Textbook Rentals: Rentals and Returns

Stephanie Ramirez

CS 342 Databases

Professor Huaquin Wang

November 2010

Table of Contents

PHASE I

Page

Fact-Finding Techniques and Information Gathering

Fact-Finding Techniques

3

Introduction to Organization/Business

4

Structure of Enterprise

4

Itemized Description

5

Data Views and operations for User Groups

5

Conceptual Database Description

Entity Set Description

6

Relationship Set Description

11

Related Entity Set

12

E-R Diagram

13

PHASE II

ER Model and Relational Model

Description

14

Comparison

14

Conversion from E-R Model to Relational Model

14

Constraints

16

Convert the E-R database into a relational database

17

Relation Instances

23

Queries

28

Query Representation

39

PHASE III

Implementation of Relational Database

SQL*PLUS

31

Schema Objects in Oracle DBMS

31

Schema Objects in this Project

34

SQL Queries

43

Data Loading

48

PHASE IV
Oracle Database Management System PL/SQL Component

Common Features in Oracle PL/SQL and MS Trans-SQL

49

Oracle
PL/SQL

49

Oracle PL/SQL Subprogram

Stored Procedure

53

Stored Function

54

Trigger

55

Phase V

Graphics User Interface Design and Implementation

Daily User Activities

57
Relations, Views, and Subprograms

57

Application Screen Shots and Descriptions

58

Code Description

65

Designing and Implementing the Application

69

Phase I: Information Gathering and E-R Modeling I

1. Fact-Finding Techniques and Information Gathering

1 .1 Description of Fact-Finding techniques

Fact-finding is the formal process of using techniques such as examining documentation, interviewing, observing the enterprise/business in operation, research, and questionnaires to collect facts about systems, requirements, and preferences.

1.1.1 Examining Documentation

Examining documentation can be helpful when trying to gain some knowledge as to the need for a database. Sources such as employee/customer complaints, internal e-mails, and memos can help to describe the problem and need for a database. Organizational charts, mission statements, and strategy plans of the enterprise/business can help find the part of the enterprise/business affected by the problem. Sources that describe the current database system can be found in a database system design, user manuals, and program documentation. Examining these documents allows a person to prepare for interviewing.

1.1.2 Interviewing

Conducting interviews is the most commonly used and often useful technique. In an interview information is collected face-to-face. Interviews are time-consuming and costly but are an excellent source of qualitative information. Many objectives can be obtained by the interview such as finding, verifying, and clarifying facts, identifying requirements, and getting the end-user involved. There are two types of interviews structured and unstructured. The latter frequently loses focus and often does not work well for database analysis and design. Structured interviews consist of a specific set of questions where the interviewer will add questions for clarity or to expand upon.

1.1.3 Observing the enterprise/business in operation

Observing the enterprise/business provides first hand information about how activities are carried out. Observation allows for the following of movement throughout the organization where the observer can see exactly what is being done. This method of fact-finding is inexpensive and can allow the observer to do work measurements. Observation is a bit time consuming and employees may be more productive knowing that they are being observed.

1.1.4 Research
Researching the problem and application can be useful in fact-finding. Information can be found in sources such as computer trade journals, reference books, and even the internet. They can provide information on how others may have solved similar problems and whether or not software already exists to solve the problem in which this would save some time. Research is also a good way to keep up to date with current developments, however there is no guarantee that the researcher will solve the problem using research because the problem may not be documented in any source.

1.1.5 Questionnaires
Questionnaires are a research instrument that can be applies to fact-finding in system development projects. They are special-purpose documents that allow for facts to be gathered from a large number of people but at the same time maintaining control over their responses. Two types of questions can be found in a questionnaire, free-format and fixed-format. Free-format gives the respondent an open end in providing answers whereas fixed-format questions require specific responses from individuals where the respondent may only choose from the available answers.

1.2 Introduction to Enterprise/Organization

People are always looking for convenience and ways to save money especially in our current economy. Students especially are constantly seeking ways to save money. Instead of spending hundreds of dollars buying books each quarter or semester a logical alternative is textbook rentals. For the purpose of our database project I have named the business Rent-a-Text. Rent-a-Text is convenient in that the student can rent and receive their textbooks the same day, no waiting days as with online textbook rentals. Rent-a-Text is more or less run in the same manner as a library except that only college textbooks are available. Students have pricing options to rent for either a semester or a quarter with the additional option for extending a rental.

1.3 Structure of the Enterprise

Rent-a-Text is made up of employees that conduct its daily business. Positions within the company include Customer Service Manager, who is in charge of researching surrounding schools for their textbook use and purchasing books to be rented from publishers. The manager is also in charge of customer service associates. Another position is the customer service associate who is responsible for creating accounts for customers and checking out and in rentals.

· Customer Service Manager purchases books that are in demand on surrounding college campuses.

· Customers/students browse facility for the textbooks of their choice.

· Customers/students proceed to check out/check in counter where they either provide their rental card or fill out a new customer form.

· Customer service associates check out or check in books and take payments.

· Customer/student leaves with checked-out materials.

1.4 Itemized Descriptions

The entity CUSTOMER is used to hold information about the customer including an assigned account number. EMPLOYEE is an entity where information is held about the employees of the company. BOOKS and COPY_NUMBER hold inventory for books available for rental. RENTAL holds rental information including price and payment information.

1.5 Data Views and Operations for User Groups

Employees of the company are the only ones that the database will be available to. The database is used to complete rentals to customers and keep track of which books are available and need to be ordered. Employee operations include: add customers, Book rental order, and Book return. In Book rental order customer can add books. The Purchaser is responsible for seeking out materials for the company and buying the items needed. Inventory clerks are responsible for keeping inventory of textbooks and company materials.

2. Conceptual Database Design

2.1 Entity Set Description

2.1.1 Entity EMPLOYEE

Name: EMPLOYEE

Description: Entity EMPLOYEE holds all personal information about a given employee

[image: image1.jpg]Customer / Rer

Man | Rental Customer Boaks

[image: image2.jpg]55 Customer / Rental Database Manager

Mair [Rental | Customer _Books

Rental Manager

addRertal
Edit] Delote Rental :

[image: image3.jpg]tal Managem:

nt

View Rertal Infamatiar:

RENTAL_NUMBEF START_DATE

‘ACCOUNT_NUME_ CREDIT_CARD

- oaTs0s..|
O T

o5
55 swams o seampaszanns
o5 s o seamnazosasze

Rertal Inchudes

RENTAL_NUMBEF RETURN_DATE ISBN_NUMBER _ SEFIAL_NUMBER

E3

Retal Detak:

s e [am

[edtpena
» 8/2472008 m [123a123012801
= Iz tossesrereio, (" eavosme
I Tararz0n s ieaieaise
£ |3/mr2009 1o | 74asmB2798272. [Uptae
o awams 10 7e51dsszmmens
£ O) 7050473

‘ACCOUNT_NUME

NANE RENTAL_NUMBEF 1SBN_NUMBER _ TITLE

&

Warten Black. 843 | 9780435011606 | Caloulus

[image: image4.jpg]B Add Rental

RENTAL NUMBEF:
START DATE
ADCOUNT NUMBER:

CREDIT CARD.

Add/ Edi/ Delete Books Close

[image: image5.jpg]EBl Add Edit Delete Books in Rental

TR

o2z | b M% X i

RENTAL NUMEER,
RETURN DATE
15BN NUMEEF:
SERIAL NUMEEF:

11,
970073130761

[image: image6.jpg]£} Customer / Rental Database ¥

Man Rental

‘ACCoU|

Customer

Add Customer
Edt] Delete Customer

Books

[image: image7.jpg][Add Customer
o]

ACCOUNT NUMBER:

NAME!

ADDRESS:

ary:

STATE

Pl

TELEPHONE:

SCHOOL:

[image: image8.jpg]£E| Customer / Rent

Database Man

Man Rental Customer | Books

View Inventory
T —_—————— L —

[image: image9.jpg][Book Database BEx

1SEN_NUMBER TITLE AUITHOR_NAME__EDITION PUBLISHER | QUANTITY RETAL PRICE]~
> Princiles of Mir... | N. Gregory Markin |5 SouthWesten P 10 180

781423215978 | Peychology David G Myers |9 Worth Pub 7 1210

7B0ISETIZERT | Qiganic Chemisyy | JohnE. Mebury |7 Brooks/Cok Pub. | 2.3

B0077274337 | Bikogy Sybias. Mader |10 MeGrawHil |5 197.75

NN |LinguihAt | MakGelen |8 MeGrawHil |9 1375

7A0ISE0NIG0E | Calculus James Stewart |6 Brooks/Cok Pub.. |6 2%

9780132329033 | Algebra and Trg... | Michael Sulivan |8 PreniceHal |10 188

9780321520034 | Computer Scienc..|J. Glern Brooksh.. | 10 addison Wesky |6 109

TB0I3B053064 | JavaHowloPro.. | HaveyDetel |8 PreniceHal |8 1230 v

[image: image10.jpg]8 Customer / Rental Database Manager

12/3/2009

| 3780073190761

o

TACCOUNT_NUME HANE ADDRESS Cing STATE ZP TELEPHONE | SCHOOL

O o [T e e Jsaart Jesreeemso [csus
e Usoares | s530ngetve Bakeriold 4 JeeimEn | csue
i3 [Sus Fomero | 7158aIRd|Baketiold | cA s csue
104 [BobbyDisz |e25AlenSt |Bakersfiod | CA I
105 [calos v |7824ReslRd |Bakenild |CA | 33304 eeimsant (B
e [LeeMconskt | Z13NewStne St Bakesield A s E
o7 lmSmih |84 MomingDr | Bakentid |04 EEH ez ot
108 [RobenSmitr | 45FartasSt | Bakersfiod | CA s3303 eeimEsEus | Kapln

i Gutore | [_Eot/pdes | [Rt Tabe

of Cusomer: Infomation About Rentt
E— RENTAL_NUMBE! RETURN_DATE | [SBN_NUWGER | SEFIAL_NUMBER

[image: image11.jpg]L. SR_CUSTOMER_RENTAL

& o SRLRENTAL T, SR_INCLUDES

ACCOUNT_NUMBER. 7 RENTAL_NUMBER. RENTAL_NUMBER
NAME START_DATE RETURN DATE
RENTAL NUMEER ACCOUNT_NLMEER 198 _NUMBER.
198N _NUMEER. CREDIT_CARD SERIAL NUMBER.

AL ‘@ SR_RENTALTableadapter
‘6 SR_CUSTOMER_RENTALTable/] 5

Fi GetData ()

Fi GetData () 2 Filey

. SR_CUSTOMER

7 ACCOUNT_NUMBER
NAME
7 1S8N_NUMBER. ADDRESS
TIme ary
AUTHOR_NAVE STATE

EDITION 2w

PLELISHER TELEPHONE
QuAnTITY scHooL

RETAIL PRICE '8 SR_CUSTOMERTableadapter (5]

' SR_BOOKTablendapter (] o et
Fi GetData)

 Candidate keys: ID_number

 Primary keys: ID_number

Strong/Weak Identity: Strong

Fields to be indexed: None

2.1.2 Entity CUSTOMER

Name: CUSTOMR

Description: Holds personal information about customer needed to make

a rental agreement for books.

Candidate keys: Account_number

Primary keys: Account_number

Weak/Strong Identity: Strong

Fields to be indexed: Account_number

2.1.3 Entity BOOKS

Name: BOOKS

Description: Inventory of books available to rent.

Candidate keys: ISBN_number

Primary keys: ISBN_number

Weak/Strong Entity: Strong

Indexed Fields: ISBN_number

2.1.4 Entity COPY_NUMBER

Name: COPY_NUMBER

Description: Holds copy number of book by ISBN number.

Candidate key: ISBN_number

Primary key: ISBN_number

Weak/Strong Entity: Strong

Indexed Fields: Serial_number

2.1.5 Entity RENTAL

Name: RENTAL

Description: Holds all information for rental of books to customer.

Candidate keys: Rental_number, Account_number, ISBN_number

Primary keys: Rental_number

Weak/Strong Entity: Weak

Indexed Fields: Rental_number, Date

2.2 Relationship Set Description

	Name
	RENTS

	Description
	A rental is completed by the employee.

	Entity Sets
	RENTAL; EMPLOYEE

	Mapping Card
	1:M

	Part. Constraint
	Partial Participation

	Name
	Created_By

	Description
	Employee adds new customers when needed.

	Entity Sets
	CUSTOMER; EMPLOYEE

	Mapping Card
	1:M

	Part. Constraint
	Partial Participation

	Name
	RENTS

	Description
	Customer chooses books that they would like to rent

	Entity Sets
	BOOKS; CUSTOMER

	Mapping Card
	1:M

	Part. Constraint
	Total Participation

	Name
	RETURN

	Description
	Return books from RENTAL and price charged.

	Entity Sets
	EMPLOYEE;RENTAL

	Mapping Card
	1:M

	Part. Constraint
	Total Participation

	Name
	Includes

	Description
	BOOKS is included in RENT

	Entity Sets
	RENT; BOOKS; COPY_NUMBER

	Mapping Card
	M:1

	Part. Constraint
	Total Participation

2.3 Related Entity Set

2.3.1 Specialization / Generalization Relationships

Specialization is the process of classifying a class of objects into more specialized subclasses while generalization is the inverse process of generalizing several classes into a higher-level abstract class that includes the objects in all these classes. There are two constraints that apply to specialization:

1. Disjointness constraint which means that an entity can be a member of at most one of the subclasses of the specialization.

2. Participation constraint which specifies whether the existence of an entity depends on its being related to another entity via the relationship type.

2.3.2 Aggregation
Aggregation is a relationship between a whole object and its component parts. Since relationships among relationships are not allowed we come up with the concept of a composite object. In a composite object a higher-level aggregate class is created and has a relationship with another class.

2.4 E-R Diagram

 Completes 1:M

 Returns 1:1

 Created_By M:1 Rents 1:M

 Includes M:1

Phase II: Relational vs. E-R Modeling

1. E-R Model and Relational Model

1.1 Description of Relational Model

The relational model was first formulated and proposed in 1970 by E.F. Codd. The database model uses the concept of mathematical relation and has its theoretical basis in set theory and first-order predicate logic.. The relational model structures the logical view of data around two mathematical constructs: domains and relation. There are a few major features of the relational model which include relations, operators, and constraints. The purpose of the relational model is to provide a declarative method for specifying data and queries: we directly state what information the database contains and what information we want from it, and let the database management system software take care of describing data structures for storing the data and retrieval procedures for getting queries answered.

1.2 Comparison of Entity-Relational Model to Relational Model

The Entity-Relationship or, ER, Model is a high-level conceptual data model. This model is frequently used for the conceptual design of database applications. During conceptual design descriptions of entity types, relationships and constraints are expressed. These concepts do not include implementation details and are therefore easier to understand. The Entity-Relationship Model is more than anything a visual of the database to be and since it is visual it makes it the best choice when communicating with nontechnical users.

The Relational Model is simple and based on a mathematical foundation. The relation is looked at as a value of tables where the table is the relationship, a row is a tuple, and a column header is called an attribute, and the data type describing the values that can appear in each column is represented by a domain of possible values. The data is operated on by using relational algebra or relational calculus. The Relational model does not have the visual advantages that the Entity-Relational Model carries but it allows database developers a better look at what the implemented database will look like.

1.3 Conversion of E-R Model to Relational Model

In order to create a Relational Model a conceptual model, Entity-Relational Model, must first be made then converted over into a Relational Model. We can do this by using a seven-step algorithm that converts the basic ER model constructs into relations.

Step 1: Mapping of Regular Entity Types

 For each regular (strong) entity type in the ER model create a base relation with a column for each simple attribute of that entity. The key attribute for the entity becomes the primary key. If multiple keys were identified in the ER model the information describing the attributes that form each additional key is kept in order to specify secondary keys of the relation.

Step 2: Mapping of Weak Entity Types

For each weak entity type create a relation that consists of all the simple attributes of that entity and also include columns for the primary keys of those entities on whose existence it is dependent. The primary key is the combination of the primary key or keys of the owner and the partial key of the weak entity type. If there is a week entity type whose owner is also a weak entity type then the owner should be mapped first to determine the primary key first.

Step 3: Mapping 1:1 Relationship Types

For each 1:1 relationship type in the ER schema identify the relations S and T that correspond to the entity types participating in R. There are three possible ways to approach this:

1. Foreign Key: choose a relation and include as a foreign key in S the primary key
of T. Include all the simple attributes of the 1:1 relationship type R as attributes
of S.

2. Merged Relation: merging two entity types and the relationship into a single
relation.

3. Cross-Reference or Relationship relation: set up a third relation R for the
purpose of cross-referencing the primary keys of the two relations S and
representing the entity types.

Step 4: Mapping of 1:N Relationship Types

When two entities participate in a one-to-many relationship the relation representing the entity with the N (many) cardinality must have a foreign key column representing this relationship. Include any simple attributes or simple components of composite attribute of the 1:N relationship type as attributes of S.

Step 5: Mapping of M:N Relationship Types

For each M:N relationship type R create a new relation S to represent R. Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types. These combined will form the primary key of S. Include any simple attributes or simple components of composite attribute of the M:N relationship type as attributes of S.

Step 6: Mapping of Multivalued Attributes

For each multivalued attribute A, create a new relation R. This relation will include an attribute corresponding to A, plus the primary key attribute K as a foreign key in R of the relation that represents the entity type or relationship type that has A as an attribute. The primary key of R is the combination of A and K. If the multivalued attribute is a composite include the simple components.

Step 7: Mapping of N-ary Relationship Types

When more than two entities participate in a relationship, then a relation must be created consisting of foreign keys to those relations representing the entities participating in the relationship. Include any simple attributes or simple components of composite attribute of the n-ary relationship type as attributes of S.

1.4 Constraints

There are many constraints or restrictions on the actual values in a database state these constraints are derived from the rules in the miniworld that the database represents. The entity integrity constraint states that the primary key value can never be NULL. The primary key cannot be NULL because it is used to identify individual tuples in a relation, if there were NULL values for the primary key it would imply that we cannot identify some tuples. The referential integrity constraint is specified between two relations and is used to maintain the consistency among tuples in the two relations, that is, that a tuple in one relation that refers to another relation must refer to an existing tuple in the relation. To further understand the referential integrity constraint we must define a foreign key constraint. A set of attributes FK in a relation schema R1 is a foreign key of R1 that references relation R2 if it has the same domains as the primary key and if a value of FK in a tuple t1 either has a value of PK or is NULL. The business rule must depend on an application program to express and enforce constraints that cannot be expressed in schemas of the data model.

2. Convert the E-R Database into a Relational Database

2.1 Employee Relation

Attributes:

· ID_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Name

· Domain: varchar. Multivalued attribute. LName , FName. Cannot be NULL.

· Address

· Domain varchar. Contains numbers and characters. Cannot be NULL.

· City

· Domain: varchar. Characters cannot exceed 30 characters. Cannot be NULL.

· State

· Domain: Varchar. Cannot exceed 2 characters. Cannot be NULL.

· Zip

· Domain: unsigned integer. Range from {00000-99999}. Cannot be NULL.

· Telephone

· Domain: unsigned integer. Can be NULL.

· Position

· Domain: varchar. Cannot exceed 30 characters. Cannot be NULL

Constraints:

Primary Key: ID_number acts as the primary key value must be unique and cannot be NULL.

Candidate Key: ID_number.

2.2 Customer Relation

Attributes:

· Account_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Name

· Domain: varchar. Multivalued attribute. LName , FName. Cannot be NULL.

· Address

· Domain varchar. Contains numbers and characters. Cannot be NULL.

· City

· Domain: varchar. Characters cannot exceed 30 characters. Cannot be NULL.

· State

· Domain: Varchar. Cannot exceed 2 characters. Cannot be NULL.

· Zip

· Domain: unsigned integer. Range from {00000-99999}. Cannot be NULL.

· Telephone

· Domain: unsigned integer. Can be NULL.

· School

· Domain: varchar. Cannot exceed 30 characters. Can be NULL.

Constraints:

Primary Key: Account_number acts as the primary key value must be unique and cannot be NULL.

Candidate Key: Account_number.

2.3 Rental Relation

Attributes

· Rental_number

· Domain: unsigned integer from 1 to 2^32. Cannot be NULL.

· Start_Date

· Domain: valid DateTime. Cannot be NULL.

· Account_number

· Domain: unsigned integer. Value corresponds to an account number from the customer relation. Every rental must be made by a customer so this relationship is an attribute in the Rental relation.

· Credit_card

· Domain: varchar. Must not exceed 30 characters. Card number and expiration date required. Cannot be NULL.

· ReturnDate

· Domain: Date. Cannot be NULL.

Constraints:

Primary Key: Rental_number acts as the primary key value must be unique and cannot be NULL.

Foreign Key: Account_number, ISBN_number, and Serial_number must have values that exist as a primary key in their respective relations.

Candidate Key: Rental_number.

2.4 Book Relation

Attributes:

· ISBN_number

· Domain: varchar. Characters not to exceed 13 and must be unique. Cannot be NULL.

· Title

· Domain: varchar. Characters not to exceed 128. Cannot be NULL.

· Author

· Domain: varchar. Multivalued attribute. LName , FName. Cannot be NULL.

· Edition

· Domain: unsigned integer. Range from {1 – 100}. Can be NULL.

· Publisher

· Domain: varchar. Characters cannot exceed 128. Cannot be NULL.

· Quantity

· Domain: unsigned integer. Range from {1 – 25000}. Cannot be NULL.

· Retail_Price

· Domain: Currency. Must not be NULL.

Constraints:

Primary Key: ISBN_number acts as the primary key, value must be unique and cannot be NULL

Candidate Key: ISBN_number.

2.5 Book_Return Relation

Attributes:

· Return_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Rental_number

· Domain: unsigned integer. Value corresponds to an Rental number from the Rental relation. Every return must be from a previous rental so this relationship is an attribute in the Book_Return relation.

· Return_Date

· Domain: Date. Actual date of return. Cannot be NULL.

Constraints:

Primary Key: Return_number acts as primary key, value must be unique and cannot be NULL.

Foreign Key: Rental_number must have values that exist as a primary key in the Rental relation.

Candidate Key:

None

2.6 Rents Relation

Attributes

· ID_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Rental_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

Constraints:

Foreign Key: ID_number and Rental_number must be primary values in their respective relations.

Candidate Key:

None

2.7 Created_By Relation

Attributes:

· ID_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Account_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

Constraints:

Foreign Key: ID_number and Account_number must be primary values in their respective relations.

Candidate Key:

None

2.8 Completes Relation

Attributes:

· ID_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Return_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

Constraints:

Foreign Key: ID_number and Return_number must be primary values in their respective relations.

Candidate Key:

None

2.9 Returns Relation

Attrributes:

· Return_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Rental_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· Price

· Domain: Currency. Price to rent specific book. Cannot be NULL.

Constraints:

Foreign Key: Return_number and Rental_number must be primary values in their respective relations.

Candidate Key:

None

2.10 Includes Relation

Attributes:

· Rental_number

· Domain: unsigned integer 1 – 2^32. Cannot be NULL.

· ISBN_number

· Domain: varchar. Value corresponds to an ISBN number from the Book relation. Every book must contain a serial number so this relationship is an attribute in the Copy_Number relation.

· Serial_number

· Domain: unsigned integer. Value range from {00001- 25000}. Cannot be NULL. Must be unique.

· End_Date

· Domain: Date. Cannot be NULL.

Constraints:

Primary Key: None. However Rental_number and ISBN_number makeup a unique key.

Foreign Key:

Candidate Key:

3. Relational Instances

Employee (ID_number, Name: Lname, FName, Address, City, State, Zip, Telephone, Position)

	ID_number
	Name
	Address
	City
	State
	Zip
	Telephone
	Position

	1
	Martinez, Sara
	151 Olive Dr
	Bakersfield
	CA
	93312
	6614441174
	Customer Service

	2
	Baker, Ryan
	2579 Patty Ln
	Bakersfield
	CA
	93312
	6615825488
	Customer Service

	3
	Lee, Chris
	789 Sea Shore Dr
	Bakersfield
	CA
	93301
	6615557896
	Purchaser

	4
	Jones, Ana
	7126 Cosbey Ave
	Bakersfield
	CA
	93307
	6615557825
	Inventory

	5
	Perez, Michelle
	279 Yankton Ct
	Bakersfield
	CA
	93301
	6615552585
	Customer Service

	6
	Doe, John
	2892 Black St
	Bakersfield
	CA
	93305
	6615557913
	Owner

	7
	Doe, Jane
	2892 Black St
	Bakersfield
	CA
	93305
	6615557913
	Owner

	8
	Ortiz, Samantha
	892 Desert Ln
	Bakersfield
	CA
	93303
	6615551289
	Inventory

	9
	Cook, Roy
	7921 Moon Dr
	Bakersfield
	CA
	93311
	6615558528
	Customer Service

	10
	Ramos, Anthony
	385 Troy Ave
	Bakersfield
	CA
	93303
	6615552044
	Customer Service

Customer (Account_number, Name, Address, City, State, Zip, Telephone, School)

	Account_number
	Name
	Address
	City
	State
	Zip
	Telephone
	School

	101
	Corona, Rita
	548 Waterman st
	Bakersfield
	CA
	93311
	6615557850
	CSUB

	102
	Barnes, Lisa
	693 Orange Ave
	Bakersfield
	CA
	93302
	6615552001
	CSUB

	103
	Romero, Sara
	715 Ball Rd
	Bakersfield
	CA
	93302
	6615557804
	CSUB

	104
	Diaz, Bobby
	825 Allen St
	Bakersfield
	CA
	93312
	6615550302
	BC

	105
	Silva, Carlos
	7824 Real Rd
	Bakersfield
	CA
	93304
	6615552871
	BC

	106
	McDonald, Lee
	213 new stine
	Bakersfield
	CA
	93307
	6615559058
	Kaplan

	107
	Smith, John
	894 Morning Dr
	Bakersfield
	CA
	93311
	6615557904
	BC

	108
	Smith, Robert
	345 Fairfax st
	Bakersfield
	CA
	93303
	6615555054
	Kaplan

	109
	Ross, Jean
	7952 17th st
	Bakersfield
	CA
	93305
	6615558004
	San Joaquin

	110
	Ware, Martin
	285 F st
	Bakersfield
	CA
	93301
	6615558880
	CSUB

Created_By (ID_number, Account_number)

	ID_number
	Account_number

	1
	101

	1
	105

	1
	110

	2
	102

	5
	107

	5
	104

	9
	109

	9
	103

	9
	106

	10
	108

Book (ISBN_number, Title, Author, Edition, Publisher, Quantity, Retail_Price)

	ISBN_number
	Title
	Author
	Edition
	Publisher
	Quantity
	Retail_Price

	9780324589986
	Principles of Microeconomics
	N. Gregory Mankiw
	5
	South-Western Pub
	10
	172.95

	9781429215978
	Psychology
	David G. Myers
	9
	Worth Pub
	7
	132.10

	9780495112587
	Organic Chemistry
	John E. McMurry
	7
	Brooks/Cole Pub Co
	8
	297.95

	9780077274337
	Biology
	Sylvia S. Mader
	10
	McGraw-Hill
	5
	197.75

	9780073190761
	Living With Art
	Mark Getlein
	8
	McGraw-Hill
	9
	137.75

	9780495011606
	Calculus
	James Stewart
	6
	Brooks/Cole Pub Co
	6
	224.95

	9780132329033
	Algebra and Trigonometry
	Michael Sullivan
	8
	Prentice Hall
	10
	168.00

	9780321524034
	Computer Science: An Overview
	J. Glenn Brookshear
	10
	Addison Wesley
	6
	109.00

	9780136053064
	Java How to Program
	Harvey Deitel
	8
	Prentice Hall
	8
	122.00

	9780136117261
	C++ How to Program
	Harvey Deitel
	7
	Prentice Hall
	8
	123.00

Rental (Rental_number, Start_Date, Account_number,Credit_card)

	Rental_number
	Date
	Account_number
	Credit_card

	850
	9/8/2009
	101
	1088697874187925 02/12

	851
	9/8/2009
	105
	1578478947152584 09/11

	852
	9/8/2009
	103
	7489582798272895 10/12

	853
	9/8/2009
	108
	7851469285608574 03/10

	854
	9/9/2009
	109
	2859047050479852

03/10

	855
	9/9/2009
	101
	9632587412589874

04/11

	856
	9/10/2009
	105
	9635689237419852

10/10

	857
	9/10/2009
	104
	9687147858528749

03/12

	858
	9/10/2009
	107
	9687489352071001

05/10

	859
	9/10/2009
	106
	5800147041478936

02/12

Includes (ISBN_number, Rental_number, Serial_number, End_Date)

	Rental_number
	ISBN_number
	Serial_number
	End_Date

	850
	9780321524034
	002
	12/08/09

	850
	9780136053064
	001
	12/08/09

	851
	9780321524034
	003
	12/08/09

	851
	9780495112587
	001
	12/08/09

	852
	9780324589986
	009
	12/08/09

	852
	9781429215978
	003
	12/08/09

	853
	9780321524034
	004
	12/08/09

	854
	9780495112587
	002
	12/09/09

	855
	9780073190761
	001
	12/09/09

	856
	9780073190761
	002
	12/10/09

	857
	9780321524034
	005
	12/10/09

	858
	9780495112587
	003
	12/10/09

	859
	9780495112587
	004
	12/10/09

	859
	9780132329033
	001
	12/10/09

Rents (ID_number, Rental_number)

	ID_number
	Rental_number

	1
	856

	1
	855

	1
	860

	1
	865

	1
	867

	2
	879

	2
	587

	2
	259

	5
	516

	5
	547

	5
	368

	5
	258

	9
	355

	9
	233

	9
	302

	9
	125

	10
	100

	10
	697

	10
	540

Book_Return (Return_number, Rental_number, Return_Date, Amount_Charged)

Completes (ID_number, Return_number)

	ID_number
	Return_number

	1
	7895

	1
	7896

	1
	7910

	1
	7913

	2
	7911

	2
	7912

	2
	7897

	2
	7908

	2
	7909

	2
	7898

	5
	7906

	5
	7907

	5
	7904

	9
	7905

	9
	7903

	9
	7899

	10
	7901

	10
	7902

	10
	7900

Returns (Return_number, Rental_number)

	Return_number
	Rental_number

	7895
	256

	7896
	266

	7897
	282

	7898
	252

	7899
	258

	7900
	217

	7901
	205

	7902
	250

	7903
	283

	7904
	216

	7905
	295

	7906
	198

	7907
	263

	7908
	234

	7909
	235

	7910
	273

	7911
	189

	7912
	244

	7913
	249

4: Queries

· Select Books with more than 5 quantity

· Select Customers that attend CSUB

· Select Customer who rented books in September

· Select Customers that have rented books with a retail price above $200.00

· Select books that retail under $100.00

· Select 2 or more books from the same publisher

· Select Customers that have rented more than twice

· Select Customers that have only rented once

5.
Query Representation

Select Books with more than 5 quantity

Relational Algebra

 Π title(σ (book))quantity > 5

Tuple Relational calculus:

{ title | book (b) ^ b.quantity > 5}

Select Customers that attend CSUB

Relational Algebra

 Πname (σ (Customer) school = ‘csub’)

Tuple Relational calculus:

{c | customer (c) ^ c.school = ‘csub’}

Select Customer who rented books in September

Relational Algebra:

Πname (σ (Customer X Rental))

 c.account_number = r.account_number ^

 r.date >= 09/01/2010 ^ r.date <= 09/30/2010

Tuple Relational Calculus

{c | Customer (c) ^ (E r) (Rental (r) ^ c.account_number = r.account_number^

r.date >= 09/01/2010 ^ r.date <= 09/30/2010)}

Select Customers that have rented books with a retail price above $200.00

Relational Algebra:

Πname (σ (Customer X (σ (rental X book))))

Account = r.account_number r.ISBN = b.ISBN ^ b.retail_price > 200

Tuple Relational Calculus:

{ c | customer (c) ^ (Er) (E b) (rental (r) ^ book (b) ^ r.isbn = b.isbn ^

b.retail_price > 200)}

Select books that retail under $100.00

Relational Algebra:

Πtitle (σ (book))

Retail_price < 100

Tuple Relational Calculus:

{ b | book (b) ^ b.retail_price < 100}

Select 2 or more books from the same publisher

Relational Algebra:

Π b1.title (σ (book X book))

 B1.publisher b1.ISBN != b2.ISBN ^ b1.publisher = b2.publisher

Tuple Relational Calculus

{ b | book (b) ^ (Eb2) (book (b2) ^ b1.ISBN != b2.ISBN ^ b1.publisher =

b2.publisher)}

Select Customers that have rented more than twice

Relational Algebra:

Π name (Customer X (σ (rental X rental)))

 R1.rental_number r1.accoun_number = r2. account_number

^ r1. rental_number != r2.rental_number

Tuple Relational Calculus

{ c | customer (c) ^ (Er1)(Er2)(rental (r1) ^ rental (r2) ^

r1. account_number = r2.account_number ^

r1.rental_number != r2.rental_number)}

Phase III: Implementation of Relational Database

1. SQL*PLUS

With a completed relational model the descriptions can be used to actually create a

database with the requirements stated in the relational model. To create the database I will
implement SQL from the Oracle Relational Database Management System, known just as
Oracle. SQL stands for Structured Query Language. It was developed in 1970 by IBM and was
one of the first languages for use with relational models. SQL*PLUS is an Oracle command-
line utility that is used to manipulate tables and other database objects in an Oracle database. It
can be used interactively or or through scripts.

2. Schema Objects in Oracle DBMS

In an Oracle database, associated with each database user is a schema. A schema
schema comprises a collections of schema objects. A schema object is a l
ogical data storage
structure. Oracle databases store schema objects logically wihin a tablespace of the database.
The data for the database is stored in one or more the tablespace's datafiles. For objects such as
tables, indexes, and clusters, the amount of disk space can be allocated for the object within a
tablespace's datafiles. The following are schema objects that used in Oracle:

1. Tables:

In a relational database a table is a set of values, or data elements, that is organized in
vertical columns that represent the relation's attributes, and horizontal rows that represent
existing records or tuples in the relation. In Oracle, a table is the basic storage unit for the
database. The table also stores meta-information about the relation's primay key, foreign keys
(if any), and any constraints that are associated with the relation. Once the table has been
created and defines the user can enter rows to represent the existance of tuples.

2. Views:

A consists of a stored query accessible as a virtual table composed of th result set of a
query. Unlike regular tables in a relational database a view does not form part of the physical
schema, it is a dynamic table computed or collated from data in the database. Changing the data
in a table subsequently changes the data shown in the view. Views can provide advantages over
tables such as: they can represent a subset of the data contained in a table, they can act as
aggregated tables, they can hide the complexity of the data, and they take very little space to
store. Oracle offers an advanced feature called materialized views. Materialized views are
views that perform a specific function on the data such as aggregate functions, data transfer,
reorganization, summations, and sorting.

3. Sequences:

A sequence object generates a sequence of integers according to the specified rules. The
sequence is of type integer that starts at one and is incremented by 1. The sequence can only be
referenced in special contexts only within certain SQL statements. For each row where the
object is referenced, its value is incremented. The generated set of numbers can be used to
generate primary keys and keep track of rollbacks in transactions. Sequence numbers are
Oracle integers of up to 38 digits defined in the database. A sequence definition indicates
general information, such as the following : The name of the sequence, whether the sequence
acsends or descends, and the interval between numbers.

4. Synonyms:

A synonym is an alternate name or alias for a table, view, sequence or other schema
objects. Synonyms are mainly used to make it easy for users to access database objects owned
by other users. Since a synonym is just an alternate name for an object it requires no storage
other than its definition. Synonyms are very powerful from the point of view of allowing users
access to objects that do not lie within their schema. They are often used for security and

convenience as they can mask the name and owner of an object and also to simplify SQL
statements for the database users.

5. Indexes

A database index is a data structure that improves the speed of data retrieval operations
on a database table at the cost of slower writes and increased storage space. The disk space
required to store the index is less than that required by the intial table. In a relational database,
an index is a copy of one part of a table. Indexes may be defined as unique or non-unique, a
unique index acts as a constraint on the table by preventing duplicate entries in the index. It is

possible to create many indexes for a table as long as the combination of columns differs for

each index. More than one index can be created using the same columns if you specify
distinctly different combinations of the columns

6. Clusters

A cluster is a group of tables that share the same data blocks because they share common
columns and are often used together. They are an optional method for storing table data.
Properly used cluster can provide the following benefits: Disk I/O is reduced for joins of
clustered tables, access time improves for joins clustered tables, and less storage is required to
store related table and index data in a cluster than is necessary in non-clustered table format
because each cluster key value is stored only once each in the cluster and the cluster index.

7. Database Links:

A database link is a schema object in one database that enables you to access objects on
another database. The other database does not have to be on an Oracle DBMS, however if it is
not then the user must use Oracle Heterogeneous Services to access non-Oracle information.
Once you have created a database link, you can use it to refer to tables and views on the other
database.

8. Procedures and Functions:

A stored procedure is a subroutine available to applications accessing a relational
database system and are stored in the database data dictionary. Extensive or complex

processing that requires the execution of several SQL statements is moved into stored
procedures, and all applications call the procedures. In relational databases, functions are
evaluated in SQL statements. The SQL standard
distinguishes between scalar and table
functions. A scalar function returns only a single value (or NULL), whereas a table function
returns a (relational) table comprising zero or more rows, each row with one or more
columns. Stored procedures are similar to user-defined functions (UDFs). The major
difference is that UDFs can be used like any other
expression within SQL statements, whereas
stored procedures must be invoked using the CALL statement.

9. Packages:

A package is a group of related procedures and functions, along with the cursors and
variables they use, stored together in the database for continued use as a unit. They offer
increased functionality and also improve performance. Similar to standalone procedures and
functions, packaged procedures and functions can be called explicitly by applications or

users. You create a package in two parts: the specification and the body. The all public
constructs of the package and the body defines all constructs (public and private) of the
package. An advantage to the separation is more flexibility in the development cycle.

3. Schema objects in this project

For this project, the two most frequently used schema objects are the table and the view.
Most of the tables are created using syntax similar to this:

CREATE Table [TableName]

(

attributes
attribute types

nullable? ,

…

…

… ,

Constraints:

· pk_tablename PRIMARY KEY (AttributeName)

· fk_ParentName_ChildName FOREIGN KEY (AttributeName) REFERENCES ParentName (ParentAttributeName)

);

The scheme objects created using this syntax are as follows:

· SR_EMPLOYEE

Employee relation

· SR_CUSTOMER

Customer relation

· SR_CREATED_BY

Created_By relation

· SR_BOOK

Book relation

· SR_RENTAL

Rental relation

· SR_INCLUDES

Includes relation

· SR_RENTS

Rents relation

· SR_BOOK_RETURN
Book_Return relation

· SR_COMPLETES

Completes relation

· SR_RETURNS

Returns relation

The following are the schemas and instances for each relation:

SR_EMPLOYEE:

CS342 SQL> desc SR_EMPLOYEE;

 Name Null? Type

 --- -------- ------------------------------------

 ID_NUMBER NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(15)

 ADDRESS NOT NULL VARCHAR2(25)

 CITY NOT NULL VARCHAR2(15)

 STATE NOT NULL VARCHAR2(2)

 ZIP NOT NULL NUMBER(5)

 TELEPHONE VARCHAR2(10)

 POSITION NOT NULL VARCHAR2(20)

CS342 SQL> select * from SR_EMPLOYEE;

 ID_NUMBER NAME ADDRESS CITY ST ZIP TELEPHONE POSITION

---------- --------------- ------------------------- --------------- -- ---------- ---------- --------------------
1 Sara Martinez 151 Olive Dr Bakersfield CA 93312 6614441174 Customer Service

2 Ryan Baker 2579 Patty Ln Bakersfield CA 93312 6615825488 Customer Service

3 Chris Lee 789 Sea Shore Dr Bakersfield CA 93301 6615557896 Purchaser

4 Ana Jones 7126 Cosbey Ave Bakersfield CA 93307 6615557825 Inventory

5 Michelle Perez 279 Yankton Ct Bakersfield CA 93301 6615552585 Customer Service

6 John Doe 2892 Black St Bakersfield CA 93305 6615557913 Owner

7 Jane Doe 2892 Black St Bakersfield CA 93305 6615557913 Owner

8 Samantha Ortiz 892 Desert Ln Bakersfield CA 93303 6615551289 Inventory

9 Roy Cook 7921 Moon Dr Bakersfield CA 93311 6615558528 Customer Service

10 Anthony Ramos 385 Troy Ave Bakersfield CA 93303 6615552044 Customer Service

10 rows selected.

SR_CUSTOMER:

CS342 SQL> desc SR_CUSTOMER;

Name Null? Type

 --- -------- ------------------------------------

ACCOUNT_NUMBER NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(25)

 ADDRESS NOT NULL VARCHAR2(25)

 CITY NOT NULL VARCHAR2(25)

 STATE NOT NULL VARCHAR2(2)

 ZIP NOT NULL NUMBER(5)

 TELEPHONE VARCHAR2(10)

 SCHOOL NOT NULL VARCHAR2(15)

CS342 SQL> select * from SR_CUSTOMER order by ACCOUNT_NUMBER;

ACCOUNT_NUMBER NAME ADDRESS CITY ST ZIP TELEPHONE SCHOOL

-------------- -------------------- -------------------- --------------- -- ---------- ---------- ---------------

 101 Rita Corona 548 Waterman St Bakersfield CA 93311 6615557850 CSUB

 102 Lisa Barnes 693 Orange Ave Bakersfield CA 93302 6615552001 CSUB

 103 Sara Romero 715 Ball Rd Bakersfield CA 93302 6615557804 CSUB

 104 Bobby Diaz 825 Allen St Bakersfield CA 93312 6615550302 BC

 105 Carlos Silva 7824 Real Rd Bakersfield CA 93304 6615552871 BC

 106 Lee McDonald 213 New Stine St Bakersfield CA 93307 6615559058 Kaplan

 107 John Smith 894 Morning Dr Bakersfield CA 93311 6615557904 BC

 108 Robert Smith 345 Fairfax St Bakersfield CA 93303 6615555054 Kaplan

 109 Jean Ross 7954 17th St Bakersfield CA 93305 6615558004 San Joaquin

 110 Martin Ware 285 F st Bakersfield CA 93301 6615558880 CSUB

10 rows selected.

SR_CREATED_BY:

CS342 SQL> desc SR_CREATED_BY;

 Name Null? Type

 ----------------------------------- -------- --

 ID_NUMBER NUMBER(5)

 ACCOUNT_NUMBER NUMBER(5)

CS342 SQL> select * from SR_CREATED_BY;

 ID_NUMBER ACCOUNT_NUMBER

---------- --------------

1 101

1 105

1 110

2 102

5 107

5 104

9 109

9 103

9 106

 10 108

10 rows selected.

SR_BOOK:

CS342 SQL> desc SR_BOOK;

 Name Null? Type

 ------------------------------------- -------- --

 ISBN_NUMBER NOT NULL VARCHAR2(13)

 TITLE NOT NULL VARCHAR2(30)

 AUTHOR_NAME NOT NULL VARCHAR2(30)

 EDITION NUMBER(3)

 PUBLISHER NOT NULL VARCHAR2(30)

 QUANTITY NOT NULL NUMBER(5)

 RETAIL_PRICE NOT NULL NUMBER(6,2)

CS342 SQL> select * from SR_BOOK;

ISBN_NUMBER TITLE AUTHOR_NAME EDITION PUBLISHER QUANTITY RETAIL_PRICE

------------- ------ ------------------------------ ---------- ------------------------------ ---------- ------------

9780324589986 Principles of Microeconomics N. Gregory Mankiw 5 South-Western Pub 10 172.95

9781429215978 Psychology David G. Myers 9 Worth Pub 7 132.1

9780495112587 Organic Chemistry John E. McMurry 7 Brooks/Cole Pub Co 8 297.95

9780077274337 Biology Sylvia S. Mader 10 McGraw-Hill 5 197.75

9780073190761 Living with Art Mark Getlein 8 McGraw-Hill 9 137.75

9780495011606 Calculus James Stewart 6 Brooks/Cole Pub Co 6 224.95

9780132329033 Algebra and Trigonometry Michael Sullivan 8 Prentice Hall 10 168

9780321524034 Computer Science: An Overview J. Glenn Brookshear 10 Addison Wesley 6 109

9780136053064 Java How to Program Harvey Deitel 8 Prentice Hall 8 122

9780136117261 C++ How to Program Harvey Deitel 7 rentice Hall 8 123

10 rows selected.

CS342 SQL> spool off

SR_RENTAL:

CS342 SQL> desc SR_RENTAL;

 Name Null? Type

 --- -------- ------------------------------------

 RENTAL_NUMBER NOT NULL NUMBER(7)

 START_DATE NOT NULL DATE

 ACCOUNT_NUMBER NUMBER(5)

 CREDIT_CARD NOT NULL VARCHAR2(30)

CS342 SQL> select * from SR_RENTAL;

RENTAL_NUMBER START_DAT ACCOUNT_NUMBER CREDIT_CARD

------------- --------- -------------- ------------------------------

 850 08-SEP-09 102 1088697874187925 2/12

 851 08-SEP-09 105 1578478947152584 09/11

 852 08-SEP-09 103 7489582798272895 10/12

 853 08-SEP-09 108 7851469285608574 03/10

 854 09-SEP-09 109 2859047050479852 03/10

 855 09-SEP-09 101 9632587412589874 04/11

 856 10-SEP-09 105 9635689237419852 10/10

 857 10-SEP-09 104 9687147858528749 03/12

 858 10-SEP-09 107 9687489352071001 05/10

 859 10-SEP-09 106 5800147041478936 02/12

10 rows selected.

SR_INCLUDES:

CS342 SQL> desc SR_INCLUDES;

 Name Null? Type

 --- -------- ------------------------------------

 RENTAL_NUMBER NUMBER(7)

 RETURN_DATE DATE

 ISBN_NUMBER NOT NULL VARCHAR2(15)

 SERIAL_NUMBER NOT NULL NUMBER(4)

CS342 SQL> select * from SR_INCLUDES;

RENTAL_NUMBER RETURN_DATE ISBN_NUMBER SERIAL_NUMBER

------------- ----------- --------------- ----------

 850 08-DEC-09 9780321524034 002

 850 08-DEC-09 9780136053064 001

 851 08-DEC-09 9780321524034 003

 851 08-DEC-09 9780495112587 001

 852 08-DEC-09 9780324589986 009

 852 08-DEC-09 9781429215978 003

 853 08-DEC-09 9780321524034 004

 854 09-DEC-09 9780495112587 002

 855 09-DEC-09 9780073190761 001

 856 10-DEC-09 9780073190761 002

 857 10-DEC-09 9780321524034 005

 858 10-DEC-09 9780495112587 003

 859 10-DEC-09 9780495112587 004

 859 10-DEC-09 9780132329033 001

14 rows selected.

CS342 SQL> spool off

SR_RENTS:

CS342 SQL> desc SR_RENTS;

 Name Null? Type

 --- -------- ------------------------------------

 ID_NUMBER NUMBER(5)

 RENTAL_NUMBER NUMBER(7)

CS342 SQL> select * from SR_RENTS order by ID_NUMBER;

 ID_NUMBER RENTAL_NUMBER

---------- -------------

 1 865

 1 860

 1 855

 1 856

 2 879

 2 850

 2 851

 2 852

 2 587

 2 259

 5 258

 5 368

 5 547

 5 854

 5 516

 5 853

 9 857

 9 355

 9 233

 9 302

 9 125

 10 858

 10 859

 10 100

 10 697

25 rows selected.

SR_BOOK_RETURN:

CS342 SQL> desc SR_BOOK_RETURN;

 Name Null? Type

 --- -------- ------------------------------------

 RETURN_NUMBER NOT NULL NUMBER

 RENTAL_NUMBER NUMBER(7)

 RETURN_DATE NOT NULL DATE

 AMOUNT_CHARGED NOT NULL NUMBER(7,2)

CS342 SQL> select * from SR_BOOK_RETURN;

RETURN_NUMBER RENTAL_NUMBER RETURN_DA AMOUNT_CHARGED

------------- ------------- --------- --------------

 7895 856 08-DEC-09 89

 7896 850 08-DEC-09 70

 7897 853 08-DEC-09 89

 7898 859 08-DEC-09 150

 7899 851 08-DEC-09 102.95

 7900 854 08-DEC-09 82

 7901 852 08-DEC-09 89

 7902 855 08-DEC-09 150

 7903 857 08-DEC-09 70

 7904 858 08-DEC-09 70

10 rows selected.

SR_COMPLETES:

CS342 SQL> desc SR_COMPLETES;

 Name Null? Type

 --- -------- ------------------------------------

 ID_NUMBER NUMBER(5)

 RETURN_NUMBER NUMBER

CS342 SQL> select * from SR_COMPLETES;

 ID_NUMBER RETURN_NUMBER

---------- -------------

 1 7895

 1 7896

 1 7910

 1 7913

 2 7897

 2 7911

 2 7912

 2 7908

 2 7898

 5 7906

 5 7907

 5 7904

 9 7905

 9 7903

 9 7899

 10 7901

 10 7902

 10 7900

18 rows selected.

SR_RETURNS:

CS342 SQL> desc SR_RETURNS;

 Name Null? Type

 --- -------- ------------------------------------

 RETURN_NUMBER NUMBER

 RENTAL_NUMBER NUMBER(7)

CS342 SQL> select * from SR_RETURNS;

RETURN_NUMBER RENTAL_NUMBER

------------- -------------

 7895 856

 7896 850

 7897 853

 7898 859

 7899 851

 7900 854

 7901 852

 7902 855

 7903 857

 7904 858

10 rows selected.

4. SQL Queries

Select Books with more than 5 quantity:

select TITLE, QUANTITY

from SR_BOOK

where QUANTITY > 5

/

CS342 SQL> @query1

TITLE QUANTITY

------------------------------ ----------

Principles of Microeconomics 10

Psychology 7

Organic Chemistry 8

Living with Art 9

Calculus 6

Algebra and Trigonometry 10

Computer Science: An Overview 6

Java How to Program 8

C++ How to Program 8

9 rows selected.

CS342 SQL> spool off

Select Customers that attend CSUB:

select NAME, SCHOOL

from SR_CUSTOMER

where SCHOOL = 'CSUB'

/

CS342 SQL> @query2

NAME SCHOOL

-------------------- ---------------

Rita Corona CSUB

Lisa Barnes CSUB

Martin Ware CSUB

Sara Romero CSUB

CS342 SQL> spool off

Select Customer who rented books in September:

select DISTINCT c.NAME, r.START_DATE

from SR_CUSTOMER c, SR_RENTAL r

where c.ACCOUNT_NUMBER = r.ACCOUNT_NUMBER and

 r.START_DATE >= '01-SEP-09' and

 r.START_DATE <= '30-SEP-09'

/

CS342 SQL> @query3

NAME START_DAT

-------------------- ---------

Jean Ross 09-SEP-09

Carlos Silva 10-SEP-09

Bobby Diaz 10-SEP-09

Rita Corona 09-SEP-09

Sara Romero 08-SEP-09

Lee McDonald 10-SEP-09

Robert Smith 08-SEP-09

John Smith 10-SEP-09

Lisa Barnes 08-SEP-09

Carlos Silva 08-SEP-09

10 rows selected.

CS342 SQL> spool off

Select Customers that have rented books with a retail price above $200.00;

Select c.NAME, b.TITLE, b.RETAIL_PRICE

from SR_INCLUDES r, SR_BOOK b, SR_RENTAL a, SR_CUSTOMER c

where r.ISBN_NUMBER = b.ISBN_NUMBER

and b.RETAIL_PRICE > 200

and r.RENTAL_NUMBER = a.RENTAL_NUMBER

and a.ACCOUNT_NUMBER = c.ACCOUNT_NUMBER

/

CS342 SQL> spool query_results.dat append

CS342 SQL> @query4

NAME TITLE RETAIL_PRICE

-------------------- ------------------------------ ------------

Jean Ross Calculus 224.95

Carlos Silva Organic Chemistry 297.95

Jean Ross Organic Chemistry 297.95

John Smith Organic Chemistry 297.95

Lee McDonald Organic Chemistry 297.95

CS342 SQL> spool off

Select books that retail under $100.00:

select ISBN_NUMBER, TITLE, AUTHOR_NAME, RETAIL_PRICE

from SR_BOOK

where RETAIL_PRICE < 100

/

CS342 SQL> @query5

no rows selected

CS342 SQL> spool off

There are no books in the inventory that have a retail price lowe than $100.00 therefore the when the query is ran the report returns back empty.

Select 2 or more books from the same publisher:

select p.TITLE, p.PUBLISHER

from SR_BOOK p, SR_BOOK p2

where p.PUBLISHER = p2.PUBLISHER

and p.TITLE != p2.TITLE

order by PUBLISHER

/

CS342 SQL> @query6

TITLE PUBLISHER

------------------------------ ------------------------------

Organic Chemistry Brooks/Cole Pub Co

Calculus Brooks/Cole Pub Co

Living with Art McGraw-Hill

Biology McGraw-Hill

Java How to Program Prentice Hall

Algebra and Trigonometry Prentice Hall

6 rows selected.

CS342 SQL> spool off

Select Customers that have rented more than one book:

select c.NAME, i.RENTAL_NUMBER, i.ISBN_NUMBER

from SR_INCLUDES i, SR_RENTAL r, SR_CUSTOMER c

where (i.RENTAL_NUMBER in

 (SELECT RENTAL_NUMBER

 SR_INCLUDES

 GROUP BY RENTAL_NUMBER

 HAVING count(RENTAL_NUMBER) > 1)) and

 i.RENTAL_NUMBER = r.RENTAL_NUMBER and

 r.ACCOUNT_NUMBER = c.ACCOUNT_NUMBER

/

CS342 SQL> @query7

NAME RENTAL_NUMBER ISBN_NUMBER

-------------------- ------------- ---------------

Lisa Barnes 850 9780321524034

Lisa Barnes 850 9780136053064

Sara Romero 852 9781429215978

Sara Romero 852 9780324589986

Lee McDonald 859 9780495112587

Lee McDonald 859 9780132329033

Carlos Silva 851 9780495112587

Carlos Silva 851 9780321524034

8 rows selected.

CS342 SQL> spool off

Select Customers that have only rented once:

select i.RENTAL_NUMBER, c.NAME, c.ACCOUNT_NUMBER

from SR_INCLUDES i , SR_RENTAL r, SR_CUSTOMER c

where (i.RENTAL_NUMBER in

(SELECT RENTAL_NUMBER

 FROM SR_INCLUDES

GROUP BY RENTAL_NUMBER

 HAVING count(RENTAL_NUMBER) =1)) and

i.RENTAL_NUMBER = r.RENTAL_NUMBER and

r.ACCOUNT_NUMBER = c.ACCOUNT_NUMBER

/

CS342 SQL> @query8

RENTAL_NUMBER NAME ACCOUNT_NUMBER

------------- -------------------- --------------

 856 Martin Ware 110

 857 Bobby Diaz 104

 849 Warren BlacK 111

 854 Jean Ross 109

 858 John Smith 107

 853 Robert Smith 108

 855 Rita Corona 101

7 rows selected.

CS342 SQL> spool off

5. Data Loading

Data was inserted into the tables using the following syntax:

Insert into <table_name>

Values (…....,........,........);

in addition to initially inserting records into a table there were times where updating a table was also necessary, in that case the following syntax was used

Update <table_name>

set <col_name> = 'updated_value'

Where col_name = 'compared_value';

Phase IV: Oracle Database Management System

 PL/SQL Component

1. Common Features in Oracle PL/SQL and MS Trans-SQL

Though PL/SQL is a language created by Oracle and MS Trans-SQL was created by Microsoft, the two languages are based from a common Structured Query Language and share many of the same features such as commands to create tables, constraints, functions, cursors, stored procedures, triggers, and packages. However, there are also big differences between the two such as the syntax used to create these objects. It is said that PL/SQL is a more powerful language.

The main useful common feature that both of these languages are able to create are
stored procedures, sometimes called stored subprograms. Generally, a subprogram is used to
perform an action and a function to compute a value. They can be repeatedly and quickly ran
by users. Stored subprograms are an advantage to use when it comes to such tedious tasks as I
inserting, updating, and deleting records in a database. There are two ways to access data from
an application, one, by sending SQL statements fro the client to the SQL server, and two,
perform access through stored subprograms.

There are benefits of calling stored subprograms over sending a dynamic SQL to front-
end to DBMS server. When dynamically-generated SQL strings are repeatedly sent to the
database through an application there are chances for SQL injection, where an intruder may
enter data that causes the application to execute SQL statements that were not intended to run.
Another benefit of using a stored subprogram over SQL sent from the client is that there is less
bytes traveled through the network.

2. Oracle PL/SQL

PL/SQL program structure, control statements, cursors, etc.

Oracle Pl/SQL is a block structured language in which the functions, procedures, and
anonymous blocks are the basic blocks. Blocks can be defined with another block. A block
consists of three parts:

1. DECLARATION part: declare variables, constants, cursors, user-defined exceptions. The reserved words DECLARE must be removed when a PL/SQL block is used to define a stored procedure.

2. EXECUTABLE part: this part consists of SQL, SQL/PLUS statements.

3. EXCEPTION HANDLING part: A warning or error is called exception. There is a set of predefined errors such as “data not found”. Users can also define their own errors or exceptions.

Layout:

DECLARE

variable_name

variable_type

= value | DEFAULT

BEGIN

SELECT | INSERT | UPDATE | DELETE

END;

Variable Types:

PL/SQL should support all of the variable types that are supported by the Oracle server.
This includes numbers, character arrays, dates, floating points, unique Ids, and etc.

Cursors:

Cursors are SQL statements that allow for the fetch and process of every record in a table rather than just a single record. The cursor terminates when the last record in the cursor has been fetched. The syntax used is as follows:

DECLARE

CURSOR cursor_name [parameters]

IS select_statement;

After the cursor has been created it can be used in the following syntax:

BEGIN

FOR record_index in cursor_name
LOOP
 {.statements.}
END LOOP;

END;

Control Statements:

Control statements are the programming statements that make PL/SQL a full procedural complement to SQL. The following are example control statements:

IF boolean-expression THEN statements

END IF;

IF boolean-expression THEN statements

ELSE statements

END IF;

LOOP
EXIT WHEN can be used to quit this loop
END LOOP;

FOR record

IN cursor

LOOP

StatementS

END LOOP;

Exception Handling:

In PL/SQL, a warning or error condition is called an exception. Exceptions can be internally defined or user defined. When an error occurs, an exception is raised. To handle raised exceptions, you write separate routines called exception handlers. After an exception handler runs, the current block stops executing and the enclosing block resumes with the next statement. If there is no enclosing block, control returns to the host environment. The syntax is as follows:

DECLARE

User_defined_exception EXCEPTION;

BEGIN

IF condition THEN RAISE User_defined_exception;

END IF;

EXCEPTION

WHEN Exception_name THEN statement;

END;

Stored Procedures:

A stored procedure is a subprogram that runs specific actions. The structure varies depending on what the procedure is meant to do but the syntax is generally the same for stored procdeures:

[CREATE [OR REPLACE]]

PROCEDURE procedure_name[(parameter[, parameter]...)]

[AUTHID {DEFINER | CURRENT_USER}] {IS | AS}

[PRAGMA AUTONOMOUS_TRANSACTION;]

 [local declarations]

BEGIN

 executable statements

[EXCEPTION

 exception handlers]

END [name];

To execute the stored program in sql*plus you use the following command:

SQL> exec storedprocedure_name(arguments);

Stored Functions:

A stored function is much like a stored procedure in that it is also a subprogram however a stored function computes a value and also that functions have a RETURN clause.

[CREATE [OR REPLACE]]

FUNCTION function_name [(parameter [, parameter]...)] RETURN

datatype

 [AUTHID { DEFINER | CURRENT_USER }]

 [PARALLEL_ENABLE

 [{ [CLUSTER parameter BY (column_name [, column_name]...)] |

 [ORDER parameter BY (column_name [, column_name]...)] }]

 [(PARTITION parameter BY

 { [{RANGE | HASH } (column_name [, column_name]...)] | ANY }

)]

]

[DETERMINISTIC] [PIPELINED [USING implementation_type]]

[AGGREGATE [UPDATE VALUE] [WITH EXTERNAL CONTEXT]

USING implementation_type] {IS | AS}

 [PRAGMA AUTONOMOUS_TRANSACTION;]

 [local declarations]

BEGIN

executable statements

[EXCEPTION

exception handlers]

END [name];

Packages:

A package is a schema object that groups logically related PL/SQL types, items, and subprograms. Packages usually have two parts, a specification and a body, although sometimes the body is unnecessary. The specification is the interface to your applications; it declares the types, variables, constants, exceptions, cursors, and subprograms available for use. The body fully defines cursors and subprograms, and so implements the spec. The syntax is as follows:

CREATE PACKAGE package_name AS
PROCEDURE names..;
FUNCTION names…;

END package_name;

CREATE PACKAGE BODY package_name AS
PROCEDURE name IS…
BEGIN

Statements
END;

FUNCTION name RETURN DATATYPE IS…

BEGIN

Statements

RETURN variable

END;

END package_name;

Triggers:

A trigger is a named program unit that is stored in the database and fired (executed) in response to a specified event. The specified event is associated with a table, a view, a schema, or the database and uses the actions UPDATE, DELETE, INSERT, ETC. Triggers can be used for the following:

· Provide transparent event logging

· Automatically generate derived column values

· Enforce security authorization

· Prevent invalid transactions

· And more…

The syntax for triggers is as follows:

CREATE [OR REPLACE] TRIGGER trigger_name
BEFORE|AFTER

INSERT|DELETE|UPDATE OF COL [column_name] [OR DELETE|UPDATE|INSERT]
ON table_name
DECLARE
 variables
BEGIN

FOR EACH ROW

[WHEN CONDITION]

Statements;
END;

3. Oracle PL/SQL Subprogram

The following subprograms were implemented into my database including a stored procedure to both insert and delete a record, a stored function for finding an average, and a trigger that will fire when a table is updated or deleted.

Stored Procedures:

sr_sp_insert_customer:

This stored procedure will insert a new record into the table sr_customer.

CREATE OR REPLACE PROCEDURE sr_sp_insert_customer

(

 acctNum IN NUMBER,

 name IN VARCHAR2,

 address IN VARCHAR2,

 city IN VARCHAR2,

 st IN VARCHAR2,

 zip IN NUMBER,

 phone IN VARCHAR2,

 school IN VARCHAR2

)

AS

BEGIN

 INSERT INTO SR_CUSTOMER

 VALUES

 (

 acctNum,

 name,

 address,

 city,

 st,

 zip,

 phone,

 school

);

END;

/

sr_sp_delete_customer:

The following stored procedure will delete all instances of the customer in the database. Using this method works when using a smaller database, if it were a larger database a cascaded delete would be more efficient to apply.

CREATE OR REPLACE PROCEDURE sr_sp_delete_customer

(

 acctNum IN NUMBER

)

AS

BEGIN

 DELETE FROM SR_CUSTOMER

 WHERE ACCOUNT_NUMBER = acctNum;

 DELETE FROM SR_CREATED_BY

 WHERE ACCOUNT_NUMBER = acctNum;

 DELETE FROM SR_RENTAL

 WHERE ACCOUNT_NUMBER = acctNum;

END;

/

Stored Function:

sr_f_bookAvgPrice:

The following function will return the average cost of the retail price of books in inventory:

CREATE OR REPLACE function sr_f_bookAvgPrice (n in number) return number

IS

 add number(9,2):= 0.0;

 p number(7,2);

 count number(6);

 CURSOR avg IS

select RETAIL_PRICE from SR_BOOK order by RETAIL_PRICE desc;

BEGIN

 open avg;

 for count IN 1..n loop

 fetch avg into p

 add := add + p

 end loop;

 return add / n;

 END;

/

Trigger:

sr_t_update_book:

The following trigger was created to fire when there is an update in the Retail_Price of books in the table SR_BOOK. When the price is updated, the title of the book and the old and new retail prices are logged in SR_LOGTABLE. Here is the code:

CREATE OR REPLACE TRIGGER sr_t_update_book

 AFTER UPDATE

 OF RETAIL_PRICE

 ON SR_BOOK

 FOR EACH ROW

BEGIN

 insert into sr_logTable

 values(:old.TITLE, :old.RETAIL_PRICE, :new.RETAIL_PRICE);

END;

/

Phase V: Graphical User Interface Design and

 Implementation

1. Daily User Activities

Many different users are involved in using this database. Each user has
a

different need from the database and therefore is restricted to only certain operations

within the application. The users are as follows:

1. Uninvolved Users:

A customer is considered an uninvolved user since they actually never use the application physically. However, it is information from the customer that allows for other users to complete transactions performed by Customer Service Representatives.

2. Customer Service Representatives

The employee in the customer service representative position has the most access to the database application. It is their job requirements to add, edit, and delete customers from the company database. It is also their duty to complete rental orders for customers. This includes adding, editing, and deleting rentals into the database application. The customer service representative also has access to view the inventory of books that are owned by the company in order to complete rentals and answer any questions that the customer might have. They only have access to view the books database but not to alter it in any way.

3. Purchaser

The role of the purchaser is to do research in areas where the company may need to acquire goods. One of the items that the purchaser is responsible for is buying textbooks for the company. The purchaser must perform research with publishing companies in order to find the best needs for the company. The only use for the company database application is to be able to view the books already in the company database.

4. Inventory Clerk

It is the responsibility of the inventory clerk to keep track of items within the company. These items range from materials used by the company for daily use and also to keep inventory on textbooks in the company database. This user has access to the book inventory where they can add, edit, and delete textbooks and their information. The inventory clerk has no other need for any other information in the database application.

2. Relations, Views, and Subprograms

For the purpose of the class I choose to create a user interface for the Customer Service Representative. In order for the database application to be functional it has to meet the needs mentioned above for the position. In order for this to happen the application needs to be able to access and manipulate the data in the database. To facilitate this, each of the following tables will require a TableAdapter object of their own:

· SR_CUSTOMER

· SR_RENTAL

· SR_BOOK

· SR_INCLUDES

In addition to the use of these tables a view was created to provide the customer service
representative with more detailed information of each rental. For the following view:

· SR_CUSTOMER_RENTAL

The customer service representative is able to select a customer and and a rental number and
they will be able to view the details of the specific rental such as the ISBN number and title of
the book. The view can be expressed with the following query returns the result of the view:

CREATE VIEW SR_CUSTOMER_RENTAL AS

SELECT SR_CUSTOMER.ACCOUNT_NUMBER, SR_CUSTOMER.NAME,

 SR_RENTAL.RENTAL_NUMBER, SR_INCLUDES.ISBN_NUMBER, SR_BOOK.TITLE

FROM SR_BOOK INNER JOIN

SR_INCLUDES ON SR_BOOK.ISBN_NUMBER = SR_INCLUDES.ISBN_NUMBER

INNER JOIN

SR_RENTAL ON SR_INCLUDES.RENTAL_NUMBER = SR_RENTAL.RENTAL_NUMBER
INNER JOIN

SR_CUSTOMER ON SR_RENTAL.ACCOUNT_NUMBER =

SR_CUSTOMER.ACCOUNT_NUMBER

ORDER BY SR_RENTAL.ACCOUNT_NUMBER

This query can be translated into “view customer account number, customer name,
rental
number, book ISBN number, and title of book where the account number from the
SR_CUSTOMER table is equal the account number from the SR_RENTAL table”.

3. Application Screen Shots

3.1 Menu:

3.1.1 Main:

The main tab in the menu is simple enough with the only operation being

to exit the database application.

3.1.2 Rental:

There is a Rental tab in the main menu, from here you have three options to

access information. The first option is Rental Manager, clicking this will bring

up a main rental form where the customer service representative can view the

details of rentals made by customers. There are also the options to add a rental

and edit or delete an existing rental.

Rental Manager:

The Rental Manager is used by the customer service representative to complete

new rentals and edit or delete existing rentals. When opened from the main

menu the user can view a list of rentals by account numbers that have other

important information. By selecting a record the user can view further

information on the rental such as the ISBN number and serial number of the

books rented to that customer. Also by selecting the rental the user can view in

the last table specific details of the completed rental such as the name of the

customer that completed the rental and specifically the ISBN and Title of the

book rented out.

Add Rental:

The add rental screen can be accessed in two ways, 1: by selecting it from the

main menu, or 2: by selecting the add rental button from the Rental Manager

window. From this screen the customer service representative is able to add in

information about a new rental and save it to the database. In order to complete a
rental the customer must have books that are added to the rental order, to add

books to the rental the user clicks on the “add /edit/delete books” button and the

following screen is opened:

In this screen the user enters information about the rental including the ISBN

number and serial number of the book being rented out to this particular

customer. In this screen the user is allowed to make changes to existing rentals

and to delete existing rentals.

Edit / Delete Rental:

The user can access the option to edit or delete a rental from either the main menu toolbar or from the rental manager window. The window that appears is just like the one for adding rental only that they add a rental can only add, not edit a rental. If the user has to edit or delete rental information they must do so through this option.

`

3.1.3 Customer:

The main menu has a customer tab where the customer service representative has

two options, they can either add a customer or edit or delete a customer. This

may seem as simple functions for the user to complete but the main menu form

carries and displays more information about the customers in the company’s

database.

Add Customer:

Selecting the add customer option will open a window as above, it is a blank

form where the customer service representative only has the option to add a new

customer and save the new customer's information. To edit or delete a customer

the user must choose that option from the main menu bar or from the starting

main form.

Edit / Delete Customer:

When the option to edit or delete a customer in the company database by either te

main menu or from the main form the same window is presents itself as the add

customer option except that this option has the customer information loaded into

the text box so that it may be edited, the option to delete the customer is also

enabled in this window.

3.1.4 Books
The main menu toolbar has a books tab where the user has the options to select

to view the inventory of textbooks currently owned by the company.

View Inventory:

By selecting the View Inventory option from the main menu the customer service

representative is presented with the window above. It carries all the information

about the text books that are owned and rented out by the company. The

customer service representative can only view the data but has no access to add

or edit the information. Being able to view the information on textbooks

provides the customer service representative with information needed to

complete rentals and also provides any information that a customer may have

regarding books being carried.

3.2 Main Form

When the application is started up by the user the window above appears for the user.

The top table is a database of customers that have rented from the company. Below the t

able are the options for the user to add customers, edit or delete customers, and refresh a

refresh button that refreshes all available view on the main form with the most current

information. When a customer is selected the rentals for that customer will appear in the

list box for the user to view. In addition to this information there is a table next to the

text book that shows the details for that rental including the ISBN number and serial

number for the textbooks in that rental.

4. Code Description

4.1 Major Steps to designing a user interface:

Creating a user interface was especially difficult for me because I have never created on before and also have had no experience working with visual studio so it took some time to get familiar with the available tools in Visual Studio 2008. After experimenting with the program for a few days I tackled the problem of designing the user interface and found that the most important idea to consider when designing a user interface is to make it as user-friendly as possible. The principal ideas that make an interface user-friendly are structure, simplicity, and visibility.
Initially my design way messy and all over the place, rentals and customer information were viewed in the same workspace and I had an image of what I wanted in my interface but was unable to convey this through my first design. I knew this application was not going to work so I had to go back and brainstorm again. I asked myself the following questions:
· Who is the intended user?

· What are the responsibilities of the user?

· What operations must the user complete?

· How can I structurally accommodate the needs for the user?

· How can the design be simple enough for the user to use, even after not using the application for some time?

· How can I make the design display information in a visual way that will make sense to the user?
I think within answering these questions the major steps to designing a user interface were defined. In my situation the intended user is the Customer Service Representative. The responsibilities of the user are to enter new, edit and or delete existing customers in the company database as needed, complete rental transactions for customers, complete rental returns for customers, and provided information to customers regarding all aspects of renting and returning textbooks. Operations that the user must complete include those listed above as well as creating several reports for the company such as monthly and weekly reports on rentals. To structurally accommodate the needs for the user the interface must be designed in a meaningful and useful way based on clear, consistent models that are recognizable to the user, keeping related things together. To make the user interface simple for the user the interface should make common tasks simple to complete, providing shortcuts, such as stored procedures, to make long, repetitive tasks easy on the user. To make the interface visually useful to the user the design should keep all needed options and materials for a given task visible without distracting the user with extraneous or redundant information.
4.2 Data Access Descriptions
Visual Studio 2008 has many powerful tools for developers to use, one of the most powerful being the ability to create and use datasets. Datasets are objects that contain data tables where you can temporarily store the data for use in your application. Datasets hold information about connecting to a database, in this case oracle. They also create adapter objects such as the TableAdapter that contain queries, sometimes multiple queries, written in SQL that are used to fill in the local tables. Datasets are also used for inserting, updating, and deleting records in the connected database.
Datasets make creating an application with the need for data access a very powerful function. They provide the developer with an easy and quick way of data access without the loss of controlling the data that is accessed. When a TableAdapter is added to a form the user is prompted with for an SQL statement or with the option to use a stored procedure that is stored on the database server that will retrieve the data to be displayed by the adapter. For example, by default the TableAdapter will use the SQL statement to bring in all information from a certain table, for SR_CUSTOMERTableAdapter the customer’s account number, name, address, city, state, zip, and school that they are attending will populate the table on the form. The following statement is used in a function to load the data to the table:

· Private void mainForm_Load(object sender, EventArgs e)

{

 this.sR_customersTableAdapter.Fill(this.dsRental.SR_CUSTOMER);

 }

Below is the graphical interface for this project. The dataset name is dsRental.xsd:

To facilitate data access each table had an TableAdapter automatically created for it when the data set was created. The Data table for SR_RENTAL also has an additional query to the TableAdapter to fill in the table by the constraints stated in the SQL query for the FillBy() . The above view of the dataset also acknowledges and maps out the cardinality between the tables and shows the primary key for each of the tables.
4.3 Class Descriptions

The classes in the application can be represented by a form object. TableAdapters allow for the access of data so that the application relies only on the forms.

4.3.1 mainForm:

This is the main form for the application. It is the window that appears when the application is opened. It contains grids and lists that were explained in previous sections. There can only be one instance of the main form at any point in running the application to prevent issues with concurrency. The important functions of the form are:
· Managing event handlers

· The ability to update the views to consist of new entries

· The ability to access child forms

4.3.2 addCustomer:

This class holds the form launched from the mainForm when the user selects to add a new customer to the database. The detail view of SR_CUSTOMER is empty so that only records may be added. The TableAdapter allows for saving and updating of the new record inserted.
4.3.3 edDelCust:

This class holds the form that is launched form the mainForm when the user selects to edit or delete an existing record for a customer already in the database. The detail view of SR_CUSTOMER has access to records that are already in the company database so that they may be edited or deleted. The TableAdapter allows for the updates to the database to be saved.

4.3.4 mainRental:

This form is accessed through the main menu found in the mainForm form. When selected another main window is presented to the user to allow management of rentals that have been made and rental orders that need to be made. It contains grids and views of information stated in previous sections.

4.3.5 addRentals:

This form is launched from the mainRental form when the user wants to add a new record to the rentals. When launched, there is no information in the textbox, this is to allow the user to input the information for a new rental. This section could have been more thought out and user friendly by automatically adding the rental number to the launched form. However, the form does what it was made to do which is to add a rental to the database.

4.3.6 incBooks:

This form is launched from the addRentals form and is a child form to the addRentals form. Information in this form is detailed information to the addRental form which adds individual books to the rental form for the customer. Multiple books may be included in the addRental form by inserting and saving the information for the rental in the incBooks form. The information can be saved into the database with the use of the BindingNavigator menu that is formed from the TableAdapter.

4.3.7 edDelRental:

This form is launched from the mainRental form and is used by the user to edit and or delete rentals that are already created in the database. The TableAdapter for the edDelRental allows for the updating of the database through the use of the BindingNavigator.

4.3.8 bookInv:

This form contains a grid view of the information for books that are carried by the company and are available for rental by the customer. It provides information that can help the user answer questions that the customer may have about textbooks available.

4.4 Major Features

Major features of the Graphical User Interface are the main menu that is located on the top of the mainForm of the application. Through the use of the main menu the user can quickly access forms that are needed.

Another nice feature can be found in the main application window. Here when a customer is selected a list in the list box is populated information on rentals to that particular customer. Selecting a rental number will allow the user to view detailed information on that specific rental all without leaving the main application window.

In the main rental manager window the user can select a rental and be able to view detailed information created by a view where the user can see the name and title of the rentals of that specific rental number.

4.5 Learning new Development tools and using new Language
Learning a new development tool such as Visual Studio 2008 was tedious but not too difficult with Google around. When first launching Visual Studio 2008 I spent a few days using a trial-and-error method for designing the user interface however this proved to not be the smartest way of learning the program. I took advantage of hours that the instructor was in his office and asked any questions about visual studio that I had. After that, I turned to Google to get more in-depth information on how things worked such as datasets and TableAdapters. They are easy enough to implement into a form but they really are not great if you do not understand how to use them. After a few days of trial-and-error and googling topics that I needed more information about I was ready to start creating my user interface. Writing the code in C# was easy enough since I have had experience with C++ and touched a little on C# in Programming Languages. When I came across a problem with writing in C# I again turned to Google for help.
5. Designing and Implementing the Application

The first step I took in designing and implementing the application was deciding who the application was going to be used for because it had to be built around operations that the user must be able to complete. Once I knew I would be creating the application for the customer service representative the next step was learning how to connect Visual Studio 2008 to access the oracle database on Helios. I learned how to do this through the instructor’s steps and also through using the Net Manager tool for Oracle.

Once I had access to the oracle database my next step was to decide on which tables were needed for the use of the application to complete the dataset. I chose all the tables that contained information on customers and also on rentals. I also created a view especially for the use of the application for a total of five datatables.

Having the dataset available for view allowed me view which value members belongs to which datatables and the view that they were in, with grid or detail. Having this visual access made it easier to decide which tables were related to each other and needed to be kept together. Once all the data was organized implementing the design was the next step. Keeping the design simple and clean would allow for easy use of the application so that was my goal. After the structure and data was created I went back and created event handlers for the buttons and actions that needed handlers made. In order to get event handlers done I used Google to find out how they are used, this was especially useful in learning how to create handlers for the main menu.

I ran the debugger throughout the implementation of the application, learning how to fix any problems that I came across through the use of the internet. Once the event handlers were all created the application was done and able to run.

Return_number�
Rental_number�
Return_Date�

Price�
�
7895�
856�
12/8/2009�

89.00�
�
7896�
850�
12/8/2009�

72.00�
�
7897�
853�
12/8/2009�

89.00�
�
7898�
859�
12/8/2009�

150.00�
�
7899�
851�
12/8/2009�

102.95�
�
7900�
854�
12/8/2009�

82.00�
�
7901�
852�
12/8/2009�

89.00�
�
7902�
855�
12/8/2009�

150.00�
�
7903�
857�
12/8/2009�

70.00�
�
7904�
858�
12/8/2009�

70.00�
�

EMPLOYEE

ID_number (PK)

Name: Lname

	Fname

Address

City

State

Zip

Telephone

Position

CUSTOMER

Account_number (PK)

Name: Lname

	Fname

Address

City

State

Zip

Telephone

School

BOOK

ISBN_number (PK)

Title

Author: Lname

	Fname

Edition

Publisher

Quantity

Retail_Price

RENTAL

Rental_number (PK)

Start_Date

CustomerNumber(FK)

Credit_Card

Rental_number

ISBN_number

Serial_number

End_Date

Name

Description

Domain/Type

Value-Range

Default Value

NULL allowed?

Unique?

Single/Mult Val

Simple/Composite

ID_number Name Address City	 State Zip Telephone Position

Employee number

Int

00000-99999

None

No

Yes

Single

Simple

Employee name

String

30

None

No

No

Single

Composite

Street and number

String

50

None

No

No

Multiple

Simple

Name of city

String

30

None

No

No

Multiple

Simple

Abrev. of state

String

2

None

No

No

Single

Simple

Zip Code

Int

00000-99999

None

No

No

Single

Simple

Employee telephone

Int

10

None

No

No

Single

Simple

Position in company

String

50

None

Yes

No

Multiple

Simple

Name

Description

Domain/Type

Value-Range

Default Value

NULL allowed?

Unique?

Single/Mult Val

Simple/Composite

Account_numberName Address City State Zip Telephone School

 Customer Acct. #

Int

0000000-9999999

None

No

Yes

Single

Simple

Customer name

String

30

None

No

No

Single

Composite

Street and number

String

50

None

No

No

Multiple

Simple

Name of city

String

30

None

No

No

Multiple

Simple

Abrev. of state

String

2

None

No

No

Single

Simple

Zip Code

Int

00000-99999

None

No

No

Single

Simple

Customer telephone

Int

10

None

Yes

No

Single

Simple

School attending

String

50

None

No

No

Multiple

Simple

Name

Description

Domain/Type

Value-Range

Default Value

NULL allowed?

Unique?

Single/Mult Val

Simple/Composite

Book Number

Int

0-9999999999999

None

No

Yes

Single

Simple

Book Titile

String

70

None

No

No

Multiple

Simple

Name of Author

String

50

None

No

No

Single

Composite

Edition of book

Int

1-1000

None

No

No

Single

Simple

Publishing Company

String

50

None

No

No

Multiple

Simple

Total Books Owned

Int

00000-99999

None

No

No

Single

Simple

Price of Book

Int

000.00 - 999.99

None

No

No

Single

Simple

ISBN_number Title Author Edition Publisher Quantity Retail_Price

Name

Description

Domain/Type

Value-Range

Default Value

NULL allowed?

Unique?

Single/Mult Val

Simple/Composite

ISBN_number		Serial_number

Book number

Int

0-9999999999999

None

No

Yes

Single

Simple

Serial number of book

Int

0-99999

None

No

No

Mutiple

Simple

Book Number

Int

0-9999999999999

None

No

Yes

Single

Simple

Book serial#

Int

000-999

None

No

No

Single

Simple

Duration of book rental

String

100

None

No

No

Multiple

Simple

Price of book rental

Int

000.00-999.99

None

No

No

Single

Simple

Card and

Exp date

Int

000000000000000-9999999999999999

None

No

No

Single

Composite

Name

Description

Domain/Type

Value-Range

Default Value

NULL allowed?

Unique?

Single/Mult Val

Simple/Composite

Rental_# Date Acct_# ISBN_# Serial_# Rental_Type Rental_Price Credit_Card

 Customer Acct. #

Int

0000000-9999999

None

No

Yes

Single

Simple

Date

NONE

Date

No

No

Single

Simple

Int

None

None

No

Yes

Single

Simple

BOOK_RETURN

Return_number

Rental_number(FK)

Price

add_Customer

Book_rental_order

Book_return

