assigned to project

	eDate
	Date
	Date leaving project

2.2.7

Location

Location is a Strong Entity in our E-R Model and as such we create a separate relation for it in which we include all the simple attributes from the E-R Model and chose as the Primary key locID. The relationship between the entities Location and Base has a cardinality of 1:M and as such we include as a foreign key in Location the Primary Key of Base.
	Attribute
	Domain
	Description

	locID
	Integer, no NULL
	Specifies location by #

	locType
	String
	Type of location

	bNo
	Integer
	Number of building

	rNo
	Integer
	Room number in building

	baseID
	Integer
	Specifies ID of the base

2.2.8

Equipment

Equipment is a Strong Entity type and as such we create a separate relation for it. The Cardinality of the relationship between both Equipment and Location, and Equipment and Purchase is 1:M and as such we included in the relation as a foreign key the primary keys of both Location and Purchase.
	Attribute
	Domain
	Description

	equip_id
	Integer, no NULL
	Specifies equipment by #

	equip_type
	String
	Tells what the equipment is

	loc_ID
	Integer
	Specifies location by #

	disposale_code
	Integer
	Code given if disposed

	purchase_id
	Integer
	ID of the purchase

	date_purchased
	Date
	Date of the purchase

	Cost
	Float
	Cost of specific item

2.2.9

Purchase

Purchase is a strong entity in our E-R Model and as such we created a separate relation for it including all the simple attributes in the E-R Model and chose as a Primary key Purchase_ID.
	Attribute
	Domain
	Description

	pIntiator
	String
	Person initiating purchase

	Type
	String
	Tells what type of purchase

	Description
	String
	Reason for purchase

	order_cost
	Float
	Total price of item(s)

	Quantity
	Integer
	Number of items in order

	purchase_id
	Integer, no NULL
	ID of the purchase

	date_approved
	Date
	Date of approval

2.2.10
Repairs

The Repairs relationship between the Equipment and Workorder Entities has a cardinality of 1:M. As such we created a separate relation which include all attributes associated with the relationship in the relation and chose as Primary key for the relation the primary keys of Equipment and Workorder as a composite Primary key.
	Attribute
	Domain
	Description

	equipID
	Integer
	Specifies equipment by #

	sDate
	Date
	Starting date of repair

	eDate
	Date
	Ending date of repair

	WONumber
	Integer
	Number of the work order

[image: image11.png]

Relational Model

Key: Primary Key, Foreign Key
BBG_MIL_BRANCH

	branch_id
	branch_name

BBG_ASSIGNED

	tech_id
	wonum
	sdate
	edate

BBG_BASE

	base_id
	branch_id
	base_type
	base_name
	city
	state

BBG_EQUIPMENT

	equip_id
	equip_type
	loc_id
	purchase_id
	disposal_code
	date_purchased

BBG_HIRES

	tech_id
	base_id
	hdate

BBG_LOCATION

	loc_id
	loctype
	bno
	rno
	base_id

BBG_REPAIRS

	wonum
	eq_id
	sdate
	edate

BBG_TECH

	tech_id
	name
	classification

BBG_WORKORDER

	wonum
	issue
	initiator
	sdate
	edate
	entered_date
	loc_id

BBG_PURCHASE

	purchase_id
	pinitiator
	type
	description
	cost
	quantity
	date_approved

[image: image12.png]

2.3
Preliminary Table Definitions and Tuples
Note: The following table definitions are preliminary, and are shown to display the data that has been entered into our system on delphi so far. The table definitions, constraints, data, etc., will be finalized in the next project phase.

CREATE TABLE BBG_MIL_BRANCH (

BRANCH_ID

INTEGER NOT NULL,

BRANCH_NAME
VARCHAR2(32) NOT NULL)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_MIL_BRANCH VALUES ('100','NAVY');

INSERT INTO BBG_MIL_BRANCH VALUES ('110','MARINE CORPS');

INSERT INTO BBG_MIL_BRANCH VALUES ('900','SPECIAL FORCES');

INSERT INTO BBG_MIL_BRANCH VALUES ('400','COAST GUARD');

INSERT INTO BBG_MIL_BRANCH VALUES ('500','ARMY');

INSERT INTO BBG_MIL_BRANCH VALUES ('600','AIR FORCE');

CREATE TABLE BBG_BASE (

BASE_ID
INTEGER NOT NULL,

BRANCH_ID
INTEGER NOT NULL,

BASE_TYPE
INTEGER NOT NULL,

BASE_NAME
VARCHAR2(32),

CITY

VARCHAR2(32))

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_BASE VALUES ('1', '110','1','MCAS Yuma', '');

INSERT INTO BBG_BASE VALUES ('2', '110','2','MCB Camp Lejeune', '');

INSERT INTO BBG_BASE VALUES ('3', '110','3','MCAGCC 29 Palms', '');

INSERT INTO BBG_BASE VALUES ('4', '110','4','MCAS Cherry Point', '');

INSERT INTO BBG_BASE VALUES ('5', '110','5','MCLB Barstow', 'Barstow, CA');

INSERT INTO BBG_BASE VALUES ('6', '110','1','MCB Camp Pendleton', 'Camp Pendleton, CA');

INSERT INTO BBG_BASE VALUES ('7', '110','2','MCAS Beaufort', 'Beaufort, NC');

INSERT INTO BBG_BASE VALUES ('8', '110','3','MCRD Parris Island', 'Parris Island, SC');

INSERT INTO BBG_BASE VALUES ('9', '110','4','MCRD San Diego', 'San Diego, CA');

INSERT INTO BBG_BASE VALUES ('10','110','5','Mountain War Training','');

INSERT INTO BBG_BASE VALUES ('11','110','1','MCB Quantico', 'Quantico, VA');

INSERT INTO BBG_BASE VALUES ('12','110','2','MCLB Albany', 'Albany, GA');

INSERT INTO BBG_BASE VALUES ('13','110','3','Marine Barracks D.C.', 'Washington, D.C.');

INSERT INTO BBG_BASE VALUES ('14','110','4','MCB Hawaii', 'Honilulu, HI');

INSERT INTO BBG_BASE VALUES ('15','600','5','Maxwell AFB', '');

INSERT INTO BBG_BASE VALUES ('16','600','1','Columbus AFB', '');

INSERT INTO BBG_BASE VALUES ('17','600','2','Keesler AFB', '');

INSERT INTO BBG_BASE VALUES ('18','600','3','Eielson AFB', '');

INSERT INTO BBG_BASE VALUES ('19','600','4','Whiteman AFB', '');

INSERT INTO BBG_BASE VALUES ('20','600','5','McClellan AFB', '');

INSERT INTO BBG_BASE VALUES ('21','600','1','Vandenberg AFB', '');

INSERT INTO BBG_BASE VALUES ('22','600','2','Wright-Patterson AFB', '');

INSERT INTO BBG_BASE VALUES ('23','100','3','NAWS China Lake', 'China Lake, CA');

INSERT INTO BBG_BASE VALUES ('24','100','4','Fort Meade NSGA', '');

INSERT INTO BBG_BASE VALUES ('25','100','5','NAS Lemoore', 'Lemoore, CA');

INSERT INTO BBG_BASE VALUES ('26','100','1','NB Point Loma', 'Point Loma, CA');

INSERT INTO BBG_BASE VALUES ('27','100','2','NS Pascagoula', 'Pascagoula, MI');

INSERT INTO BBG_BASE VALUES ('28','100','3','NAS Point Mugu', 'Point Mugu, CA');

INSERT INTO BBG_BASE VALUES ('29','100','4','NCBC Port Hueneme', 'Port Hueneme, CA');

INSERT INTO BBG_BASE VALUES ('30','100','5','NAS Kingsville', 'Kingsville');

CREATE TABLE BBG_BASETYPE (

BASE_TYPE_ID
INTEGER NOT NULL,

BASE_TYPE

VARCHAR2(32))

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_BASETYPE VALUES ('1', 'Airfield');

INSERT INTO BBG_BASETYPE VALUES ('2', 'Air Station');

INSERT INTO BBG_BASETYPE VALUES ('3', 'Shipyard');

INSERT INTO BBG_BASETYPE VALUES ('4', 'Garrison');

INSERT INTO BBG_BASETYPE VALUES ('5', 'Station');

INSERT INTO BBG_BASETYPE VALUES ('6', 'Post');

INSERT INTO BBG_BASETYPE VALUES ('7', 'Marine Corps Base');

INSERT INTO BBG_BASETYPE VALUES ('8', 'Naval base');

INSERT INTO BBG_BASETYPE VALUES ('9', 'Dock');

INSERT INTO BBG_BASETYPE VALUES ('10','Activity');

INSERT INTO BBG_BASETYPE VALUES ('11','Magazine');

INSERT INTO BBG_BASETYPE VALUES ('12','Arsenal');

INSERT INTO BBG_BASETYPE VALUES ('13','Presidio');

INSERT INTO BBG_BASETYPE VALUES ('14','Proving Ground');

INSERT INTO BBG_BASETYPE VALUES ('15','Armory');

INSERT INTO BBG_BASETYPE VALUES ('16','Fort');

INSERT INTO BBG_BASETYPE VALUES ('17','Camp');

INSERT INTO BBG_BASETYPE VALUES ('18','Barracks');

INSERT INTO BBG_BASETYPE VALUES ('19','Casern');

INSERT INTO BBG_BASETYPE VALUES ('20','Facility');

INSERT INTO BBG_BASETYPE VALUES ('21','Reservation');

INSERT INTO BBG_BASETYPE VALUES ('22','Installation');

INSERT INTO BBG_BASETYPE VALUES ('23','Joint Base');

CREATE TABLE BBG_TECH (

NAME

VARCHAR2(32),

TECH_ID
INTEGER NOT NULL,

CLASSIFICATION VARCHAR2(10))

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_TECH VALUES ('Fred Jones', '101','class1');

INSERT INTO BBG_TECH VALUES ('Mark Mason', '102','class2');

INSERT INTO BBG_TECH VALUES ('Cindy Smith','103','class3');

INSERT INTO BBG_TECH VALUES ('James Clay', '104','class3');

INSERT INTO BBG_TECH VALUES ('Tan Do', '105','class6');

INSERT INTO BBG_TECH VALUES ('Carl Prose', '106','class6');

INSERT INTO BBG_TECH VALUES ('Craig Berns','107','class7');

INSERT INTO BBG_TECH VALUES ('Martha West','108','class7');

CREATE TABLE BBG_HIRES (

TECH_ID
INTEGER
NOT NULL,

BASE_ID
INTEGER
NOT NULL,

HDATE

DATE)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_HIRES VALUES ('101','1','01-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('102','1','02-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('103','1','03-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('104','1','04-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('105','1','05-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('106','1','06-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('107','1','07-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('108','1','08-SEP-2011');

INSERT INTO BBG_HIRES VALUES ('105','2','05-JAN-2000');

INSERT INTO BBG_HIRES VALUES ('106','3','06-JAN-2000');

INSERT INTO BBG_HIRES VALUES ('107','4','07-JAN-2000');

INSERT INTO BBG_HIRES VALUES ('108','5','08-JAN-2000');

CREATE TABLE BBG_WORKORDER (

WONUM
INTEGER,

ISSUE

VARCHAR2(32),

INITIATOR
VARCHAR2(32),

SDATE

DATE,

EDATE

DATE,

EQUIP_ID
INTEGER)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_WORKORDER VALUES ('10001','broken', '','01-OCT-2011','03-OCT-2011','1000');

INSERT INTO BBG_WORKORDER VALUES ('10002','fried', '','02-OCT-2011','04-OCT-2011','1000');

INSERT INTO BBG_WORKORDER VALUES ('10003','smashed','','03-OCT-2011','05-OCT-2011','1000');

INSERT INTO BBG_WORKORDER VALUES ('10004','cracked','','04-OCT-2011','08-OCT-2011','1000');

INSERT INTO BBG_WORKORDER VALUES ('10005','coke', '','05-OCT-2011','09-OCT-2011','1000');

INSERT INTO BBG_WORKORDER VALUES ('10006','dirty', '','06-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10007','kicked', '','07-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10008','dropped','','08-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10009','dropped','','09-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10010','dropped','','10-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10011','dirty', '','11-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10012','dirty', '','12-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10013','coke', '','13-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10014','coke', '','14-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10015','fried', '','15-OCT-2011','', '1000');

INSERT INTO BBG_WORKORDER VALUES ('10016','fried', '','16-OCT-2011','', '1000');

CREATE TABLE BBG_ASSIGNED (

TECH_ID
INTEGER,

WONUM
INTEGER,

SDATE

DATE,

EDATE

DATE)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_ASSIGNED VALUES ('101','10001','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('102','10001','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('103','10002','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('104','10002','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('105','10003','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('106','10004','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('107','10005','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('108','10006','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('109','10006','01-OCT-2011','01-OCT-2011');

INSERT INTO BBG_ASSIGNED VALUES ('110','10007','01-OCT-2011','01-OCT-2011');

CREATE TABLE BBG_LOCATION (

LOC_ID
INTEGER,

LOCTYPE_ID
INTEGER,

BNO

INTEGER,

RNO

INTEGER)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_LOCATION VALUES ('100','1','234','2');

INSERT INTO BBG_LOCATION VALUES ('200','2','500','2');

INSERT INTO BBG_LOCATION VALUES ('300','3','001','2');

INSERT INTO BBG_LOCATION VALUES ('400','4','020','2');

INSERT INTO BBG_LOCATION VALUES ('500','5','050','2');

CREATE TABLE BBG_LOCTYPE (

LOCTYPE_ID

INTEGER,

DESCRIPTION

VARCHAR(16))

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_LOCTYPE VALUES ('1','secure');

INSERT INTO BBG_LOCTYPE VALUES ('2','shared');

INSERT INTO BBG_LOCTYPE VALUES ('3','vehicle');

INSERT INTO BBG_LOCTYPE VALUES ('4','network');

INSERT INTO BBG_LOCTYPE VALUES ('5','training');

CREATE TABLE BBG_EQUIPMENT (

EQUIP_ID

INTEGER,

EQUIP_TYPE

VARCHAR2(16),

LOC_ID

INTEGER,

DISPOSAL_CODE
INTEGER)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_EQUIPMENT VALUES ('525','computer','100','0');

INSERT INTO BBG_EQUIPMENT VALUES ('526','server',
'200','0');

INSERT INTO BBG_EQUIPMENT VALUES ('527','laptop',
'300','0');

INSERT INTO BBG_EQUIPMENT VALUES ('528','gps',

'400','0');

INSERT INTO BBG_EQUIPMENT VALUES ('529','comm',

'500','1');

INSERT INTO BBG_EQUIPMENT VALUES ('530','weapons',
'100','0');

INSERT INTO BBG_EQUIPMENT VALUES ('531','vision',
'200','0');

CREATE TABLE BBG_PURCHASE (

PURCHASE_ID

INTEGER,

PINTIATOR

VARCHAR2(16),

TYPE

VARCHAR2(16),

DESCRIPTION

VARCHAR2(16),

COST

NUMBER(10,2),

QUANTITY

INTEGER,

DATE_APPROVED
DATE)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_PURCHASE VALUES ('1','gdg','computer','replacement','450.00','1','01-OCT-2011');

INSERT INTO BBG_PURCHASE VALUES ('2','gdg','computer','replacement','450.00','4','01-OCT-2011');

INSERT INTO BBG_PURCHASE VALUES ('3','gdg','computer','replacement','450.00','6','01-OCT-2011');

INSERT INTO BBG_PURCHASE VALUES ('4','gdg','computer','replacement','450.00','1','01-OCT-2011');

CREATE TABLE BBG_EQ_PURCHASED (

EQUIP_ID

INTEGER,

PURCHASE_ID

INTEGER,

PDATE

DATE)

--

PCTUSED 15 PCTFREE 15 TABLESPACE CS342
--

INSERT INTO BBG_EQ_PURCHASED VALUES (525,1,'01-OCT-2011');

INSERT INTO BBG_EQ_PURCHASED VALUES (526,2,'01-OCT-2011');

INSERT INTO BBG_EQ_PURCHASED VALUES (527,3,'01-OCT-2011');

INSERT INTO BBG_EQ_PURCHASED VALUES (528,4,'01-OCT-2011');
[image: image13.png]

2.4
Relational Algebra and Calculus Formulas

[image: image14.png]

 = select

[image: image15.png]

 = project

[image: image16.png]

 = existential quantifier

[image: image17.png]

 = universal quantifier

1) List Locations that have a work order with issue ‘Broken’
Relational Algebra

[image: image18.png]

 L.* ([image: image19.png]

 w.issue = ‘Broken’ (Location * Workorder))

Tuple Relational Calculus

{ L | Location(L) ^ ([image: image20.png]

w)(WorkOrder(w) ^ L.LocID = w.LocID ^ w.Issue = ‘Broken’)}

Domain Relational Calculus

{<L,B,R> | Location(L,-,B,R,-) ^ Workorder(-,’Broken’,-,L)}

2) List all workorders tier-3 technicians have worked on.

Relational Algebra

[image: image21.png]

 w.* ([image: image22.png]

 T.Classification = ‘Tier-3’ (Technician * Assigned * WorkOrder))

Tuple Relational Calculus

{ w | Workorder(w) ^ ([image: image23.png]

t)([image: image24.png]

a)(Technician(t) ^ Assigned(a) ^ t.TechID = a.TechID ^

a.WONum = w.WONum ^ T.Classification = ‘Tier-3’)}

Domain Relational Calculus

{<w,i> | WorkOrder(w,i,-,-,-,-) ^ (∃t)(Assigned(t,w,-,-) ^ Technician(-,t,’Tier-3’))}

3) List Bases who hired technician ‘Jack Bauer’

Relational Algebra

[image: image25.png]

 B.* ([image: image26.png]

 T.Name = ‘Jack Bauer’ (Base * Hires * Technician))

Tuple Relational Calculus

{ B | Base(B) ^ ([image: image27.png]

h)([image: image28.png]

t)(Hires(h) ^ Technician(t) ^ B.BaseID = h.BaseID ^

h.TechID = t.TechID ^ t.Name = ‘Jack Bauer’)}

Domain Relational Calculus

{<B,N,C> | Base(B,N,C) ^ ([image: image29.png]

t)(Hires(T,B,-) ^ Technician(‘Jack Bauer’,T,-))}

4) List purchased equipment by initiator “John Doe”

Relational Algebra

[image: image30.png]

 E.* ([image: image31.png]

 P.Initiator = ‘John Doe’ (Purchase * Equipment))

Tuple Relational Calculus

{ E | Equipment(E) ^ ([image: image32.png]

P)(Purchase(P) ^ P.PurchaseID = E.PurchaseID ^

 P.Initiator = ‘John Doe’)}

Domain Relational Calculus

{ <E,T,P> | Equipment(E,T,-,P,-,-) ^ Purchase(P,’John Doe’, -,-,-,-,-,-)}

5) List equipment that was purchased on 5/8/2004 and is located in building 405.

Relational Algebra

[image: image33.png]

 E.* ([image: image34.png]

 E.purchaseDate = ‘5/8/2004’ ^ L.bNO = 405 (Equipment * Location))

Tuple Relational Calculus

{E | Equipment(E) ^ ([image: image35.png]

L)(Location(L) ^ L.locID = E.locID ^ L.bNo = 405 ^

 E.purchaseDate = ‘5/8/2004’

Domain Relational Calculus

{<E> | Equipment(E,-,L,-,’5/8/2004’,-) ^ Location(L,-,405,-,-)

6) List all purchases that had a total cost of more than $10,000, that were initiated by Joe Jackson that were purchased on 3/12/2001.

Relational Algebra

[image: image36.png]

 P.* ([image: image37.png]

 E.purchaseID = P.purchaseID ^ P.cost > 10,000 ^ P.initiator = ‘Joe Jackson’ ^
E.datePurchase = ‘3/12/2001’(Purchase * Equipment))
Tuple Relational Calculus

{P | Purchase(P) ^ ([image: image38.png]

E)(Equipment(E) ^ E.purchaseID = P.purchaseID ^

P.cost > 10,000 ^ P.initiator = ‘Joe Jackson’ ^ E.datePurchased = ‘3/12/2001’

Domain Relational Calculus

{<P> | Purchase(P,’Joe Jackson’,-,-,>10000,-) ^ Equipment(-,-,-,P,3/12/2001)

7) List technicians that worked on equipment that had an ‘unknown’ issue.

Relational Algebra

[image: image39.png]

 T.*([image: image40.png]

 A.WONum = W.WONum ^ A.techID = T.techID ^ W.issue = ‘Unknown’(WorkOrder * Assign * Technician)

Tuple Relational Calculus

{T | Technician(T) ^ ([image: image41.png]

W)([image: image42.png]

A)(Workorder(W) ^ Assign(A) ^ W.WONum = A.WONum ^

 A.techID ^ W.issue = ‘Unknown’)

 Domain Relational Calculus

{ <T> | Technician(T, - , -) ^ ([image: image43.png]

W)(WorkOrder(W, ‘Unknown’, - , -) ^ Assign(T, W, - , -))

8) List Technicians who have worked at more than one base
Relational Algebra

[image: image44.png]

 T.* ([image: image45.png]

 (B1.BaseID =/= B2.BaseID ^ H1.TechID = T.TechID ^ H2.TechID = T.TechID ^ B1.BaseID = H1.BaseID ^ H2.BaseID = B2.BaseID)(Base x Base x Hires x Hires x Technician))

Tuple Relational Calculus

{ T | Technician(T) ^ ([image: image46.png]

B1)([image: image47.png]

H1)(Base(B1) ^ Hires(H1) ^ H1.TechID = T.TechID ^

B1.BaseID = H1.BaseID ^

 ([image: image48.png]

B2)([image: image49.png]

H2)(Base(B2) ^ Hires(H2) ^ H2.TechID = T.TechID ^

B2.BaseID = H2.BaseID ^

B2.BaseID =/= B1.BaseID

Domain Relational Calculus

{<T,N,C> | Technician(T,N,C) ^ ([image: image50.png]

B1)([image: image51.png]

B2)(Base(B1,-,-,-) ^ Base(B2,-,-,-) ^

 Hires(T,B1,-) ^ Hires(T,B2,-) ^ B1=/=B2)}

9) List Workorders more than a month old that have not started.

Relational Algebra

[image: image52.png]

 W.* ([image: image53.png]

 ((CurrentDate - a.sDate) > 30 ^ a.WONum = w.WONum ^ r.WONum =w.WONum ^ r.sDate = Null)(Assigned x Repair x WorkOrder))

Tuple Relational Calculus

{ w | Workorder(w) ^ ([image: image54.png]

a)([image: image55.png]

r)(Assigned(a) ^ Repair(r) ^ (currentDate - a.sDate) > 30 ^

a.WONum = w.WONum ^ r.WONum = w.WONum ^

r.sDate = Null)}

Domain Relational Calculus

{ <w> | Workorder(w,-,-,-) ^ ([image: image56.png]

c)([image: image57.png]

d)(c = currentDate ^ Assigned(-,w,c-d,-) ^

Repair(w,-,’NULL’, -))}

10) List Buildings where equipment has been dropped.

Relational Algebra

[image: image58.png]

 L.bNo ([image: image59.png]

 (W.Issue = ‘Dropped’)(WorkOrder * Location))

Tuple Relational Calculus

{ L.bNo | Location(L) ^ ([image: image60.png]

w)(Workorder(w) ^ w.LocID = L.LocID ^ w.Issue = ‘dropped’)}

Domain Relational Calculus

{ | ([image: image61.png]

L)(Location(L,-,b,-,-) ^ WorkOrder(-,’Dropped’,-,L))}
[image: image62.png]

Phase 3: Normalization, SQL*Plus, Relation Schema’s, and Data Loading Methods
[image: image63.png]

3.1 Normalization

3.1.1
First Form

First normal form (1NF) is a basic standard that ensures that there will be no repeating groups inside of the table. To avoid this conflict, for say, a customer in the database who has multiple telephone numbers, the designer may consider creating a separate table to store the phone numbers and customer IDs, instead of allowing multiple telephone numbers to be added into a single tuple.

3.1.2
Second Form

Second normal form (2NF) is a build upon 1NF, which was originally defined by E.F Codd in 1971. A table that is in 1NF must meet additional qualifications to in 2NF. A table in 1NF is in 2NF, if and only if, any candidate key given, CK, and any attribute, A, that is not a component of a candidate key, A then depends upon all of K instead of just a part of it.

3.1.3 Third Form

Defined around the same time as 2NF, a table is in third normal form (3NF) if and only if every relation is in 2NF, and every non-prime attribute of relation R is non-transitively dependent.

3.1.4
Boyce-Codd Form

Boyce-Codd normal form (BCNF or 3.5NF) is a stronger version of 3NF. It states that a table is in BCNF if and only if for every one of its nontrivial dependencies X -> Y, X is a superkey, meaning X is either a candidate key or a superset.
3.1.5 Relation Normalization

Because one of the main goals was to eliminate redundancy within our relations, normalization seemed to automatically come with the conversion from the EER conceptual model, to the relational model. All of our relations contain primary keys, which eliminate repeated tuples, and the relations that were created from M:M relations, were created with the foreign key approach. This allows us to somewhat normalize our relations; in the second form to be specific. For example, we have a relation, Technician, T, and a relation WorkOrder, WO, basically meaning that Technicians will be given a work order. However, because the WO relation holds techID as a foreign key of T, if one technician is assigned multiple work orders, or multiple technicians are assigned to the same work order, redundancy can occur.

In order to allow tracking of multiple technicians per workorder, we used second normal form by creating another relation, Assigned, A, which takes WOID from WO and techID from T as foreign keys, thus eliminating the redundant values in WO itself. It’s important, however, to notice that A can take multiple entries of the same values, but this is inevitable due to the fact that those values, and the number of times they arise, must be taken note of. This is just one example of how second form normalization can be used to eliminate redundancy.

[image: image64.png]

3.2 SQL*Plus

3.2.1 Main Purpose of SQL*Plus

The main purpose of SQL*Plus is to allow database users to access and execute all commands necessary to build, query, and maintain the Oracle components. It runs from a simple command line and executes SQL statements, PL/SQL statement blocks, and SQL*Plus non-sql commands.

3.2.2 SQL*Plus commands

SQL*Plus first connects a user to the Oracle database, then accepts all standard SQL commands along with commands that allow a user to:

. Configure the SQL*Plus environment

. Run SQL commands and PL/SQL blocks

. Connect to a database

. Calculate and display query results

. Grant rights to database users

. Start and stop a database

. Show the definition and description of tables

. Administer the database

3.2.3 Schema Objects Included in Our Project

Schema objects are logical structures of data in Oracle. In our project, we have created the following schema objects:

. Tables

. Indexes

. Database triggers

. Views

. Stored procedures

. Sequences

. Table spaces

. External procedure libraries
3.2.4 Syntax for Create Statements

To create a Database…

CREATE DATABASE database_name

To create a Table…

CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....
)

To create an Index…

CREATE INDEX index_name
ON table_name (column_name)

To create a View…

CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

To create a Primary Key Constraint…

ALTER TABLE table_name

ADD CONSTRAINT key_name

PRIMARY KEY(column_name, column_name,…);
To create a Foreign Key Constraint…

ALTER TABLE table_name

ADD CONSTRAINT key_name

FOREIGN KEY(column_name, column_name,…)

REFERENCES(table_name);

[image: image65.png]

3.3 Relation Schema & Data
3.3.1
BBG_MIL_BRANCH

BRANCH_ID

NOT NULL
NUMBER(38)

BRANCH_NAME

NOT NULL
VARCHAR2(32)

Data…

100 navy

110 marine corps

900 special forces

400 coast guard

500 army

600 air force

3.3.2
BBG_BASE

BASE_ID
NOT NULL
NUMBER(38)

BRANCH_ID
NOT NULL
NUMBER(38)

BASE_TYPE

NUMBER(38)

BASE_NAME

VARCHAR2(32)

CITY

VARCHAR2(32)

STATE

VARCHAR2(32)

Data…

1 110 7 MCAS Yuma Las Vegas

Nevada

2 110 15 MCB Camp Lejeune New York

New York
3.3.3
BBG_BASETYPE

BASE_TYPE_ID
NOT NULL
NUMBER(38)

BASE_TYPE

VARCHAR2(32)

Records…

1
Airfield

2
Air Station

3
Shipyard

4
Garrison

5
Station

6
Post

7
Marine Corps Base

8
Naval base

9
Dock

10
Activity

11
Magazine

12
Arsenal

13
Presidio

14
Proving Ground

15
Armory

16
Fort

17
Camp

18
Barracks

19
Casern

20
Facility

21
Reservation

22
Installation

23
Joint Base

3.3.4
BBG_TECH

NAME

VARCHAR2(32)

TECH_ID
NOT NULL
NUMBER(38)

CLASSIFICATION

VARCHAR2(10)

Records…

Fred Jones 101 class1

Mark Mason 102 class2

Cindy Smith 103 class3

James Clay 104 class3

Tan Do 105 class6

Carl Prose 106 class6

Craig Berns 107 class7

Martha West 108 class7
3.3.5
BBG_HIRES

TECH_ID
NOT NULL
NUMBER(38)

BASE_ID
NOT NULL
NUMBER(38)

HDATE

NOT NULL
DATE

Records…

101 1 01-SEP-11

102 1 02-SEP-11

103 1 03-SEP-11

104 1 04-SEP-11

105 1 05-SEP-11

106 1 06-SEP-11

107 1 07-SEP-11

108 1 08-SEP-11

105 2 05-JAN-00

106 2 06-JAN-00

107 2 07-JAN-00

108 2 08-JAN-00
3.3.6
BBG_WORKORDER

WONUM
NOT NULL
NUMBER(38)

ISSUE

VARCHAR2(32)

INITIATOR

VARCHAR2(32)

SDATE

DATE

EDATE

DATE
ENTERED_DATE

DATE

LOC_ID

NOT NULL
NUMBER(38)

Records…

10001 broken 01-OCT-11 03-OCT-11 14-NOV-11 100

10002 fried 02-OCT-11 04-OCT-11 14-NOV-11 102

10003 smashed 03-OCT-11 05-OCT-11 14-NOV-11 102

10004 cracked 04-OCT-11 08-OCT-11 14-NOV-11 116

10005 coke 05-OCT-11 09-OCT-11 14-NOV-11 112

10006 dirty 06-OCT-11 14-NOV-11 120

10007 kicked 07-OCT-11 14-NOV-11 118

10008 dropped 08-OCT-11 14-NOV-11 112

10009 dropped 09-OCT-11 14-NOV-11 114

10010 dropped 10-OCT-11 14-NOV-11 102

10011 dirty 11-OCT-11 14-NOV-11 120

10012 dirty 12-OCT-11 14-NOV-11 102

10013 coke 13-OCT-11 14-NOV-11 108

10014 coke 14-OCT-11 14-NOV-11 116

10015 fried 15-OCT-11 14-NOV-11 110

10016 fried 16-OCT-11 14-NOV-11 104
3.3.7
BBG_ASSIGNED

TECH_ID
NOT NULL
NUMBER(38)

WONUM
NOT NULL
NUMBER(38)

SDATE

NOT NULL
DATE

EDATE

DATE

Records…

101 10001 01-OCT-11 01-OCT-11

102 10001 01-OCT-11 01-OCT-11

103 10002 01-OCT-11 01-OCT-11

104 10002 01-OCT-11 01-OCT-11

105 10003 01-OCT-11 01-OCT-11

106 10004 01-OCT-11 01-OCT-11

107 10005 01-OCT-11 01-OCT-11

108 10006 01-OCT-11 01-OCT-11

109 10006 01-OCT-11 01-OCT-11

110 10007 01-OCT-11 01-OCT-11
3.3.8
BBG_LOCATION

LOC_ID

NOT NULL
NUMBER(38)

LOCTYPE_ID

VARCHAR2(32)
BNO

NUMBER(38)

RNO

NUMBER(38)

BASE_NO
NOT NULL
NUMBER(38)

Records…

100 Secure Room 1 300 2

102 Vehicle 2

104 Office 5 100 2

106 Office 5 110 2

108 Office 5 120 2

110 Office 5 130 2

112 Training Room 4 110 2

114 Training Room 4 120 2

116 Training Room 4 130 2

118 Network Room 1 310 2

120 Outdoor Storage 0 2
3.3.9
BBG_EQUIPMENT

EQUIP_ID

NOT NULL
NUMBER(38)

EQUIP_TYPE

NOT NULL
VARCHAR2(16)

LOC_ID

NOT NULL
NUMBER(38)

PURCHASE_ID

NOT NULL
NUMBER(38)

DISPOSAL_CODE
NOT NULL
NUMBER(38)

DATE_PURCHASED
NOT NULL
DATE

COST

NUMBER(10,2)

Records…

500 Computer 100 100020 0 17-OCT-09 300

501 Server 118 100000 0 18-NOV-11 1000

502 Laptop 102 100010 0 20-AUG-09 350

503 Gps 102 100050 0 30-NOV-09 100

504 Comm 102 100060 1 15-SEP-11 75

505 Weapons 102 100070 0 09-DEC-11 150

506 Vision 120 100080 0 08-DEC-11 600

507 Computer 104 100020 0 08-DEC-11 300

508 Computer 106 100020 0 08-DEC-11 300

509 Computer 108 100020 0 08-DEC-11 300

510 Laptop 112 100010 0 08-DEC-11 350

511 Laptop 114 100010 0 08-DEC-11 350

512 Gps 116 100050 0 08-DEC-11 100

513 Computer 110 100020 0 08-DEC-11 300

514 Computer 112 100040 0 08-DEC-11 400

515 Server 118 100030 0 08-DEC-11 900

516 Computer 112 100040 0 08-DEC-11 400

517 Laptop 108 100010 0 08-DEC-11 350

518 Comm 118 100060 0 08-DEC-11 75

519 Weapons 120 100070 0 08-DEC-11 150

520 Computer 116 100040 0 08-DEC-11 400

521 Computer 114 100040 0 08-DEC-11 400

522 Laptop 114 100010 0 08-DEC-11 350

523 Computer 112 100040 0 08-DEC-11 400
3.3.10
BBG_PURCHASE

PURCHASE_ID
NOT NULL
NUMBER(38)

PINTIATOR

VARCHAR2(16)

TYPE

VARCHAR2(16)

DESCRIPTION

VARCHAR2(16)

COST

NUMBER(10,2)

QUANTITY

NUMBER(38)

DATE_APPROVED

DATE

Records…

100000 gdg server replacement 1000 1 01-OCT-11

100010 gdg laptops supplemental 1500 5 01-OCT-11

100020 gdg computers supplemental 1500 5 01-OCT-11

100030 gdg server replacement 900 1 01-OCT-11

100040 bjw computers supplemental 2000 5 08-OCT-11

100050 bjw gps replacement 200 2 08-OCT-11

100060 bjw comm replacement 150 2 08-OCT-11

100070 bjw weapons supplemental 300 2 08-OCT-11

100080 bjw vision supplemental 1200 2 08-OCT-11
3.3.11
BBG_REPAIRS

WONUM
NOT NULL
NUMBER(38)

EQUIP_ID
NOT NULL
NUMBER(38)
SDATE

NOT NULL
DATE

EDATE

DATE

Records…

10001 500 01-OCT-11 03-OCT-11

10002 502 02-OCT-11 04-OCT-11

10003 504 03-OCT-11 05-OCT-11

10004 512 04-OCT-11 08-OCT-11

10005 514 05-OCT-11 09-OCT-11

10006 506 06-OCT-11

10007 518 07-OCT-11

10008 510 08-OCT-11

10009 511 09-OCT-11

10010 504 10-OCT-11

10011 519 11-OCT-11

10012 503 12-OCT-11

10013 509 13-OCT-11

10014 520 14-OCT-11

10015 513 15-OCT-11

10016 507 16-OCT-11
3.3.1
BBG_WO_SDATE_LOG

LOGNO

NUMBER

EVENTDATE
DATE

WONUM
NUMBER(5)

OLDSDATE
DATE

NEWSDATE
DATE

<no records yet>

[image: image66.png]

3.4 SQL Queries

These query statements are derived from the Phase-2 queries that were created in Relational Algebra, Tuple Relational Calculus, and Domain Relational Calculus.

Question 1:

List locations that have a workorder with issue 'Broken'.

select l.*

from
BBG_LOCATION l

where exists (select * from BBG_WORKORDER w

 where l.LocID = w.LocID and w.Issue = 'Broken'

)

Question 2:

List all workorders tier 3 technicians have worked on.

select w.*

from WorkOrder w

where exists (select * from Technician t, Assigned a

 where t.TechID = a.TechID and a.WONum = w.WONum and t.Classification = 'Tier3')

Question 3:

List bases who hired technician 'Jack Bauer'.

select b.*

from Base b

where exists (select * from Hires h, Technician t

 where b.BaseID = h.BaseID and h.TechID = t.TechID and t.Name = 'Jack Bauer'

)

Question 4:

List Purchased equipment by initiator "John Doe"

select e.*

from Equipment e

where exists (select * from Purchase p

 where p.Purchase ID = e.PurchaseID and p.Initiator = 'John Doe'

)

Question 5:

List Equipment that was purchased on 5/8/2004 and is located in Building 405.

select e.*

from Equipment e, Location l

where l.LocID = e.LocID and l.bNo = 405 and e.PurchaseDate = '5/8/2004'

Question 6:

List all purchases that had a total cost of more that $10,000 and were initiated by Joe Jackson that were purchased on 3/12/2001.

select p.*

from Purchase p, Equipment e

where e.PurchaseID = p.PurchaseID and p.cost > 10,000 and p.Initiator = 'Joe Jackson' and e.PurchaseDate = '3/12/2001'

Question 7:

List technicians that worked on equipment that nad an 'Unknown' issue.

select t.*

from Technician t, workorder w, Assign a

where w.WONum = a.WONum and a.TechID = t.TechID and w.Issue = 'Unknown'

Question 8:

List Technicians who have worked at more than one base.

select t.*

from technician t

where exists(select * from Base b1, Hires h1

 where b1.BaseID = h1.BaseID and h1.TechID = t.TechID and

 not exists (select * from Base b2, Hires h2

 where h2.TechID = t.TechID and b2.BaseID = h2.BaseID and b2.BaseID <> b1.BaseID
)

)

Question 9:

List workorders more than a month old that have not started.

select w.*

from WorkOrder w

where (SYSDATE - w.enteredDate) > 30

and is w.sDate is null;

Question 10:

List Buildings where equipment has been dropped.

select l.bNo

from Location l

where exists (select * from Workorder w1

where w.LocID = l.LocID and w.Issue = ‘Dropped’)

Question 11:

List the sum of all purchases for the month of December.

select SUM(p.cost) as ‘Total December Costs’

from BBG_PURCHASE p, BBG_EQUIPMENT b

where b.datepurchased >= ‘01-dec-09’ and b.datpurchased <= ‘31-dec-09’ and b.PurchaseID = p.PurchaseID

[image: image67.png]

Phase 4: Stored Procedures

[image: image68.png]

4.1 Common Features in Oracle PL/SQL and MS Trans-SQL

4.1.1 Components of PL/SQL and Trans-SQL

PL/SQL supports variables, conditions, loops and exceptions. Arrays are also supported, though in a somewhat unusual way, involving the use of PL/SQL collections.

Trans-SQL expands on the SQL standard to include procedural programming, local variables, various support functions for string processing, date processing, mathematics, etc. and changes to the DELETE and UPDATE statements. Some of the features present in Trans-SQL is END, BREAK, CONTINUE, GOTO, IF and ELSE, RETURN, WAITFOR, and WHILE.

4.1.2 Purposes of Stored Subprogram

The Purpose of a stored subprogram is to handle complicated tasks that should be automated by the system. An example would be to handle the insertion of a record into a table. To properly insert a record into the table you would have to check foreign keys make sure the format of the record will not violate the consistency of the table. Also many applications stored in the database can gain access to the stored subprogram making it more functional. These subprograms are a major driving force in the functionality of the database.

4.1.3 Benefits of Stored Subprograms

The Benefits of calling a stored subprogram over sending a dynamic SQL to the front-end then to the DBMS server is that you are automating tasks and saving the script of the task to be reused by the database again. As such you are putting in the time to create a script that can be potentially recycled throughout the DBMS. Also multiple application can access the same subprogram. Error handling is also built into the subprogram.

[image: image69.png]

4.2 Oracle PL/SQL
4.2.1
PL/SQL Program Structure, Control Statements, Cursors

PL/SQL Program structure

DECLARE
 TYPE / item / FUNCTION / PROCEDURE declarations

BEGIN
 Statements

EXCEPTION
 EXCEPTION handlers

END label;
Control Statements

LOOP;

IF;

END IF;

END LOOP;

Cursors

Cursor for loops automatically open a cursor, read in their data and close the cursor again.

4.2.2
Stored Procedure Definition and Syntax

A Stored procedure is a named PL/SQL block which performs one or more specific task. This is similar to a procedure in other programming languages. A procedure has a header and a body. The header consists of the name of the procedure and the parameters or variables passed to the procedure. The body consists or declaration section, execution section and exception section similar to a general PL/SQL Block.

CREATE [OR REPLACE] PROCEDURE proc_name [list of parameters]

IS

 Declaration section

BEGIN

 Execution section

EXCEPTION

 Exception section

END;

4.2.3
Stored Function Definition and Syntax

A function is a named PL/SQL Block which is similar to a procedure. The major difference between a procedure and a function is, a function must always return a value, but a procedure may or may not return a value.

CREATE [OR REPLACE] FUNCTION function_name [parameters]

RETURN return_datatype;

IS

Declaration_section

BEGIN

Execution_section

Return return_variable;

EXCEPTION

exception section

Return return_variable;

END;

4.2.4
Package Definition and Syntax

Packages are groups of conceptually linked functions, procedures, variables, PL/SQL table and record TYPE statements, constants, cursors etc. The use of packages promotes re-use of code. Packages are composed of the package specification and an optional package body. The specification is the interface to the application; it declares the types, variables, constants, exceptions, cursors, and subprograms available. The body fully defines cursors and subprograms, and so implements the spec.

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_body ...]

 [function_spec ...]

 [procedure_spec ...]

 [call_spec ...]

[BEGIN

 sequence_of_statements]

END [package_name];]

4.2.5
Trigger Definition and Syntax

Triggers are programs that execute in response to a specific action taken by the system.

The Syntax of a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

BEGIN

 --- sql statements

END;

[image: image70.png]

4.3 User Code
--Create the Phase-4 package...

drop package bbg_package;

CREATE PACKAGE bbg_package AS

PROCEDURE bbg_skeleton;

PROCEDURE po_avg_cost (n_records IN NUMBER, avg_cost OUT NUMBER);

FUNCTION po_highest_cost RETURN NUMBER;

PROCEDURE base_insert(

 i1 IN bbg_base.base_id%type,

 i2 IN bbg_base.branch_id%type,

 i3 IN bbg_base.base_type%type,

 i4 IN bbg_base.base_name%type,

 i5 IN bbg_base.city%type,

 i6 IN bbg_base.state%type);

PROCEDURE wo_log_delete(

 i1 IN bbg_wo_sdate_log.logno%type,

 i2 IN bbg_wo_sdate_log.wonum%type,

 i3 IN bbg_wo_sdate_log.eventdate%type,

 i4 IN bbg_wo_sdate_log.eventdate%type);

END bbg_package;

/
CREATE PACKAGE BODY bbg_package AS

PROCEDURE bbg_skeleton IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('this is bbg_skeleton talking!');

 NULL;

 END bbg_skeleton;

--

PROCEDURE po_avg_cost (n_records IN NUMBER, avg_cost OUT NUMBER) IS

 pcost bbg_purchase.cost%TYPE;

 tcost bbg_purchase.cost%TYPE;

 xcount NUMBER;

 --Get the largest costs first.

 CURSOR p IS SELECT cost FROM bbg_purchase ORDER BY cost DESC;

 BEGIN

 null;

 xcount := 0;

 OPEN p;

 LOOP

 FETCH p INTO pcost;

 IF (p%NOTFOUND) THEN EXIT; END IF;

 tcost := tcost + pcost;

 xcount := xcount + 1;

 IF (xcount >= n_records) THEN EXIT; END IF;

 END LOOP;

 CLOSE p;

 avg_cost := 0;

 IF (xcount != 0) THEN

 avg_cost := tcost / xcount;

 END IF;

 --

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR (-20010, SQLERRM, TRUE);

 END po_avg_cost;
PROCEDURE base_insert(

 i1 in bbg_base.base_id%type,

 i2 in bbg_base.branch_id%type,

 i3 in bbg_base.base_type%type,

 i4 in bbg_base.base_name%type,

 i5 in bbg_base.city%type,

 i6 in bbg_base.state%type)

 IS

 BEGIN

 INSERT INTO bbg_base (base_id, branch_id, base_type, base_name, city, state)

 values (i1, i2, i3, i4, i5, i6);

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR (-20010, SQLERRM, TRUE);

 END;
PROCEDURE wo_log_delete(

 i1 in bbg_wo_sdate_log.logno%type,

 i2 in bbg_wo_sdate_log.wonum%type,

 i3 in bbg_wo_sdate_log.eventdate%type,

 i4 in bbg_wo_sdate_log.eventdate%type)

 IS

 BEGIN

 null;

 IF i1 IS NOT NULL THEN

 DELETE FROM bbg_wo_sdate_log WHERE logno = i1;

 END IF;

 IF (i2 IS NOT NULL) THEN

 DELETE FROM bbg_wo_sdate_log WHERE wonum = i2;

 END IF;

 IF (i3 IS NOT NULL) THEN

 DELETE FROM bbg_wo_sdate_log WHERE eventdate >= i3 AND eventdate <= i4;

 END IF;

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR (-20010, SQLERRM, TRUE);

 END;

--

FUNCTION po_highest_cost RETURN NUMBER IS

 highest_cost NUMBER;

 --Get the largest costs first.

 CURSOR p IS SELECT cost FROM bbg_purchase ORDER BY cost DESC;

 BEGIN

 null;

 OPEN p;

 FETCH p INTO highest_cost;

 RETURN(highest_cost);

 --

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR (-20010, SQLERRM, TRUE);

 --

 END po_highest_cost;

END bbg_package;

/
[image: image71.png]

Phase 5 - Graphical User Interface
Notes:

Our database components can be found on the Delphi server at

Delphi.cs.csub.edu/BBG/

Components include:

1. create and insert SQL scripts

2. stored procedures for delete, insert, update

3. triggers and sequence creation

4. create-all and drop-all procedures

5.1 Graphical User Interface Design and Implementation

Description of User Groups
Implementation of our database application at Military Bases will include training for three user groups. Each user group will have access rights and privileges based on their own responsibilities and job duties.
Group 1:

Military officers and other personnel at the highest levels of the organization. Most of these users will reside at the Pentagon or other offices in Washington D.C. such as the Department of The Navy.

Daily Activities include:

1. Check for updates and exception reports generated by each Military Base.

2. Update any information when the following occurs:

a. A new Base is built in the U.S. or abroad.

b. A Base is shut down.

c. A new Base-type is designated.

3. View or print reports.

a. Electronic equipment purchases per Base.

b. New personnel hired at each base.

c. Unusual purchase and repair activity.

d. Bases exceeding their equipment budget.

Relations, views and subprograms related to the activities:

Relations

BBG_MIL_BRANCH

BBG_BASE

BBG_BASE_TYPE

BBG_TECH

Views

BBG_BASE_DISPLAY

Subprograms

BBG_PACKAGE

Group 2:

This group includes personnel residing at each individual base. The group will be made up of purchasing agents, maintenance managers and foremen, and other select individuals.

Daily Activities include:

1. Create Purchase orders for new electronic equipment.

2. Add Workorders to repair broken equipment.

3. Add new Technicians when they are hired.

4. Update any information when the following occurs:

a. A Purchase order arrives at the Base.

b. A Workorder begins or is completed.

c. A Technician is assigned to a Workorder.

d. A Technician starts or completes his/her work on a Workorder.

e. Equipment is moved.

5. View or print reports.

a. Purchase order status.

b. Workorder status and progress.

c. Equipment moves.

Relations, views and subprograms related to the activities:

Relations

BBG_ASSIGNED

BBG_DISPOSAL

BBG_EQUIPMENT

BBG_HIRES

BBG_LOCATION

BBG_LOCTYPE

BBG_PURCHASE

BBG_REPAIRS

BBG_TECH

BBG_WORKORDER

Views

BBG_COMPLETEDWO

Subprograms

BBG_PACKAGE.ASSIGNED_INSERT

BBG_PACKAGE.ASSIGNED_DELETE

All other insert, update, and delete stored procs.

Group 3:

This group is made up of Technicians and maintenance workers.

Daily Activities include:

1. Check for Workorders assigned to you.

2. Enter start date when your work begins.

3. Enter completion date when your work is complete.

Relations, views and subprograms related to the activities:

Relations

BBG_ASSIGNED

BBG_LOCATION

BBG_TECH

BBG_WORKORDER

[image: image72.png]

5.2 Screen Shot of Main User Interface

[image: image73.jpg]File Edit

Update

Help

View Table: [Equpment =

511
512
513
514
55

Lapiop
Gos
Computer
Computer

Server

e
116
0
2

118

100010
100050
100020
100040

100030

2a/20m
287201
28/20m
287201

127872011

50
100
m
)

900

[image: image74.png]

5.3 Major Steps in Designing a User Interface:

Gather information about functionality requirements

Consider the goals of the project

Analysis of the users

What does the user need the application to do?

Who are the potential users of the system?

User workflow

Technical savvy of the users

Look and feel that will be accepted by users

Information analysis

How much information is there?

How fast will it grow?

Who needs to see what?

Choose final development tools

Based on hardware available to the user

Based on needs gathered

Based on skills of development team

Prototyping

Interface shell lacking functionality

Feedback will guide development with least wasted time

Final design of the Graphic Interface

Based on information gathered

[image: image75.png]

5.4 Description of Major Classes in the Application

5.4.1 Database Connection and Grid Population:

Our connect functions are linked to actions such as button clicks and list drop-downs. When an event occurs, data is loaded from the Oracle tables with the following code:

//Open a connection to Oracle. This connection is based upon the main connect string that contains the Data Source, User ID, and the Password.

cnn.Open();

//Define the SQL command string.

sql = "select * from BBG_purchase";

//Setup a command object. Needed for communication with Oracle.
cmd = new OracleCommand(sql, cnn);

cmd.CommandType = CommandType.Text;

//Setup an Adapter object. An adapter object acts as a middle-man for the data exchange from Oracle to the application components.
aAdapter = new OracleDataAdapter(cmd);

//Setup a data set to receive and hold the data for viewing in the application.
dSet = new DataSet();

//Fill the data set object.

dAdapter.Fill(dSet);

//Populate the data grid from the data set. The data grid holds the data in a spreadsheet-like format for quick viewing and manipulation.
dataGrid.DataSource = dSet.Tables[0];

5.4.2 Call to Oracle Stored Procedure:

//The following code calls a stored procedure residing on the Oracle Server. The procedure will execute the procedure named Tech_delete that is defined in a package named Bbg_package. Many other stored procedures are also stored in the same package.

//Parameters may be passed. In this case the Tech_id is passed to the procedure which will delete the record for that technician.

//The ExecuteNonQuery() statement is telling us that no direct SQL query is being passed to Oracle, just a call to the stored procedure.

cnn = new OracleConnection(connString);

cnn.Open();

cmd = new OracleCommand("BBG_PACKAGE.TECH_DELETE", cnn);

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add("TECH_ID", OracleDbType.Long, 10).Value = this.tech_idtxt.Text;

cmd.ExecuteNonQuery();

5.4.3 Example of Stored Procedure…

-- This procedure deletes records from the Workorder log table.

-- If any of the input parameters are not null, then the

-- value is used as criteria to delete some records.

--

-- May delete log records by:

--

-- Log number - remove a single record.

-- Workorder number - remove all records associated with a particular Workorder.

-- Event date - remove all records between 2 dates (date created)

--

PROCEDURE wo_sdate_log_delete(
 i1 IN bbg_wo_sdate_log.logno%TYPE,

 i2 IN bbg_wo_sdate_log.wonum%TYPE,

 i3 IN bbg_wo_sdate_log.eventdate%TYPE,

 i4 IN bbg_wo_sdate_log.eventdate%TYPE)

 IS

 BEGIN

 IF i1 IS NOT NULL THEN
 DELETE FROM bbg_wo_sdate_log
 WHERE logno = i1;

 END IF;

 IF (i2 IS NOT NULL) THEN
 DELETE FROM bbg_wo_sdate_log
 WHERE wonum = i2;

 END IF;

 IF (i3 IS NOT NULL) THEN
 DELETE FROM bbg_wo_sdate_log
 WHERE eventdate >= i3
 AND eventdate <= i4;

 END IF;

 EXCEPTION

 WHEN OTHERS THEN

 RAISE_APPLICATION_ERROR (-20010, SQLERRM, TRUE);

 END;

5.4.4 Example of Triggers…

-- The trigger will record when the start-date of a workorder is changed.

-- The trigger is fired only after the update is committed.

-- We only want to know if a start-date is changed, not created.

CREATE or REPLACE TRIGGER wo_after_upd_row
AFTER UPDATE OF sdate ON bbg_workorder
FOR EACH ROW
BEGIN
 INSERT INTO bbg_wo_sdate_log VALUES(

 wo_sdate_log_sequence.nextval,

 sysdate,

 :old.wonum,

 :old.sdate,

 :new.sdate);

END;

Set the start-date of a Workorder, when a technician is assigned and begins work.. The start-date will be set only once, and if changed, the trigger above will enter a log record.

CREATE or REPLACE TRIGGER wo_set_sdate

AFTER UPDATE OF sdate ON bbg_assigned

FOR EACH ROW

BEGIN

UPDATE bbg_workorder

SET bbg_workorder.sdate = :new.sdate

WHERE bbg_workorder.wonum = :old.wonum

AND bbg_workorder.sdate IS NULL;

END;
5.4.5 Example of Several Sequencers…

This sequence starts at 2010 and increments by 10 for each new Technician hired at the Base.

Technicians will have Badge Numbers of 2010, 2020, 2030, etc.

-- ID numbers for Technicians.

CREATE SEQUENCE tech_id_sequence

START WITH 2010

INCREMENT BY 10

CACHE 3;

This sequence starts at 100001 and increments by 1 for each new Purchase Order created.

Purchase Order numbers will be 100001, 100002, 100003, etc.

-- Purchase order numbers.

CREATE SEQUENCE purchase_id_sequence

START WITH 100001

INCREMENT BY 1

CACHE 3;

[image: image76.png]

5.5 Major Features of Our GUI Program:

1. Quick and easy to use. The data pops up within seconds of opening the application window.

2. Select table from list

a. Any table may be selected.

b. Insert, update, delete functionality for specific table is presented.

c. Choices are presented in drop-down list box.

3. Display records in any table with the connect button.

a. Records are presented in sequence by Primary Key.

b. Data may be modified, inserted, or browsed.

[image: image77.png]

5.6 Learning a New Development Tool and Language

When we started this project, our team of three people had not ever written any code in C#. To start out, we downloaded the Microsoft Visual Studio Express Edition of C#, and then looked at an existing project provided by the instructor. Because of having no experience, it was quite daunting.

After spending some time gaining familiarity with the language, we decided to write our own small application from scratch. This proved to be a good decision, and soon enough we were making a connection to Oracle and looking at our very own data set on the screen. There is some information to be found on the internet about how to setup simple applications, but it always comes down to hard work and focus on the task to get an application up and running.

This effort was not without struggle to figure out which Oracle components to use with which version of MS C#, and on which version of Windows. The effort paid off with an application that works nicely to complete many functions.

We reached our goal for the time given on this project and wish we had more time to add more and more functionality to the forms. Building a database application can turn into a never-ending task, though, so we are satisfied with our achievement at this time.

[image: image78.png]

5.7 Database Application Development Steps

5.7.1 Identify the Objectives

Good application design starts with knowing what your final outcome should be. Discussion with the users can help in this step, but their input must be accompanied by the expertise of database and software development experts. End user desires can sometimes be unrealistic or require engineering beyond the budget or planned capabilities of the current system in place. A well-rounded team of client representatives will help in compiling a clear objective as the project begins. The documentation should also begin at this stage.

5.7.2 Database Model and Normalization
A new database application will normally require new data components to be created such as relations and relationship constraints. Careful analysis at this point will lead to a better final outcome. Performance and storage space should be considered. Data normalization may be traded for simplicity and speed in some cases. A smart analysis is important here. Whenever possible, server-side components, such as triggers and stored procedures, should be used for efficiency, consistency and reliability.

5.7.3 User Interface Design

A new application might require a similar look and feel to applications already in place in a company. Design and interface tools should be chosen with that in mind. Prototypes and sample screen can be presented to the client for approval and detailed functionality input. Visual demonstrations will help the client see and understand the progress being made and how the components will work together. As approvals are made, the components can be entered into the documentation, and the project can continue quickly.

5.7.4 System Testing

A set of testing criteria is established with the help of user groups. Alpha testing a beta testing are done. Some parallel operation can be done if an existing system is being replaced, and it is physically possible and suits the desires of the client. Any parallel operation should be kept to a minimum. A testing team can consist of users, developers, and professional software testers.

5.7.5 Implementation and Training Plan

When development is complete and the system is implemented, the work is not necessarily done. An ongoing training program should be considered. This is critical especially if there will be future projects with this same client. Establishing ongoing support and application enhancement can lead to many other successful project implementations.

5.7.6 Backup and Recovery Plans

Along with any significant application development should be a plan for backup and recovery of data in case of a disaster of some sort.

5.7.7 Experience

Each database application project will add experience to a developer’s resume, but this is no time to relax. Constant changes in technology and development tools require an attitude and mindset of constant learning. Each new project will lead to the next project being even better. The place to start is with a solid foundation of tools, technology, and methodologies available.

