
 

Rite-aid Pharmacy

Robert Morning
Computer Science 342: Databases

Dr. Huaqing Wang
28 November 2010

ii 

 

Table of Contents

Phase 1:……………………………………………………..…………………………….1
Fact-Finding, Information Gathering, Conceptual Design…..1
Fact Finding...1
Introduction to Enterprise/Organization..2
Structure of the Enterprise...2
Descriptions of Major Objects and Relationship….…..…………………………..............2
Data views and operations for user groups……..…………………………………………2
Conceptual Database Design......…...…………..………..….….…..…………….……….3
Entity Set Description………………………..……………....…………………………....3
 employee…….…………………..………………………………………………...3
 customer…….…………………..………………………………………………....4
 doctor……….…………………………..…………………………………………5
 prescription..……………………...……………………………………………….6
 drug………….……………………..……………………………………………...7
Relationship Set Description..8
Related Entity Set……………………………..………………………………………......8
E-R Diagram………………………………………..…………………………………..…9
Phase 2:…………………………………………………...10
Description...10
Comparison..10
Conversion...10
Constraints...11
E-R Database Into Relational Database.…………………………………………………12
 Customer Relation...12
 Doctor Relation..13
 Prescription Relation..13
 Employee Relation...14
 Drug Relation...15
 owns Relation...16
 fill Relation..16
Relation Instances……….……………………………………………………………….18
 Customer Relation...18
 Doctor Relation..19
 Prescription Relation..19
 Employee Relation...20
 Drug Relation…...21
 owns Relation………...21
 fill Relation..21
Queries………………………………………………………………………………...…22
Query Representation………………………………………………………………….…22
Phase 3:…...……………………………………………………………………………..24
Creating Database with Oracle DBMS………………...………………………...………24

Schemas Used…………...……………………………………………………………….25

ii 

 

Schemas and Their Contents……………………………………………………………..26

rm_drug……………………………..……………………………………………26

rm_doctor………………………………………………………………………..26

rm_customer……………………………………………………………………..27

rm_prescription…………………………………………………………………..28

rm_employee……………………………………………………………………..30

rm_fill……………………………………………………………………………31

rm_owns………………………………………………………………………….32

SQL Queries…………………………………………………………………..………….33

Phase 4:………………………………………………………………………………….36

Features of PL/SQL……………………………………………………………………...36

Common Features in Oracle PL/SQL……………………………………………………36

Oracle PL/SQL…………………………………………………………………………...36

Oracle PL/SQL Subprograms……………………………………………………………38

Insert Procedure………………………………………………………………………….38

Delete Procedure…………………………………………………………………………38

Average Function………………………………………………………………………...38

Trigger Delete Employee……………………...…………………………………………39

Trigger Delete Fill………………………………………………………………………..40

Phase 5:...42

GUI Design and Implementation………………………………………………………...42

Daily Activities for Users……………….……………………………………………….42

Pharmacy Employees…………………………………………………………….42

Management……………………………………………………………………...42

Relations, Views, Subprograms……………………………………………………….....42

Application Screen Shots……………………………...…………………………………42

Code Description and GUI Design………………………………………………………46

iii 

 

Major Objects………………………………………………………………………….…47

Major Features………………………………………………………………………...…48

Learning a New Development Tool……………………………………………………...48

Major Steps in Design……………………………………………………………………48

1 

 

Phase 1: Fact-Finding, Information Gathering and
Conceptual Database Design

Fact Finding
Fact-finding techniques are used to collect data about the purposed database. There are
varies techniques that can be used; questionnaire/survey, interviews, data review,
observations, and research. Each of which has it’s own advantages and disadvantages.

Questionnaire/survey: Collects information from large group of people by using basic
question forms. The questions can be simply bubbling in the answer, or they can
allow the people to fill in the space with the answer.

Interviews: This is the most common and most useful form of fact-finding. This involves
talking to the business that the database will be designed for to collect information
that can help with the structuring the database.

Data review/analysis: Look through data from the company. If a company already has
detailed records, it can be very useful to go through these in order to get an
overview of how the business is run, and what data will be stored.

Observations: Watching job operations for the business. This can give the designer an
idea of how the business is run, which will give them a better idea of how to
design the database.

Research: Use resources already developed to help design database. This will allow the
designer to see databases that already work, and will allow for improvements and
modifications. Researching could also be looking at someone else’s similar
project data.

Techniques used:

Through research and observation, I was able to make the basic data types and
structure for the database. I was able to get a basic structure of a pharmacy that will be
used to make my models.

Introduction to Enterprise/Organization
Rite Aid Corporation is a retail drugstore chain in the United States. Rite Aid

opened its first store in September of 1962. The company expanded by acquiring other
drugs stores through its years of business. It is one of the nation's leading drugstore
chains with nearly 4,800 stores in 31 states and the District of Columbia. Two thirds of

2 

 

Rite Aid’s total sales are from prescription drugs, while the remaining one third is front
end products.

Structure of the Enterprise
Rite Aid is mostly a pharmacy, although it does carry some non-pharmaceutical

items and offers non-pharmacy related operations. The pharmacy has employees that
interact with the customers. Customers can buy over-the-counter drugs as they please, but
all prescription drug purchases must go through the pharmacy department. Each
prescription drug is carefully looked after. Rite Aid keeps track of who fills the
prescription, and the person the prescription is for. Records are also kept on the
prescribing doctor, just in case they need to be reach for verification, or in case of an
emergency.

Descriptions of Major Objects and Relationship
 The pharmacy department has a staff of employees (pharmacist and pharmacy
technicians). These employees are responsible for filling prescriptions for customers.
Customers come in with a prescription paper from the physician/doctor and this is what is
used to determine if the medication that will be given, and if the customer will need to
return. Customers that need to return are kept on record so that it will be easier for Rite
Aid to have their prescription ready when needed. Rite Aid also keeps track of which
prescriptions come in, and how many of each.

Data Views and Operations for User Groups
 Pharmacy technicians may access the database in order to input new customer
information, and to check if any repeat customers are going to need their prescription
filled that day. The pharmacist will have full access to the database. They’ll be able to see
what medications are in stock, and which medications need to be ordered.

3 

 

Conceptual Database Design

Entity Set Description
Employee

 This entity describes both the pharmacist, and the pharmacy technicians.
All the employee’s personal information is stored here, as well as the
employee ID.

 Candidate keys: SSN, eid

 Primary key: eid

 Strong/Weak Entity: Strong

 Fields to be Indexed: Name, eid

Name eid Name SSN bdate address sex

Description Employee
ID
Number

Employee’s
Full Name

Employee’s
Social
Security
Number

Employee’s
Date of
Birth

Employee’s
Address

Employee’s
Sex

Domain or
Type

Unsigned
Integer

String Unsigned
Integer

String String String

Value
Range

0…2^32 Any Any Any Any Male or
Female

Default
Value

None None None None None None

Nullable? No No No No No No

Unique? Yes No Yes No No No

Single or
multiple
Value

Single Single Single Multi Multi Single

Simple or
Composite

Simple Composite Simple Composite Composite Simple

4 

 

Customer

 This entity is the person who will receive the prescription medication. The
customer’s personal information is stored.

 Candidate Keys: SSN

 Primary Key: SSN

 Strong/weak Entity: Strong

 Fields to be Indexed: Name

Name Name bdate address SSN rel sex

Description Customer’s
Full Name

Customer’s
Date of
Birth

Customer’s
Address

Customer’s
Social
Security
Number

Customer’s
Relative

Customer’s
Sex

Domain or
Type

String String String Unsigned
Integer

String String

Value Range Any Any Any Any Any Male or
Female

Default Value None None None None None None

Nullable? No No No No Yes No

Unique? No No No Yes No No

Single or
multiple
Value

Single Multi Multi Single Multi Single

Simple or
Composite

Composite Composite Composite Simple Composite Simple

5 

 

Doctor

 This entity is the person who writes the prescription, doctor name and id are
stored.

 Candidate Keys: phid

 Primary Key: phid

 Strong/weak Entity: Strong

 Fields to be Indexed: Name, phid

Name Name phid

Description Doctor’s Full Name Doctor’s ID Number

Domain or Type String Unsigned Integer

Value Range Any 0…2^32

Default Value None None

Nullable? No No

Unique? No Yes

Single or multiple Value Single Single

Simple or Composite Composite Simple

6 

 

Prescription

 This entity is the prescription. The customer received this from the doctor, or the
doctor sent it directly to the pharmacy.

 Candidate Keys: pid, drug

 Primary Key: pid

 Strong/weak entity: Strong

 Fields to be Indexed: pid, drug

Name drug dose amount pid prescribed

Description Drugs’s
Name

Drug
strength

Drug
amount

Prescription
Identifier

Date
prescribed by
doctor

Domain or
Type

String String Unsigned
Interger

Unsigned
Interger

String

Value Range Any Any 0…2^32 0…2^32 Any

Default
Value

None None None None None

Nullable? No Yes No No No

Unique? Yes No No Yes No

Single or
multiple
Value

Single Single Single Single Multi

Simple of
Composite

Simple Simple Simple Simple Composite

7 

 

Drug

 This is the medication that is currently being stored. The medications are
organized by name, and an id number is kept for each.

 Candidate Keys: Name

 Primary Key: did

 Strong/weak Entity: Strong

 Fields to be Indexed: Name

Name Name did

Description Name of Drug Drug identification
number

Domain or Type String Unsigned integer

Value Range Any 0..2^32

Default Value None None

Nullable? No No

Unique? Yes Yes

Single of multiple
Value

Single Single

Simple or
Composite

Simple Simple

8 

 

Relationship Set Description
primary_dr:

This is a binary relationship between the customer and there doctor. It merely
shows who the customer’s primary doctor/prescriber is.

 Mapping cardinality: M..1

 Descriptive field: none

 Participation Constraint: Total participation for the customer.

owns:

This is a ternary relationship between the customer, the doctor, and the
prescription.

 Mapping Cardinality: 1..M (for customer-to-prescription and for doctor-
to-prescription)

 Description field: none

 Participation Constraint: Optional for all participants.

fill:

This is a ternary relationship between the employee, the drug, and the
prescription.

 Mapping Cardinality: M..M (for employee-to-prescription)

 Mapping Cardinality: 1..M (for drug-to-prescription)

 Description field: price, received, filled, given

 Participation Constraint: Total participation for prescription
Related Entity Set

There are no related entity sets.

9 

 

E-R Diagram

Customer

Name

-fname

-min

-lname

bdate

address

rel

sex

SSN

Doctor 

Name 

-fname

-min

-lname

phid 

Employee 

Name 

‐fname 

‐min 

‐lname 

bdate 

address 

sex 

SSN 

eid 

Prescription 

prescribed 

drug 

dose 

pid 

amount 

Drug 

Name 

did 

Primary Dr 

Owns 

Fill 

M  1 

1 

1 

M 

1 

M 

M 

received  

filled 

given 

price 

10 

 

Phase 2: E-R model and relational model

Description

The E-R model is a visual representation of the database. This step is done early on so
that there will be a logical model to the information given to the designer. This helps later
when the information is being put into the database. The relational model is used to
compress both the entity types and the relationships into relations. These relations are
used to make the movement to the database easier.

Comparison Between the Two Models

The E-R model is not very useful when it comes to an actual database. It is very good for
setting the foundation of the data that will be stored in the database, but it is only a
concept and has little practical use. This model helps to visualize and organize the data.

The relational model is much more valuable to the database than the E-R model. It brings
the entities and relationships into precise schemas that allow us to easily use them in our
database. The columns in each relation represent some concrete piece of data that will be
used in the database.

Conversion From E-R Model to Relational

The E-R model is merely used to structure the data for the database. This model
needs to be converted so that the information is structured in a way that is more easily
usable by a database management system. Strong entities from the E-R model are the first
to be converted into relations. Only include the simple component attributes of a
composite attribute, and all simple attributes. For weak entities we also include all of the
attributes, but we also need to include a foreign key from the owner of the relationship.
The combination of this foreign key, and a key in the weak entity will make the primary
key for this relation. There are three approaches to making relationships that are one-to-
one into relations.

 The first method is the foreign key approach, which includes a foreign key
from one relation into another.

 The second method is the merged relation approach, which is the merging
of two entity types and the relationship into a single relation.

 The final method is the cross-reference or relationship relation approach.
In this approach we make a third relation that will hold the primary keys
of the relations involved.

11 

 

In a one-to-N relation we include in the N side a foreign key that is a primary key
from the one side. In an M-to-N relationship, we make a new relation that holds a foreign
key from both of the entities involved, and it contains the simple attributes of the
relationship. There are a few methods to map super and sub-classes.

 The first method is to create a relation for the super class, then make a
relation for every sub-class including the primary key from the super-class
in them.

 The second method is to create a relation for each sub-class, then making a
union with the attributes of the super-class.

 The third method is to create a single relation with a union of the attributes
of the super-class and all of the sub-classes. This only works if the classes
are disjoint, and this has this possibility of creating many null values.

 The final method also calls for us to make a single relation and to include
a union of all the attributes of the super and sub-classes. But, this relation
has a Boolean operator that shows if it belongs to the sub-class.

 These are the methods used to convert an E-R model into relations.

Constraints

The constraints are rules that are put in place to ensure the relations, entities, and keys are
set to acceptable values. Entity constraints are in place to ensure all value as set
reasonable, and that none of the primary keys or foreign keys are null. Referential
constraints are made when the table is being created. These constraints might be broken
when a record is deleted, updated, or insert, also this may happen when a primary key or
a foreign key is modified. The default action is for the action to be rejected.

12 

 

E-R Database to Relational Database
Customer relation

Attributes

 Name

 Domain: Cannot be NULL. This is a string in format
“LastName, FirstName”.

 bdate

 Domain: Cannot be NULL. This is a string in the format
MM/DD/YYYY example “01/01/1991”.

 address

 Domain: Cannot be NULL. This is a string composed of the
street number, city, and state of the person.

 rel

 Domain: Can be NULL. This is a string in format “LastName,
FirstName”.

 sex

 Domain: Cannot be NULL. This is a string, the value may be
yes or no.

 SSN

 Domain: Cannot be NULL. This is an integer, and should be
nine-digit number in format “000000000”.

 pphid

 Domain: Cannot be NULL. This is an integer.

Constraints

 Primary key: The SSN is the primary key. Cannot be null and must be
unique.

 Foreign key: Primary physician id cannot be null.

13 

 

 Business Rule: none

Candidate Keys

 SSN

Doctor relation

Attributes

 Name

 Domain: Cannot be NULL. This is a string in format
“LastName, FirstName”.

 phid

 Domain: Cannot be NULL. This is an integer.

Constraints

 Primary key: Physician id cannot be NULL.

 Foreign key: None

 Business Rule: None

Candidate Keys

 phid

Prescription relation

Attributes

 prescribed

 Domain: Domain: Cannot be NULL. This is a string in the
format MM/DD/YYYY example “01/01/1991”.

 drug

 Domain: Cannot be NULL. This is a string in format “name”.

14 

 

 dose

 Domain: Cannot be Null. This is a descriptive string that tells
how many milligrams per unit of time.

 amount

 Domain: Cannot be Null. 0..2^32 this field tells how many pills
will be placed in the order.

 pid

 Domain: Cannot be NULL. This is the prescription id number
that is represented by numbers 0..2^32.

Constraints

 Primary key: Cannot be null.

 Foreign key: None

 Business Rule: none

Candidate Keys

 pid

Employee Relation

Attributes

 Name

 Domain: Cannot be NULL. This is a string in format
“LastName, FirstName”.

 bdate

 Domain: Cannot be NULL. This is a string in the format
MM/DD/YYYY example “01/01/1991”.

 address

 Domain: Cannot be NULL. This is a string composed of the
street number, city, and state of the person.

15 

 

 sex

 Domain: Cannot be NULL. Value may be yes or no.

 SSN

 Domain: Cannot be NULL. This is a nine-digit number in
format “000000000”.

 eid

 Domain: Cannot be NULL. This is a integer.

Constraints

 Primary key: Cannot be Null

 Foreign key: None

 Business Rule: none

Candidate Keys

 SSN, eid

Drug relation

Attributes

 Name

 Domain: Cannot be NULL. This is a string in format “name”.

 did

 Domain: Cannot be NULL. This is integer that is an identifier
for the drug.

Constraints

 Primary key: did and Name cannot be null.

 Foreign key: none

 Business Rule: none

16 

 

Candidate Keys

 did

owns relation

Attributes

 pid

 Domain: Cannot be NULL. This is an integer.

 cSSN

 Domain: Cannot be NULL. This integer is a nine-digit number
in format “000000000”.

 phid

 Domain: Cannot be NULL. This is an integer.

Constraints

 Primary key: Is the combination {pid, phid}

 Foreign key: Cannot be null.

 Business Rule: none

Candidate Keys

 {pid, phid}

fill relation

Attributes

 eid

 Domain: Cannot be NULL. This is an integer.

 did

 Domain: Cannot be NULL. This is an integer..

17 

 

 Domain: Cannot be NULL. This is the drug id number that is an
integer.

 pid

 Domain: Cannot be NULL. This is an integer.

 received

 Domain: Cannot be NULL. This is a string in the format
MM/DD/YYYY example “01/01/1991”.

 filled

 Domain: Cannot be NULL. This is a string in the format
MM/DD/YYYY example “01/01/1991”.

 given

 Domain: Cannot be NULL. This is a string in the format
MM/DD/YYYY example “01/01/1991”.

 price

 Domain: Cannot be NULL. This is a double.

Constraints

 Primary key: Is the combination of {eid, pid}.

 Foreign key: Cannot be null.

 Business Rule: none

Candidate Keys

 {eid, pid}

18 

 

Relation Instances
Customer (SSN, Name, bdate, address, rel, sex, pphid)
SSN Name bdate address rel sex pphid

987654320 Weston,
Micheal

01/15/1985 201 S. 
Division St. 
Ann Arbor, 
MI 48104

NULL Male 1

987654321 Axe, Sam 08/11/1978 1600 
Amphitheatre 
Parkway 
Mountain 
View, CA 
94043

NULL Male 2

987654322 Fry,
Philip

07/08/1988 Millennium at 
Midtown 
10 10th 
Street NE 
Atlanta, GA 
30309

NULL Male 3

987654323 Smith,
John

04/04/1980 9606 North 
MoPac 
Expressway 
Austin, TX 
78759

Smith,
Jane

Male 4

987654324 Smith,
Jane

03/12/1984 2590 Pearl 
Street 
Boulder, CO 
80302

Smith,
John

Female 1

987654325 John,
Doe

02/26/1986 5 Cambridge 
Center 
Cambridge, 
MA 02142

NULL Male 2

987654326 Jane, Doe 02/08/1985 410 Market 
St 
Chapel Hill, 
NC 27516

NULL Female 3

987654327 Saxon,
Harry

01/05/1970 20 West 
Kinzie St. 

NULL Male 4

19 

 

Chicago, IL 
60654

987654328 Caffrey,
Neal

11/24/1977 114 Willits 
Street 
Birmingham, 
MI 48009

Burke,
Peter

Male 5

987654329 Nigma,
Edward

12/22/1965 1700
Broadway.
New
York, NY
10019

Wayne,
Bruce

Male 5

Doctor (phid, Name)
phid Name

1 House, Gregory

2 Geisel, Theodor

3 Pepper, Mary

4 Xavier, Charles

5 Kamiya, Minoru

Prescription (pid, amount, drug, dose, prescribed)
pid amount drug dose prescribed

123 120 Sanorex 1 pill every day
(10mg/hour)

09/15/2010

435 60 Lexapro 1 pill every 12
hours
(250mg/6hour)

09/12/2010

143 50 Zyprexa Take as needed 09/27/2010

354 120 Sanorex 1 pill every day
(10mg/hour)

10/11/2010

786 60 Lexapro 1 pill every 12
hours

10/19/2010

20 

 

(250mg/6hour)

467 50 Zyprexa Take as needed 09/22/2010

248 60 Lexapro 1 pill every 12
hours
(250mg/6hour)

10/01/2010

808 100 Sanorex 1 pill every day
(10mg/hour)

09/01/2010

870 20 Zyprexa Take as needed 09/27/2010

345 60 Lexapro 1 pill every 12
hours
(250mg/6hour)

10/20/2010

Employee (eid, SSN, Name, address, sex, bdate)
eid SSN Name address sex bdate

12 123123456 Gates, Bill 1 Infinite 
Loop 
Cupertino, 
CA 95014

Male 04/03/1969

54 123004567 Jobs, Steve Sony Drive 
Park Ridge, 
NJ 07656

Male 07/30/1967

22 123450000 Zuckerberg,
Mark

2200 
Mission 
College Blvd. 
Santa Clara, 
CA 95054

Male 12/24/1982

11 123120000 Anderson,
Tom

1101 New 
York 
Avenue, 
N.W. 
Second Floor 
Washington, 
DC 20005

Male 01/01/1987

21 

 

Drug (did, Name)

did Name

100 Sanorex

110 Zyprexa

101 Lexapro

owns (phid, pid, cSSN)
phid pid cSSN

1 123 987654320

2 435 987654321

3 143 987654322

4 354 987654323

1 786 987654324

2 467 987654325

3 248 987654326

4 808 987654327

5 870 987654328

5 345 987654329

fill (eid, pid, did, received, filled, given, price)

eid pid did received filled given price

11 123 100 09/15/2010 09/15/2010 09/15/2010 9.99

12 435 101 09/12/2010 09/12/2010 09/12/2010 4.99

11 143 110 09/27/2010 09/27/2010 09/27/2010 4.49

12 354 100 10/12/2010 10/12/2010 10/12/2010 9.99

22 

 

54 786 101 10/19/2010 10/19/2010 10/19/2010 4.99

22 467 110 09/22/2010 09/22/2010 09/22/2010 4.49

11 248 101 10/01/2010 10/01/2010 10/01/2010 4.99

12 808 100 09/01/2010 09/01/2010 09/01/2010 8.89

12 870 110 09/27/2010 09/27/2010 09/27/2010 2.29

11 345 101 10/21/2010 10/22/2010 10/22/2010 4.99

Queries
 Select all customers that have the primary physician Dr. Pepper.

 Select all customers that have the primary physician Dr. Pepper, and who
use the prescription drug zyprexa.

 List all prescriptions that were received and filled on the same day.

 List all of Dr. House’s patients.

 List all doctors with more than one patient.

 List all doctors with only one patient.

 List all employees that filled prescriptions with the drug lexapro.

 List all doctors that prescribe at least one of their patients sanorex.

 List all customers who did not deliver their prescription the day it was
prescribed.

 List all prescriptions written by Dr. Kamiya.

Query Representation
Select all customers that have the primary physician Dr. Pepper

Relational algebra:

pepper_id ← Π (phy_id) σ (fullName = “Pepper, Mary”) Doctor

Π (fullName) σ (primphy = pepper_id) customer

Tuple relational calculus:

23 

 

{ c | customer(c) ^ (∃d) doctor(d) ^ d.fullName = ”Pepper, Mary” ^ d.phy_id=c.primphy
}

Domain relational calculus:

{ <s,n,b,a,r,sex,phy> | customer(s,n,b,a,r,sex,phy) ^ (doctor(phy, “Pepper, Mary”)

}

Select all customers that have the primary physician Dr. Pepper, and who use the
prescription drug zyprexa

Relational algebra:

pepper_id ← Π (phy_id) σ (fullName = “Pepper, Mary”) Doctor

pepper_cu ← Π (fullName) σ (primphy = pepper_id) customer

pre ← Π (σ (drug = “Zyprexa”) Prescription)

zupuser ← Π (SSN) σ (phy_id=pepper_id ^ prescription_id=pre) belongs_to

Π (fullName) (SSN=zupuser) customer)

Tuple relational calculus:

{ c | customer(c) ^ (∃d) doctor(d) ^ d.fullName = ”Pepper, Mary” ^ d.phy_id=c.primphy
^(∃x)belongs_to(x)^ x.cSSN=c.SSN ^ (∃p) prescription(p) ^ p.prescription_id =
x.prescription_id ^ p.drug=”Zyprexa”

}

Domain relational calculus:

{ <s,n,b,a,r,sex,phy> | customer(s,n,b,a,r,sex,phy) ^ (doctor(phy, “Pepper, Mary”) ^ (∃p
id) belongs_to (phy, ,pid, s) ^ prescription (pid, , zyprexa,,_)

}

24 

 

Phase 3: Creating Database with Oracle DBMS

SQL*PLUS

 Sql*Plus is a command line program that allows us to run sql commands that can
make tables, insert records, and query them.

 Table

Tables are the basic schemas. They store the data that is in the format we gain
from the relational model. Each column represents an attribute of the relation, and
each row represents another record for the table. Tables also have primary and
foreign keys.

 View

Views are created using tables as references. A view is linked to this table and can
only modify, add, or delete data when it includes all values that cannot be null, or
if one of the columns is a function or calculation, or if it uses group by, distinct, or
references the pseudo-column RowNum.

 Index

Indexes are lists of key information stored in the database. They allow for an easy
way to find things without having going through all the information in the tables.

 Clusters

A cluster is a method of storing objects from the database on the physical disk. In
order to do this you must own the tables involved.

 Sequences

This will generate a sequential number that can be used in the table. This number
can be used as a customer id or as an order id number.

25 

 

Schemas Used

The table schema is the main schema used.

Syntax:

 create table [table name]

 {

 attribute_name attribute_type nullable? default_values?

 …. …. …. ….

…. …. …. ….

…. …. …. ….

--Constraints

pk_tableName primary key(attribute name)

fk_parentName_childName foreign key(attribute name) references
parentName(parent attribute name)

 };

Objects created using this schema:

 rm_drug

 rm_doctor

 rm_customer

 rm_prescription

 rm_employee

 rm_fill

 rm_owns

26 

 

Schemas and Their Contents

rm_drug

Name Null? Type

--- -------- --------------------

 DID NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(16)

CS342 SQL> select * from rm_drug;

 DID NAME

---------- ----------

 100 Sanorex

 110 Zyprexa

 101 Lexapro

rm_doctor

Name Null? Type

--- -------- --------------------

 PHID NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

CS342 SQL> select * from rm_doctor;

PHID NAME

---------- --------------------

 1 House, Gregory

 2 Geisel, Theodor

 3 Pepper, Mary

 4 Xavier, Charles

 5 Kamiya, Minoru

27 

 

rm_customer

Name Null? Type

--- -------- --------------------

 SSN NOT NULL NUMBER(9)

 PPHID NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

 REL VARCHAR2(30)

 ADDRESS NOT NULL VARCHAR2(60)

 BDATE NOT NULL DATE

 SEX NOT NULL VARCHAR2(1)

CS342 SQL> select * from rm_customer;

 SSN PPHID NAME REL

---------- ---------- -------------------- ----------------------------

ADDRESS BDATE S

--- --------- -

 987654320 1 Weston, Micheal NULL

201 S. Division St. Ann Arbor, MI 48104 15-JAN-85 M

 987654321 2 Axe, Sam NULL

1600 Amphitheatre Parkway Mountain View, CA 94043 11-AUG-78 M

 987654322 3 Fry, Philip NULL

Millennium at Midtown 10 10th Street NE Atlanta, GA 30309 08-JUL-88 M

 987654323 4 Smith, John Smith, Jane

9606 North MoPac Expressway Austin, TX 78759 04-APR-80 M

28 

 

 987654324 1 Smith, Jane Smith, John

2590 Pearl Street Boulder, CO 80302 12-MAR-84 F

 987654325 2 John, Doe NULL

5 Cambridge Center Cambridge, MA 02142 26-FEB-86 M

 987654326 3 Jane, Doe NULL

410 Market St Chapel Hill, NC 27516 08-FEB-85 F

 987654327 4 Saxon, Harry NULL

20 West Kinzie St. Chicago, IL 60654 05-JAN-70 M

 987654328 5 Caffrey, Neal Burke, Peter

114 Willits Street Birmingham, MI 48009 24-NOV-77 M

 987654329 5 Nigma, Edward Wayne, Bruce

1700 Broadway. New York, NY 10019 22-DEC-65 M

rm_prescription

Name Null? Type

--- -------- -------------------

 PID NOT NULL NUMBER(8)

 DRUG NOT NULL VARCHAR2(16)

 DOSE NOT NULL VARCHAR2(60)

 AMOUNT NOT NULL NUMBER(3)

 PRESCRIBED NOT NULL DATE

CS342 SQL> select * from rm_prescription;

29 

 

 PID DRUG

---------- ----------------

DOSE AMOUNT PRESCRIBE

--- ---------- ---------

123 Sanorex

1 pill every day (10mg/hour) 120 15-SEP-10

 435 Lexapro

1 pill every 12 hours (250mg/6hour) 60 12-SEP-10

 143 Zyprexa

Take as needed 50 27-SEP-10

 354 Sanorex

1 pill every day (10mg/hour) 120 11-OCT-10

 786 Lexapro

1 pill every 12 hours (250mg/6hour) 60 19-OCT-10

 467 Zyprexa

Take as needed 50 22-SEP-10

 248 Lexapro

1 pill every 12 hours (250mg/6hour) 60 01-OCT-10

 808 Sanorex

1 pill every day (10mg/hour) 100 01-SEP-10

30 

 

 PID DRUG

---------- ----------------

DOSE AMOUNT PRESCRIBE

--- ---------- ---------

870 Zyprexa

Take as needed 20 27-SEP-10

 345 Lexapro

1 pill every 12 hours (250mg/6hour) 60 20-OCT-10

rm_employee

Name Null? Type

--- -------- --------------------

 EID NOT NULL NUMBER(5)

 SSN NOT NULL NUMBER(9)

 NAME NOT NULL VARCHAR2(30)

 ADDRESS NOT NULL VARCHAR2(60)

 BDATE NOT NULL DATE

 SEX NOT NULL VARCHAR2(1)

CS342 SQL> select * from rm_employee;

 EID SSN NAME

---------- ---------- --------------------

ADDRESS BDATE S

--- --------- -

 12 123123456 Gates, Bill

1 Infinite Loop Cupertino, CA 95014 03-APR-69 M

31 

 

 54 123004567 Jobs, Steve

Sony Drive Park Ridge, NJ 07656 30-JUL-67 M

 22 123450000 Zuckerberg, Mark

2200 Mission College Blvd. Santa Clara, CA 95054 24-DEC-82 M

 11 123120000 Anderson, Tom

1101 New York Avenue, NW. Second Floor Washington, DC 20005 01-JAN-87 M

rm_fill

Name Null? Type

--- -------- --------------------

 EID NOT NULL NUMBER(5)

 PID NOT NULL NUMBER(8)

 DID NOT NULL NUMBER(5)

 RECEIVED DATE

 FILLED DATE

 GIVEN DATE

 PRICE NUMBER

CS342 SQL> select * from rm_fill;

 EID PID DID RECEIVED FILLED GIVEN PRICE

---------- ---------- ---------- --------- --------- --------- --------

 11 123 100 15-SEP-10 15-SEP-10 15-SEP-10 9.99

 12 435 101 12-SEP-10 12-SEP-10 12-SEP-10 4.99

 11 143 110 27-SEP-10 27-SEP-10 27-SEP-10 4.49

 12 354 100 12-OCT-10 12-OCT-10 12-OCT-10 9.99

32 

 

 54 786 101 19-OCT-10 19-OCT-10 19-OCT-10 4.99

 22 467 110 22-SEP-10 22-SEP-10 22-SEP-10 4.49

 11 248 101 01-OCT-10 01-OCT-10 01-OCT-10 4.99

 12 808 100 01-SEP-10 01-SEP-10 01-SEP-10 8.89

 12 870 110 27-SEP-10 27-SEP-10 27-SEP-10 2.29

 11 345 101 21-OCT-10 22-OCT-10 22-OCT-10 4.99

rm_owns

Name Null? Type

--- -------- --------------------

 PHID NOT NULL NUMBER(5)

 PID NOT NULL NUMBER(8)

 CSSN NOT NULL NUMBER(9)

CS342 SQL> select * from rm_owns;

 PHID PID CSSN

---------- ---------- ----------

 1 123 987654320

 2 435 987654321

 3 143 987654322

 4 354 987654323

 1 786 987654324

 2 467 987654325

 3 248 987654326

 4 808 987654327

 5 870 987654328

 5 345 987654329

33 

 

SQL Queries

(1)Select all customers that have the primary physician Dr. Pepper.

select rm_customer.SSN, rm_customer.Name from rm_customer, rm_doctor
where rm_doctor.Name = 'Pepper, Mary' and pphid = phid;

Results:

SSN NAME

---------- ------------------------------

 987654322 Fry, Philip

 987654326 Jane, Doe

(2)Select all customers that have the primary physician Dr. Pepper, and who use the
prescription drug zyprexa.

select rm_customer.SSN, rm_customer.Name

from rm_customer, rm_doctor, rm_owns o, rm_prescription p

 where rm_doctor.Name = 'Pepper, Mary'

 and pphid = rm_doctor.phid

 and p.Drug = 'Zyprexa' and o.pid = p.pid

 and o.cSSN = rm_customer.SSN

Results:

 SSN NAME

---------- ------------------------------

 987654322 Fry, Philip

(3)List all prescriptions that were received and filled on the same day.

select pid, eid, did from rm_fill where received = filled

order by pid

Results:

PID EID DID

34 

 

---------- ---------- ----------

 123 11 100

 143 11 110

 248 11 101

 354 12 100

 435 12 101

 467 22 110

 786 54 101

 808 12 100

 870 12 110

(4)List all of Dr. House’s patients.

select d.Name, c.Name
 from rm_doctor d inner join rm_customer c on
 (d.phid=c.pphid and d.Name='House, Gregory')

Results:

NAME NAME
------------------------------ ------------------------------
House, Gregory Weston, Micheal
House, Gregory Smith, Jane

(5)List all doctors with more than one patient.

select d.* from rm_doctor d where exists

(select * from rm_customer c, rm_customer c2, rm_doctor d2

 where (

 c.pphid = d.phid and c2.pphid = d2.phid

 and c.SSN != c2.SSN and d.phid = d2.phid

)

)

35 

 

Results:

PHID NAME

---------- ------------------------------

 1 House, Gregory

 2 Geisel, Theodor

 3 Pepper, Mary

 4 Xavier, Charles

 5 Kamiya, Minoru

(6)List all doctors with only one patient.

select d.* from rm_doctor d where not exists

(select * from rm_customer c, rm_customer c2, rm_doctor d2

 where (

 c.pphid = d.phid and c2.pphid = d2.phid

 and c.SSN != c2.SSN and d.phid = d2.phid

)

)

Results:

no rows selected --All doctors have 2 patients

(7)List all employees that filled prescriptions with the drug lexapro.

select unique e.Name

 from rm_employee e inner join rm_fill f on
 (e.eid=f.eid)
 inner join rm_drug d on
 (f.did = d.did and d.Name ='Lexapro')

Results:

NAME

Anderson, Tom

36 

 

Jobs, Steve
Gates, Bill

 
(8) List all doctors that prescribe at least one of their patients sanorex. 
select unique rm_doctor.* from rm_doctor, rm_owns o, rm_prescription p
 where p.Drug = 'Sanorex' and o.pid = p.pid
 and o.phid = rm_doctor.phid

Results:

 PHID NAME
--------- ------------------------------
 1 House, Gregory
 4 Xavier, Charles
 
 
(9) List all customers who did not deliver their prescription the day it was prescribed. 
select c.Name from rm_customer c, rm_prescription p, rm_fill f, rm_owns
o
 where (p.pid=f.pid
 and p.prescribed!=f.received
 and p.pid=o.pid
 and o.cSSN=c.SSN)

Results:

NAME

Smith, John
Nigma, Edward

(10)List all prescriptions written by Dr. Kamiya.

select o.pid from rm_owns o left outer join rm_doctor d on
(o.phid=d.phid) where Name ='Kamiya, Minoru'

Results:

PID

 345

 870

37 

 

Phase 4: Features of PL/SQL

Common Features in Oracle PL/SQL

 PL(procedural language) and SQL(structured query language) allows for
statements to be written that are followed sequentially. This allows for data to be
manipulated through methods that are not available in SQL. PL/SQL also allows for
loops, variables, exceptions, and conditional statements. The purpose of stored
subprograms is to keep the front end from being taxed with extra calculations. The stored
procedures can be done on the host machine and are precompiled to make them more
accessible and easier to use.

Oracle PL/SQL

 PL/SQL programs are blocks of code. The blocks are broken into the sections
declarations, executable commands, and exception handling.

 declare
 <In this area declarations are placed>
 begin
 <this is where the executable commands start>
 exception
 <this area handles all exceptions>
 end;

 Control Structures
 if<some condition>then<some command>

 elsif<some condition>then<some command>
 else<some command>
 end if;

 loops repeat until an exit statement is reached, or for a specific number
of times, or while a condition is met

 Cursors
 The cursor is a placeholder or pointer to a value in a table column. It is

normally used in a loop so that every value in the column is used, and
it increments during every iteration of the loop.

 Stored Functions
 A collection of statements that should return a value to whatever called

it.

 CREATE OR REPLACE FUNCTION <function_name> [(input/output variable
declarations)] RETURN return_type
[AUTHID <CURRENT USER | DEFINER>] <IS|AS>
 [declaration block]
BEGIN
 <PL/SQL block WITH RETURN statement>

38 

 

 RETURN <return_value>;
[EXCEPTION
 EXCEPTION block]
 RETURN <return_value>;
END;

 Stored Procedures
 Procedures are similar to functions, but they cannot return values.

create or replace procedure <procedure name>
[(argument [in | out | in/out] [nocpoy] datatype)]
[authid { current_user | definer }]
{is | as } { pl/sql_subprogrambody | language {java name ‘string’ | c {name name}
library lib_nam}};

 Package
 Packages are groups of procedures, functions, variables, and SQL

statements placed together. To use a procedure in a package, you must
first list the package name, then the procedure.

create or replace package <package name>
[authid {definer | current_user}]
{is | as }
package specification;

 Trigger
 Triggers occur when certain events happen. Triggers can activate

before or after the statement is executed or instead of the command.

create or replace trigger <trigger name>
{before | after | instead of}
{dml_event_clause | ddl_event | database_event }
 on { [schema] <schema name> | database }
}
[when (condition)]
{ pl/sql_block | call_procedure_statement }

39 

 

Oracle PL/SQL Subprogram

Stored Insert Procedure

This procedure inserts a new doctor into the rm_doctor table.

proc4.sql

create or replace procedure new_doctor(nphid in number, nName in
varchar)

as

begin

insert into rm_doctor (phid, Name)

 values (nphid, nName);

end;

/

Stored Delete Procedure

This procedure deletes a fill record based on its primary key (eid,pid).

proc5.sql

create or replace procedure del_fill(neid in number, npid in number)

as

begin

delete from rm_fill where eid=neid and pid=npid;

end;

/

Stored Average Function

This function returns the average price for the prescription drugs. It takes the price from
rm_fill table.

proc3.sql

declare

40 

 

 val number:=0;

 amount number:=0;

 times number:=0;

 cursor c is select price from rm_fill;

begin

 open c;

 loop

 fetch c into val;

 exit when c%notfound;

 amount := amount + val;

 times := times + 1;

 end loop;

 amount := amount/times;

 close c;

end;

/

Stored Trigger for Deleting an Employee

This trigger activates when an employee is removed because they have been fired, quit,
or retired. The employee is moved into a new table called old employee, and all of their
customers are also moved. Because the primary key eid is a foreign key in rm_fill, it was
necessary to remove all records that had this key from that table.

drop_employee_trigger.sql

create or replace trigger rm_employee_bef_del

before delete on rm_employee for each row

begin

 insert into rm_old_employee

 (id, SSN, Name, address, bdate, sex, edate)

 values

41 

 

 (:old.eid, :old.SSN, :old.Name, :old.address, :old.bdate,
:old.sex, sysdate);

 delete from rm_fill where eid= :old.eid;

end;

/

Stored Trigger for Deleting Fill

drop_fill_trigger.sql

create or replace trigger rm_fill_bef_del

before delete on rm_fill for each row

begin insert into rm_fill_log

 (id, pid, did, received, filled, given, price)

 values

 (:old.eid, :old.pid, :old.did, :old.received, :old.filled,
:old.given, :old.price);

end;

/

42 

 

Phase 5: GUI Design and Implementation

Daily Activities for Users

Pharmacy Employees

Employees of the pharmacy will use this database. The main functions include adding
new customers, doctors, and prescriptions to the database. There should be views
available that show which employees fill what prescriptions, and which doctor are
prescribing which medication to customers.

Management

Management would need to be able to access the database in order to add new
employees. The database could possible be used as a way of keeping track of when an
employee logs in or out and this can be used to replace a timecard.

In the GUI I designed, I created the part of the database that will allow employees to
input new prescriptions in the database.

Relations, Views, and Subprograms

In order for the application to be able to add new prescriptions, I had to use the following
relations.

 rm_doctor
 rm_customer
 rm_prescription
 rm_owns

Each prescription is related to a customer and a doctor through the owns relation. All of
these relations have been used in my code to help make the features described above.

Application Screen Shots

The parts of this application that have already been designed are extremely easy to use. It
makes it very simple for the user to input a new prescription, with very little hassle. The
opening screen shows all the prescriptions currently in the database, and it allows the user
to quit the application, add a new prescription, or view the relation table for all of the
involved relations.

43 

 

Each of these items is linked to its corresponding table. The tables are very basic; they
just show the items listed in the relations.

44 

 

 

 
The owns relation has been modified to show the customer name and prescribing
physicians name instead of the customer SSN and physician id number.

45 

 

The customer relation has also been modified to show the Primary Physician’s name
instead of the id number.

 

The next part of the implementation was adding a way for a new prescription to be added.
This form contains all the relevant areas needed to add a prescription to the database.
Also at the bottom it tells the user what each of the areas is expecting to receive.

46 

 

Lastly, the application should have a way to connect the user and doctor the prescription
that was just made. This is just a prototype. The actual implementation will allow for the
physician and customer to be input manually in case they aren’t already in the database.
But as of right now it allow the physician to be chosen by id, and the customer to be
chosen by their SSN. Also, this step has not worked properly yet because a foreign key
does not exist at the instant when the done button is pressed.

Code Description and GUI Design

Steps In Designing Interface

Once I was able to connect to the database I first wanted to be able to manipulate the data
in the tables. So most of my time was not spent on the design of my application, but more
on the ways in which I could move, display, and arrange the information on the page. I
did change the design of the page that allowed the user to input new prescriptions. The
first design was as follows.

47 

 

The major flaws in this design are that the save button does not save to the database. It
save all the values in the text boxes into global variable. This way the data will be
accessible from anywhere in the program. From the function that calls this windows
form, the application then inserts the new data into the database.

Major Objects

In the beginning I had trouble understanding why I was able to access data in certain
forms, but not in others. The problem was that an adapter must be in every form that uses
that relation in order for it to work. I continuously tried to access data directly from the
one data set that I had made containing my four relations, but it never worked.

The dataset designer was very helpful when it came to creating customer queries for my
table. Not only does it show the relationships between my data as I have described in my
model, but it shows all of the functions the table adapter has which allows the user to see
if the current functions suit their needs, or if new functions need to be created.

Telling forms to close is very easy, but it can sometimes be tricky to call a new form. By
default when a form is made, there is a function to call it, but if you need to pass a value
to this function, the code needs to be modified. I have still been unable to call a function
in form1 from form2. Even if the function will only affect form1.

All of the table adapter I used were defined by the program. I was able to get the adapters
where I wanted merely by dragging the relation from my data sources onto my form.
When it came to saving, deleting, and inserting data I did not know what to do, but when

48 

 

I dragged these relations onto my form, buttons appeared that had the functionality I
needed. After a while of interpretation I was able to make buttons that replicated these
items.

On the two forms that I modified the relations displayed, I used two different methods.
The first was changing the query to include the data I wanted, modifying the columns to
add the new name, and changing the value in this new column to the value it represented
when I previewed my custom query. An example is if nothing is renamed and the column
name ‘NAME’ appears twice in the query results, the second name will be renamed
‘NAME1’. Or while writing the query, the name can be change like this, ‘SELECT
NAME AS EXPR1 FROM CUSTOMER’.

The second method I used was including all of the fields from every relation involved,
and only displaying the columns that I needed in that view.

Major Features

The major features of my interface are its simplicity and intuitive use. For now this
design is only used for adding new prescriptions, but each selectable item is very precise
in what it says it will do, and in what it does.

Learning a New Development Tool

I was not enjoying the building of my application when everything was going wrong, but
then something went right and I was able to keep working because I focus on one
problem at a time. There aren’t very many helpful examples for doing this. I have three
books on C#, access to the Internet, three programs by Dr. Wang in C#, and an example
project by Nick Toothman in C#, and it was still prodigiously difficult to make progress.
Even though I had access to the code I did not have access to a program that would run,
accessing a database and using any functionality. And not only was using C# difficult,
but it was also very difficult to set up a connection to the Oracle server. I downloaded
several versions of the Oracle 11g client and it would not allow me to connect.
Eventually I realized that I needed to download the Oracle 10g server as well. Also
Microsoft Visual Studio 2008 was not allowing me to find the database, so that also
needed to be update to Visual Studio 2010.

Major Steps in Design

Coding this application was difficult and taxing. Not only did I not know what I was
doing when I started, but also the applications were not working properly. Naturally I
started my project early. I downloaded and installed both Oracle 11g client and Visual
Studio 2008. Once it was actually time to start on my application, I thought I was a head
because I had already installed these items. Three days later I was still unable to get a Dr.

49 

 

Wang’s program to communicate with the server. After speaking with him about my
problem neither of us was able to find a solution, so I was left to find a solution on my
own. After installing new versions of Oracle client and server, and a new Visual Studio I
was able to connect. Then it took me four days of tinkering to figure out how to use table
adapters and design an interface that would function. Once these problems were resolved,
major steps in designing

I first needed to display the tables. This was as simple as dragging and dropping. Next I
needed to be able to call the forms from other forms. This took a while to get used to
because at first I used the program.cs to do this, but it did not work as I liked. Later I read
through Dr. Wang’s code and found that I could call a form whenever I liked by making a
new instance of that class. Once I had learned that, I needed to pass variables between
functions this sounds simple enough but when a form has more than the default functions,
renaming one so that it accepts a parameter may messes up that entire classes code. Once
I could pass variables I needed to use these in the new form. After I was able to do this I
could try to use that variable in functions in this form once. I was comfortable moving
variable, manipulating text boxes, and other items in the form, I needed a way to save to
the database. I tried to use the method Dr. Wang uses in his address book program and in
his grade book program, but I was unable to get them to work. So I tried to use the
functionality of the buttons that come when a relation table is dragged into a form. The
default save button that comes with this works, but it did not help me in the way I
wanted. For this to work I had to use the dataset designer to make a new query that was
attached to a table adapter so that I could insert data by passing this adapter parameters
that would be retrieved from the text boxes on the form. Once I knew all of this setting up
what I have for my application was simple.

