Apartment Management Database Project

By: Osbaldo Fernandez

November 8, 2010

CMPS 342 Database Systems

Dr. Huaquin Wang

Table of Contents

Phase I: Fact-Finding Techniques, Information Gathering, and Conceptual Database Design

1. Step 1: Fact-Finding Techniques and Information Gathering……... P.7
· 1.1 Description Fact-Fining Techniques…………………….. P.7
· 1.2 Introduction to Enterprise/Organization…………………. P.7
· 1.3 Structure of the Enterprise……………………………….. P.7
· 1.4 Itemized Descriptions of Major Objects and Their Relationship Among Objects in the Business……………………………… P.8
· 1.5 Data views and operations for user groups………………. P.8
2. Step 2: Conceptual Database Design…………………..……………. P.9
· 2.1 Entity Set Description…………………….……………… P.9
· Entity Person…………………………………………... P.9
· Entity Manager………………………………………… P.10
· Entity Tenant…………………………………………... P.11
· Entity Apartment………………………………………. P.12
· Entity Apartment_Num………………………………... P.13
· Entity Rent_Payment…………………………………... P.14
· Entity Company……………………………………..…. P.15
· Entity Apt_Bill…………………………………………. P16
· 2.2 Relationship Set Description…………………………….... P.17
· 2.3 Related Entity Set………………………………………..... P.18
· 2.4 E-R Diagram……………………………………....……… P. 19
Phase II: From ER (Conceptual) Model to Relational (Logical) Model

1. Step 1: E-R Model and Relational Model…………………………...P. 20
· Description of E-R Model and Relational Model……………..P. 20
· Comparison between E-R Model and Relational Model……...P.20
· Conversion From E-R Model to Relational Model…………...P.20
· Constraints…………………………………………………….P.22
2. Step 2: Conversion from E-R database to relational database……….P. 22
· Person Relation………………………………………………..P.22
· Manager Relation……………………………………………...P. 23
· Tenant Relation………………………………………………..P. 23
· Manages Relation……………………………………………...P. 24
· Rents Relation…………………………………………………P. 24
· Apartment Relation……………………………………………P. 25
· Apartment_Num Relation……………………………………..P.25
· Company Relation……………………………………………..P. 25
· Apt_Bills Relation……………………………………………..P. 26
· Rent_Payment Relation………………………………………..P. 27
· Amount_Owed Relation……………………………………….P. 27

3. Step 3: Relational Instances…………………………………………..P. 28
· Person(First, Middle, Last, SSN, Birthdate, Sex, Phone_Number)………………………………………………..P. 28
· Manager(SSN, Street, City, State, Zip_Code, AName)………..P. 29
· Tenant(SSN, Apt_Num, Rent_Price, Rent_Type)……………..P. 30
· Manages(MSSN, AName, Start_Date, End_Date)…………….P. 31
· Rents(TSSN, Apt_Num, Start_Date, End_Date)………………P. 32
· Apartment(AName, Street, City, State, Zip_Code)……………P. 33
· Apartment_Num(AName, Apt_Num, Num_Beds, Num_Baths, Rent_Price)…………………………………………………….P. 34
· Company(Comp_Name, Street, City, State, Zip_Code, Phone, Fax)…………………………………………………………….P. 35
· Apt_Bills(CName, Bill_Type, Account_Num, Description, S_Date, D_Date, Cost, P_Date, Past_Due, AName)…………………...P. 36
· Rent_Payment(TSSN, ANum, RPrice, Due_Date, Pay_Date, Amount_Owed, Amount_Paid, Payment_Type)………………P. 37
· Amount_Owed(TSSN, Amount_Owed)……………………….P.38

4. Step 4: Queries………………………………………………………..P. 39
· Ten Selected Queries…………………………………………..P. 39
5. Step 5: Representing Queries in Relational Algebra, Tuple Relational Calculus and Domain Relational Calculus…………………………...P. 40
· Most expensive apartment room in each apartment complex…P. 40
· The tenant who owes the most………………………………...P. 40
· The tenant who owes the second most………………………...P. 41
· The most expensive bill……………………………………….P. 42
· The tenants who are renting at least two apartment rooms in one apartment complex…………………………………………….P. 42
· All tenants who live in apartments located in Bakersfield…….P. 43
· All tenants who lived in “Sunny Apartments” (an imaginary apartment complex) in 2007………………………………….P. 44
· The cheapest room in each apartment complex……………....P. 44
· The apartments with more than one bedroom and one bathroom………………………………………………………P. 45
· The apartments that have apartment rooms which contain more than one bedroom and one bathroom………………………………P. 45
Phase III: Create Logical and Physical Database with Oracle DBMS
1. Step 1: Description of SQL*PLUS………………………………….P. 46
2. Step 2: Description of Schema Objects in Oracle DBMS…………..P.46
· Objects Being Used in the Apartment Database…………..…P.48
3. Step 3: The Relations’ Relation Schema and Its Contents………….P.49
· Person Description/Instance………………………………….P. 49
· Apartment Description/Instance……………………………...P. 49
· Company Description/Instance……………………………….P. 50
· Apartment_Num Description/Instance……………………….P. 50
· Manager Description/Instance………………………………..P. 51
· Manages Description/Instance………………………………..P. 51
· Tenant Description/Instance…………………………………..P. 52
· Rents Description/Instance……………………………………P. 52
· Apt_Bill Description/Instance………………………………...P. 53
· Rent_Payment Description/Instance………………………….P. 54
· Amount_Owed Description/Instance…………………………P. 56
4. Step 4: Queries in SQL Language…………………………………...P. 57
· Most expensive apartment room in each apartment complex...P. 57
· The tenant who owes the most………………………………..P. 58
· The tenant who owes the second most………………………..P. 58
· The most expensive bill………………………………………P. 59
· The tenants who are currently renting at least two apartment rooms in one apartment complex……………………………………….P. 59
· All tenants who live in apartments located in Bakersfield……P. 60
· All tenants who lived in “Sunny Apartments” (an imaginary apartment complex) in 2007………………………………….P. 60
· The cheapest room in each apartment complex……………...P. 61
· The apartments that have apartment rooms which contain more than one bedroom and one bathroom……………………………...P. 61
· The apartments and their rooms with apartment room prices greater than 600………………………………………………………P. 62
5. Step 5: The Data Loader…………………………………………….P. 63
Phase IV: Oracle Database Management System PL/SQL Component

1. Step 1: Common Features of PL/SQL and MS Trans-SQL…………P. 64
2. Step 2: Description of Oracle PL/SQL………………………………P. 64
· Typical PL/SQL Program Structure…………………………..P. 64
· Control Statements……………………………………………P. 65
· Cursors………………………………………………………..P. 65
· Stored Procedures…………………………………………….P. 66
· Stored Functions……………………………………………...P. 66
· Packages……………………………………………………...P. 67
· Triggers………………………………………………………P. 67
3. Step 3: Code and Documentation of Apartment Database………….P. 68
· Stored Procedure for Inserting a Record into Person Table….P. 68
· Stored Procedure for deleting record from Person Table…….P. 68
· Stored Function that Returns the Average Rent Price of Apartment Rooms………………………………………………………..P. 69
· Trigger which will be fired when Apartment_Num records is updated or deleted…………………………………………………….P.69
· The Sequence and Log Table Used to Store the Data After the Trigger Has Been Fired………………………………………………P. 70

Step 1: Fact-Finding Techniques and Information Gathering

1.1 Description Fact-Fining Techniques

I came across the idea of creating an apartment management program through my cousin; he manages several apartments here in Bakersfield. He gave me all the necessary information that is vital for keeping track of multiple apartments. I also used to manage apartments myself at one time. I took notes on what my cousin does as a manager.

1.2 Introduction to Enterprise/Organization

The enterprise of apartment management is a strong business with a high demand here in Bakersfield and everywhere else. People who rent apartment room usually do so for many different reasons, like they are going to school or work in another city or state and they can’t qualify for a loan to purchase a house. The people who are interested in an apartment would speak to the manager or the landlord for more information

1.3 Structure of the Enterprise

The structure involves keeping track of which tenant is leasing which apartment room, check which tenants paid the monthly rent, leasing and evicting tenants, maintaining each room to a livable condition, and paying all the bills relating to each of the apartment complexes. There will need to be two kinds of people in a large apartment business: the tenant, the one who is leased an apartment room, and the manager, whose job is to collect rent, lease and evict tenants, contact maintenance companies to repair apartment rooms up to code, and let the landlord know of the status of the apartment complex the manager manages. There will be at least one apartment complex, which will have multiple rooms (vacant or filled) that have any combination of bedrooms and bathrooms and the potential tenant will be charge a certain amount the landlord chooses as rent for that particular room. The tenant must pay that rent in a timely matter. If not paid on time, the tenant will have to pay late fees, or maybe even get evicted from that apartment. There will be many companies that will provide their services to the apartment complexes. Those companies will later send a bill to the landlord after the services are fulfilled and later be paid off.

1.4 Itemized Descriptions of Major Objects and Their Relationship Among Objects in the Business

The description of the object Person is the person that will be involved in the business either as a tenant or a manager. The object Apartment is the apartment complex that will have a number of apartment rooms. The object Rent_Payment is the payment that the tenant made for the monthly rent. The object Company is the companies that provide services to the apartment complexes and would send a bill related to those services provided.

1.5 Data views and operations for user groups

The landlord will keep in track with the information to run his or her apartment business. The landlord will see who is being leased an apartment room by which manager. The landlord can see what expenses are incurred by each individual apartment complex. The landlord has the ability to evict tenants who are constantly late on the rent payment or do not pay and replace or even fire managers if the landlord has to repeatedly evict tenants in a particular apartment complex.

Step 2: Conceptual Database Design

2.1 Entity Set Description

Entity Person

Entity Person is an entity that will contain the vital information of the person involved in the business. It contains the person’s name, social security number, birth date, gender, and phone number. The landlord can add many people under the condition that the social security number is not the same as another person, cascade remove people from it, and modify the information of each person.

	Attribute Name
	Description
	Domain/Type
	Value-Range
	Default Value
	NULL Allowed?
	Unique?
	Single/ Multi-valued
	Single or Composite Attribute

	Name
	First, middle, and last name of the person
	String
	Any
	Empty
	No
	No
	Single
	Composite

	SSN
	Person’s Social Security Number
	Integer
	9 characters
	Empty
	No
	Yes
	Single
	Single

	Birthdate
	Month, Date, and Year when person was born
	Datetime
	1-12 months, 1-28,30, or 31days

1900-this year
	01/01/1900
	No
	No
	Single
	Single

	Sex
	Gender Male/Female
	String
	1 character
	Empty
	No
	No
	Single
	Single

	Phone_number
	10-digit phone number
	String
	10 character
	Empty
	No
	Yes
	Single
	Single

Candidate Keys: SSN, and Phone_Number

Primary Keys: SSN

Strong/Weak Entity: Strong

Entity Manager

The entity Manager, which is a subclass to Person, is the one who takes care of the apartment. The Manager entity will have the manager’s address where he lives, as well as the city, state, and zip code. It will also have the yearly salary of the manager. The landlord can change the manager’s monthly salary.

Candidate Keys: None

Primary Keys: None

Strong/Weak Entity: Weak

Entity Tenant

The entity Tenant, which is a subclass to Person, will have the tenant’s rental agreement type. It will have a choice between month to month contract, six month contract, and yearly contract. The landlord can change the tenant from one apartment room to another if the tenant wishes or if repairs are needed.

	Attribute Name
	Description
	Domain/Type
	Value-Range
	Default Value
	NULL Allowed?
	Unique?
	Single/ Multi-valued
	Single or Composite Attribute

	Rent_Type
	The rental time agreement
	String
	Any
	Empty
	No
	No
	Single
	Single

Candidate Keys: None

Primary Keys: None

Strong/Weak Entity: Weak

Entity Apartment

The entity Apartment will have the location of each apartment. It will have the address where is located, as well as the city, state, and zip code. There cannot be more than one apartment on the same street name and number. The landlord can change the manager from one apartment complex and either fire the manager or place the manager to another apartment complex.

Candidate Keys: Address

Primary Keys: Address

Strong/Weak Entity: Strong

Entity Apartment_Num

The entity Apartment number will have the information of each apartment room. It will have the apartment number, which cannot be repeated in the same apartment complex, number of bedrooms, number of bathrooms, and the rent price of the particular apartment room. The landlord can change the rent of the apartment number and replace the tenant currently living there.

Candidate Keys: Apt_Num, Rent_Price

Primary Keys: Apt_Num, Rent_Price

Strong/Weak Entity: Strong

Entity Rent_Payment

The entity Rent_Payment will have the information that pertains to the rent paid by the tenants. It will have the date of the payment, the amount owed by the tenant, the amount paid by the tenant, and how the tenant paid the rent. The landlord can calculate how much the tenants still owe, and if they owe and they do not pay within the grace period, a late fee will be added to the total owed.

Candidate Keys: None

Primary Keys: None

Strong/Weak Entity: Weak

Entity Company

The entity company will have the information of the companies that provide their services to the apartment complexes. It will have the company’s name, which cannot be the same as another company, the location (address, city, state, and zip code) of the company, and the phone and fax number of the company, which also unique. The landlord can add as many companies as he or she wishes.

	Attribute Name
	Description
	Domain/Type
	Value-Range
	Default Value
	NULL Allowed?
	Unique?
	Single/ Multi-valued
	Single or Composite Attribute

	Comp_Name
	Name of the company
	String
	Any
	Empty
	No
	Yes
	Single
	Single

	Address
	Address of the company
	String
	Any
	Empty
	No
	Yes
	Single
	Single

	City
	City
	String
	Any
	Empty
	No
	No
	Single
	Single

	State
	State
	String
	2 character
	Empty
	No
	No
	Single
	Single

	Phone
	10-digit phone number
	String
	10 character
	Empty
	No
	Yes
	Single
	Single

	Fax
	10-digit fax number
	String
	10 character
	Empty
	Yes
	Yes
	Single
	Single

Candidate Keys: Comp_Name, Fax, and Phone

Primary Keys: Comp_Name

Strong/Weak Entity: Strong

Entity Apt_Bill

The entity Apt_Bill, which is a part of Company, will have the information of the bills created by the companies that provide their services to the apartment complexes. It will have the bill type (i.e. gas, electric, plumbing, etc.), the account number, the description of the bill, the statement date, the due date, the paid date, the amount owed, the amount paid, and if the bill is past due or not.

	Attribute Name
	Description
	Domain/Type
	Value-Range
	Default Value
	NULL Allowed?
	Unique?
	Single/ Multi-valued
	Single or Composite Attribute

	Bill_Type
	bill type
	String
	Any
	Empty
	No
	No
	Single
	Single

	Account_Num
	The number of the bill account
	String
	Any
	Empty
	No
	Yes
	Single
	Single

	Description
	Description of the bill
	String
	Any
	01/01/1900
	Yes
	No
	Single
	Single

	S_Date
	Statement date of the bill
	Datetime
	1-12 months, 1-28,30, or 31days

Year of the bill
	Empty
	No
	No
	Single
	Single

	D_Date
	Bill’s due date
	Datetime
	1-12 months, 1-28,30, or 31days

Year of the bill
	Empty
	No
	No
	Single
	Single

	P_Date
	date when the was paid bill
	Datetime
	1-12 months, 1-28,30, or 31days

Year of the bill
	Empty
	Yes
	No
	Single
	Single

	Cost
	Amount owed on the bill
	Double-Float
	Any
	Empty
	No
	No
	Single
	Single

	Past_Due
	Check if it is past due
	Boolean
	True/False
	False
	No
	No
	Single
	Single

Candidate Keys: Account_Num

Primary Keys: Account_Num

Strong/Weak Entity: Strong

2.2 Relationship Set Description

Relationship Manages

The relationship Manages involves the entities Manager and Apartment. The relationship helps state that the manager manages the apartment complex. The mapped cardinality of Manages is M:N. The participation constraint is total participation. It will have an attribute that will store the history of the manager, both when the manager stated to manage an apartment complex to when the manager stopped or was changed to another apartment complex.

Relationship Rents

The relationship Manages involves the entities Tenant, Rent_Payment, and Apartment_Num. The relationship helps state that the tenant rented the apartment room. The mapped cardinality of Rents is M:N. The participation constraint is total participation. Like Manages, it will have an attribute that will store the history of the tenant, both when the tenant rented an apartment room to when the tenant was replaced or move to another apartment room.

Relationship Bills_For

The relationship Bills_For involves the entities Apt_Bill and Apartment. The relationship helps state that the apartment bill is for the apartment complex. The mapped cardinality of Manages is M:N. The participation constraint is partial participation.

2.3 Related Entity Set

Specialization/Generalization Relationships

The entity Person will have a disjoint and total specialization inheritance, with entities Tenant and Manager because people can either be a tenant or a manager, not both.

Aggregation/has-relationship

The entity Apartment_Num is a part of Apartment, which has the other necessary information of the whole apartment complex. The entity Apt_Bill is a part of Company, which, like Apartment_Num, has the other necessary information of the entire company.

 SHAPE

Step 1: E-R Model and Relational Model

Description of E-R Model and Relational Model

The E-R model is complex and conceptual depiction of data. The E-R model was first proposed by Peter Pin-Shan Chen in 1976. The E-R model is illustrated visually by a diagram, known as the E-R diagram, that include entities, relationships, attributes, and hierarchies, each represented by boxes, lines, points, and many other shapes and symbols. The E-R model's purpose is to show and describe the information that will be stored in the database.

The Relational Model is a model based on the first-order predicate logic. The relational model was first proposed by E.F. Tod Codd in 1969. The relational model applies the concept of mathematical relation, which resembles a table of values, and has its foundation on set theory and first-order predicate logic. The relational model's purpose is to show the information in a table instead of a diagram like the E-R model.

Comparison between E-R Model and Relational Model

The E-R model is depicted by entities, relationships, and attributes, which are its basic elements. The participation of entities in the E-R model is determined by the number of lines that connects to the relationship. The relational model is depicted by the domain, tuple, tables, and attributes, which are its basic elements. The relational model is made of the heading, which is the set of attributes and the body, the set of tuples. The relations that correspond to each other will have one that has a key, known as a primary key, that the other relation will use as a foreign key to relate to each other.

Conversion From E-R Model to Relational Model

There is a need to convert the E-R model to the relational model because almost all the databases are based on the relational model. The conversion issue for entity types in regards to strong entities is that for every strong entity, there must be a relation that includes all of the atomic attributes and simple components of composite attributes of the strong entity and there must be primary key chosen from the many key attributes in the strong entity. The issue for weak entities is that for every weak entity, there must be a relation with all of the atomic attributes and simple components of composite attributes in the weak entity and add a foreign key to the relation which relates to another entity. The issue for multivalued attributes is for every multivalued attribute, there must be a relation that has an attribute relating to that multivalued attribute and a foreign key from the relation that has the same attribute in the multivalued attribute. The issue for the 1:1 relationship is that for every 1:1 relationship, there must be two relations created from the attributes in the two entities that are related to the indicated relationship. There are three methods to it. The foreign method, where one has a foreign key related to the other’s primary’s key. The merged relation method, where the two indicated entities are merged together to create one relation. The cross-reference/relationship relation, where there is a third relation created to cross-reference the primary keys of both entity relations. The issue for the 1:N relationship is that for every 1:N relationship, there must be a relation to represent the N-side of the relationship, which will have a foreign key from the related 1-side relation. The cross-reference can also be applied to the 1:N relationships. The issue for the M:N relationship is that there must be a relation to represent the M-side of the relationship, which will have a foreign key from the related N-side relation and vice versa. The issue for specialization and generalization is that there are four options. There can be multiple relations that have total or partial specialization, and disjoint or overlapping. There can also be multiple relations where subclasses are total specialization and the specialization is overlapping. There can be single relation with one type attributes, where there is a type/discriminating attribute that points out the subclass that belongs to each tuple. There can be a single relation with multiple type attributes, where the subclasses are overlapping and have a Boolean type attribute that points out if a tuple belongs to a subclass. The issue for the recursive relationship is that there is relationship that is represented by many records in a table, like in tuple relational calculus. The issue for categories is that for the categories creating superclasses, they will have surrogate keys to relate to the category.

Constraints

The entity integrity constraint declares that primary keys cannot be NULL because the primary key is used to identify each tuple in a relation. The primary key and uniqueness constraint specifies that there cannot be more than one key with the same value for a unique key and that there cannot be a NULL value for any primary key. The referential integrity constraint declares that a tuple in a relation which refers to another relation has to refer to an existing tuple in that relation. The check constraint declares that all the constraints that cannot be completely shown in schemas of the data model have to be shown by application programs. The check constraint sets limits to the values inputted in a tuple, like the foreign keys.

Step 2: Conversion from E-R database to relational database

Person Relation

Attributes and Their Domain

First: String with unlimited range

Middle: String with only one character

Last: String with unlimited range

SSN: Integer which must have exactly 9 integers

Birthdate: Datetime with the range of the common standard of date (MM/DD/YYYY)

Sex: String with the only choice of M (Male) and F (Female)

Phone_Number: Character with range of only10 characters

Constraints

SSN is a primary key. It will store the Social Security of Person, which is unique and will not accept Null.

Candidate Key: Phone_Number

Manager Relation

Attributes and Their Domain

SSN: Integer which must have exactly 9 integers.

Street: String with unlimited range.

City: String with unlimited range.

State: String with range of two characters.

Zip_Code: Integer which must have 5 Integers.

Aname: String with unlimited range.

Constraints

SSN is a primary key obtained from super class Person which is unique and will not accept NULL.

AName is obtained from Apartment’s AName which is unique and will not accept NULL.

Candidate Keys: None

Tenant Relation

Attributes and Their Domain

SSN: Integer which must have exactly 9 integers

Rent_Type: Sring with unlimited range

Constraints

SSN is a primary key obtained from super class Person which is unique and will not accept NULL.

Candidate Keys: None

Manages Relation

Attributes and Their Domain

MSSN: Integer which must have exactly 9 integers.

AName: String with unlimited range.

Start_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

End_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

Constraints

MSSN is a foreign key obtained from Manager’s SSN which is unique and will not accept NULL.

AName is a foreign key obtain from Apartment’s AName which is unique and will not accept NULL.

Candidate Keys: Start_Date

Rents Relation

Attributes and Their Domain

TSSN: Integer which must have exactly 9 integers.

Apt_Num: String with unlimited range.

Start_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

End_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

Constraints

TSSN is a foreign key obtained from Tenant’s SSN which is unique and will not accept NULL.

Apt_Num is a foreign key obtained from Apartment_Num’s Apt_Num which is unique for the one apartment and is distinct to the other apartment complexes that share the same apartment number and will not accept NULL.

Candidate Keys: Start_Date

Apartment Relation

Attributes and Their Domain

AName: String with unlimited range

Street: String with unlimited range

City: String with unlimited range

State: String with range of two characters

Zip_Code: Integer which must have 5 Integers

Constraints

AName is a foreign key obtain from Apartment’s AName which is unique and will not accept NULL

Candidate Keys: Street

Apartment_Num Relation

Attributes and Their Domain

Apt_Num: String with unlimited range

Num_Beds: Integer with range from 1 to many

Num_Baths: Integer with range from 1 to many

Rent_Price: Double-Float with unlimited range

AName: String with unlimited range

Constraints

Primary Keys: Apt_Num, Rent_Price

AName is a foreign key obtain from Apartment’s AName which is unique and will not accept NULL

Candidate Keys: None

Company Relation

Attributes and Their Domain

Comp_Name: String with unlimited range

Street: String with unlimited range

City: String with unlimited range

State: String with range of two characters

Zip_Code: Integer which must have 5 integers

Phone: Character with range of only10 characters

Fax: Character with range of only10 characters

Constraints

Comp_Name is a primary key that will store the company’s name who serves the apartments, which is unique and will not accept NULL.

Candidate Keys: Street, Fax, Phone

Apt_Bills Relation

Attributes and Their Domain

CName: String with unlimited range

Bill_Type: String with unlimited range

Account_Num: String with unlimited range

Description: String with unlimited range

S_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

D_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

Cost: Double-Float with unlimited range

P_Date: Datetime with the range of the common standard of date (MM/DD/YYYY)

AName: String with unlimited range

Constraints

Account_Num is a primary key that will store the account number of each bill, which is unique and will not accept NULL.

CName is a foreign key obtained from Company’s Comp_Name which is unique and will not accept NULL.

AName is a foreign key obtained from Apartment’s AName which is unique and will not accept NULL.

Candidate Keys: None

Rent_Payment Relation

Attributes and Their Domain

TSSN: Integer which must have exactly 9 integers.

ANum: String with unlimited range

RPrice: Double-Float with unlimited range

PDate: Datetime with the range of the common standard of date (MM/DD/YYYY)

Amount_Owed: Double-Float with unlimited range

Amount_Paid: Double-Float with unlimited range

Payment_Type: String with unlimited range

Constraints

TSSN is a foreign key obtained from Tenant’s SSN which is unique and will not accept NULL.

ANum is a foreign key obtain from Apartment_Num’s Apt_Num which is unique for the one apartment and is distinct to the other apartment complexes that share the same apartment number and will not accept NULL.

Candidate Keys: None

Amount_Paid Relation

Attributes and Their Domain

TSSN: Integer which must have exactly 9 integers.

Amount_Owed: Double-Float with unlimited range.

Constraints

 TSSN is a foreign key obtained from Tenant’s SSN which is unique and will not accept NULL.

Candidate Keys: None

Step 3: Relational Instances

Person(First, Middle, Last, SSN, Birthdate, Sex, Phone_Number)

	First
	Middle
	Last
	SSN
	Birthdate
	Sex
	Phone_Number

	John
	
	Doe
	123456789
	03/21/1977
	M
	661-676-5644

	Jane
	
	Doe
	111223333
	07/05/1980
	F
	661-545-3333

	Frank
	
	Smith
	333445555
	11/25/1966
	M
	661-222-3333

	Elaine
	
	Anderson
	555667777
	09/07/1987
	F
	661-555-6666

	Juan
	L
	Martinez
	777889999
	07/12/1959
	M
	661-888-9999

	Kevin
	P
	Young
	112233445
	04/01/1971
	M
	661-946-3597

	Victor
	
	Lee
	224466880
	12/16/1982
	M
	661-645-8664

	Amy
	L
	Jackson
	753107846
	08/03/1962
	F
	661-572-4698

	Emily
	N
	Swanson
	685297945
	01/28/1975
	F
	661-258-0369

	Michael
	
	Jones
	126489753
	02/24/1989
	M
	661-708-9832

	Steven
	
	Sanchez
	254687951
	06/30/1974
	M
	661-557-9645

Manager(SSN, Street, City, State, Zip_Code, AName)

	SSN
	Location
	City
	State
	Zip_Code
	AName

	123456789
	123 Main St.
	Bakersfield
	CA
	93310
	Sunny Apartments

	111223333
	456 Star Ave.
	Bakersfield
	CA
	93309
	Star Light Apartments

Tenant(SSN, Apt_Num, Rent_Price, Rent_Type)

	SSN
	Apt_Num
	Rent_Price
	Rent_Type

	333445555
	12B
	600
	Month-To-Month

	555667777
	2A
	500
	Six Months

	777889999
	16C
	700
	Six Months

	112233445
	9B
	600
	Year

	224466880
	4A
	500
	Month-To-Month

	753107846
	11D
	800
	Month-To-Month

	685297945
	14A
	500
	Year

	126489753
	7C
	700
	Month-To-Month

	254687951
	14B
	600
	Six Month

Manages(MSSN, AName, Start_Date, End_Date)

	MSSN
	AName
	Start_Date
	End_Date

	123456789
	Sunny Apartments
	03/12/2006
	NULL

	111223333
	Sunny Apartments
	12/15/2004
	03/11/2006

	111223333
	Star Light Apartments
	03/12/2006
	NULL

Rents(TSSN, Apt_Num, Start_Date, End_Date)

	TSSN
	Apt_Num
	Start_Date
	End_Date

	333445555
	5A
	02/17/2005
	08/04/05

	333445555
	12B
	08/05/2005
	NULL

	555667777
	2A
	11/08/2006
	NULL

	777889999
	16C
	10/13/2008
	NULL

	112233445
	9B
	03/26/2005
	NULL

	224466880
	7B
	07/24/2004
	NULL

	753107846
	4A
	05/17/2005
	10/18/2007

	753107846
	11D
	10/19/2007
	NULL

	685297945
	14A
	09/08/2006
	NULL

	126489753
	11B
	03/18/2005
	02/27/08

	126489753
	7C
	12/03/2008
	NULL

	254687951
	14B
	06/16/2007
	NULL

Apartment(AName, Street, City, State, Zip_Code)

	AName
	Location
	City
	State
	Zip_Code

	Sunny Apartments
	222 Left St.
	Bakersfield
	CA
	93311

	Star Light Apartments
	333 Right St.
	Lamont
	CA
	93307

Apartment_Num(AName, Apt_Num, Num_Beds, Num_Baths, Rent_Price)

	AName
	Apt_Num
	Num_Beds
	Num_Baths
	Rent_Price

	Sunny Apartments
	5A
	1
	1
	500

	Sunny Apartments
	12B
	2
	2
	600

	Sunny Apartments
	2A
	1
	1
	500

	Sunny Apartments
	16C
	3
	2
	700

	Sunny Apartments
	9B
	2
	2
	600

	Sunny Apartments
	7B
	2
	2
	600

	Star Light Apartments
	4A
	1
	1
	500

	Star Light Apartments
	11D
	4
	3
	800

	Star Light Apartments
	14A
	1
	1
	500

	Star Light Apartments
	11B
	2
	2
	600

	Star Light Apartments
	7C
	3
	2
	700

	Star Light Apartments
	14B
	2
	2
	600

Company(Comp_Name, Street, City, State, Zip_Code, Phone, Fax)

	Comp_Name
	Location
	City
	State
	Zip_Code
	Phone
	Fax

	Mr. Plumber
	158 Ming Ave
	Bakersfield
	CA
	93309
	661-111-1111
	661-777-7777

	Garden Boss
	6852 Stockdale Hwy
	Bakersfield
	CA
	93310
	661-222-2222
	661-888-8888

	Electric Experts
	874 Mt. Vernon Ave
	Bakersfield
	CA
	93308
	661-333-3333
	661-999-9999

	The Exterminator
	544 White Lane
	Bakersfield
	CA
	93310
	661-444-4444
	661-987-4563

	The Carpenter
	4445 California Ave
	Bakersfield
	CA
	93308
	661-555-5555
	661-369-9630

	The Handy Man
	5735 Buena Vista Rd
	Bakersfield
	CA
	93311
	661-666-6666
	661-654-1239

Apt_Bill(CName, Bill_Type, Account_Num, Description, S_Date, D_Date, Cost, P_Date, Past_Due, AName)

	CName
	Bill_Type
	Account_Num
	Description
	S_Date
	D_Date
	Cost

	Mr. Plumber
	Plumbing
	A123456
	Fix Sink Faucet in 5A
	6/15/2007
	07/14/2007
	35

	Garden Boss
	Gardening
	B741258
	Maintain Garden and Lawn
	06/25/2007
	07/24/2007
	50

	Electric Experts
	Electrician
	C365214
	Fix Broken Outlets
	07/21/2007
	08/20/2007
	55

	The Exterminator
	Exterminator
	D159874
	Fumigated in Sunny Apartments
	08/01/2007
	09/01/2007
	100

	The Carpenter
	Carpeting
	E654789
	Installed new carpet in apt 7B
	08/03/2007
	09/02/2007
	150

	Mr. Plumber
	Plumbing
	A123456
	Fix Toilets in 11D
	08/07/2007
	09/06/2007
	130

	The Handy Man
	Miscellaneous Jobs
	F852258
	Fix Broken Windows in 16C
	08/13/2007
	09/12/2007
	75

Apt_Bills Continued

Rent_Payment(TSSN, ANum, RPrice, Due_Date, Pay_Date, Amount_Owed, Amount_Paid, Payment_Type)

	TSSN
	ANum
	RPrice
	Due_Date
	Pay_Date
	Amount_Owed
	Amount_Paid
	Payment_Type

	333445555
	12B
	600
	10/01/2009
	10/01/2009
	600
	600
	Check

	555667777
	2A
	500
	10/01/2009
	10/01/2009
	500
	500
	Money Order

	777889999
	16C
	700
	10/01/2009
	10/01/2009
	700
	700
	Cash

	112233445
	9B
	600
	10/01/2009
	10/01/2009
	600
	600
	Check

	224466880
	7B
	600
	10/01/2009
	10/01/2009
	600
	300
	Cash

	224466880
	7B
	600
	10/01/2009
	10/10/2009
	350
	350
	Check

	753107846
	11D
	800
	10/01/2009
	10/01/2009
	800
	800
	Money Order

	685297945
	14A
	500
	10/01/2009
	10/01/2009
	500
	500
	Check

	126489753
	7C
	700
	10/01/2009
	10/01/2009
	700
	700
	Money Order

	254687951
	14B
	600
	10/01/2009
	10/01/2009
	600
	600
	Check

	333445555
	12B
	600
	11/01/2009
	11/02/2009
	600
	600
	Cash

	555667777
	2A
	500
	11/01/2009
	11/01/2009
	500
	500
	Check

	777889999
	16C
	700
	11/01/2009
	11/03/2009
	700
	700
	Cash

	112233445
	9B
	600
	11/01/2009
	11/01/2009
	600
	600
	Money Order

	224466880
	7B
	600
	11/01/2009
	11/02/2009
	600
	500
	Check

	224466880
	7B
	600
	11/01/2009
	11/03/2009
	100
	100
	Cash

	753107846
	11D
	800
	11/01/2009
	11/05/2009
	800
	800
	Money Order

	685297945
	14A
	500
	11/01/2009
	11/01/2009
	500
	500
	Money Order

	126489753
	7C
	700
	11/01/2009
	11/01/2009
	700
	700
	Check

	254687951
	14B
	600
	11/01/2009
	11/01/2009
	600
	300
	Check

	254687951
	14B
	600
	11/01/2009
	11/06/2009
	350
	350
	Check

Amount_Owed(TSSN, Amount_Owed)

	TSSN
	Amount_Owed

	333445555
	500

	555667777
	300

	777889999
	0

	112233445
	0

	224466880
	100

	753107846
	200

	685297945
	0

	126489753
	150

	254687951
	0

Step 4: Queries

There are ten non-trivial queries regarding the apartment management.

Ten Selected Queries

1. Most expensive apartment room in each apartment complex.

2. The tenant who owes the most.

3. The tenant who owes the second most.

4. The most expensive bill.

5. The tenants who are currently renting at least two apartment rooms in one apartment complex.

6. All tenants who live in apartments located in Bakersfield.

7. All tenants who lived in “Sunny Apartments” (an imaginary apartment complex) in 2007.

8. The cheapest room in each apartment complex.

9. The apartments that have apartment rooms which contain more than one bedroom and one bathroom.

10. The apartments and their rooms with apartment room prices greater than 600.

Step 5: Representing Queries in Relational Algebra, Tuple Relational Calculus and Domain Relational Calculus

Most expensive apartment room in each apartment complex

Relational Algebra

Π AName, Apt_Num, Price (Π Name, Price, Apt_Num Apartment_Num – Π A1.Name, A1.Price, A1.Apt_Num(σA1.AName = A2.AName ^ A1.Apt_Num != A2.Apt_Num ^ A1.Rent_Price > A2.Rent_Price (Apartment_NumA1 * Apartment_NumA2)))}

Tuple Relational Calculus

{A1.AName, A1.Apt_Num, A1.Price| Apartment_Num(A1) ^ (VA2)(Apartment_Num(A2) ^ A1.AName = A2.AName → A1.Price>=A2.Price)}

Domain Relational Calculus

 {<N, AN, P>| Apartment_Num(N, AN, _, _, P) ^

 (VP2)(Apartment_Num(N,!=AN,_,_,P2) → P > P2)}

The tenant who owes the most

Relational Algebra

Person * (Tenant X ΠRP1.SSN(σAO1.Amount_Owed > AO2.Amount_Owed(Amount_OwedAO1 X Amount_OwedAO2))

Tuple Relational Calculus

{P | Person(P) ^ (ET)(Tenant(T) ^ P.SSN = T.SSN (EAO1)(Amount_Owed(AO1) ^ (VAO2)(Amount_Owed(AO2) → AO1.Amount_Owed>AO2.Amount_Owed ^ T.SSN = AO1.TSSN)

)

 }

 Domain Relational Calculus

 {<F,M,L,SSN,B,S,P>| Person(F,M,L,SSN,B,S,P) ^ Tenant(SSN,_)

 ^ (EAO)(Amount_Owed(SSN, _, _, _, _,AO, _, _)

 ^ (VAO2)(Amount_Owed(SSN, _, _, _, _,AO2, _, _) → AO > AO2)

)

 }

The tenant who owes the second most

Relational Algebra

AllExceptHighest ← Π RP1.AO(σRP1.AO < RP2.AO(Amount_OwedAO1 X Amount_OwedRP2)

AllExcept2Highest ← Π AEH1.AO(σAEH1.AO < AEH2.AO(AllExceptHighest AEH1 X AllExceptHighest AEH2)

Person * ΠSSN(Tenant X ΠSSN(Rent_Payment X (AllExceptHighest – AllExcept2Highest)))

Tuple Relational Calculus

{P | Person(P) ^ (ET)(Tenant(T) ^ P.SSN = T.SSN (EAO1)(Amount_Owed(AO1) ^ (EAO2)(Amount_Owed(AO2) ^ AO1.Amount_Owed > AO2.Amount_Owed ^ ¬(EAO3)(Amount_Owed(AO3) ^ AO1.Amount_Owed < AO3.Amount_Owed ^ AO3.Amount_Owed = AO2.Amount_Owed ^ T.SSN != AO1.TSSN)

)

)

 }

 Domain Relational Calculus

 {<F,M,L,SSN,B,S,P >| Person(F,M,L,SSN,B,S,P) ^ Tenant(SSN,_) ^

 (EAO)(Amount_Owed(SSN, _, _, _, _,AO, _, _)

 ^ (EAO2)(Amount_Owed(SSN, _, _, _, _,AO2, _, _) ^ AO > AO2 ^

 ¬(EAO3)(Amount_Owed(SSN, _, _, _, _,AO3, _, _) ^ AO < AO3 ^

 AO3=AO2)

)

)

 }

The most expensive bill

Relational Algebra

Π CName, Account_Num, S_Date, Cost (Π CName, S_Date, Cost Apt_Bill – Π A1.CName, A1.S_Date, A1.Cost(σAB1.Cost > AB2.Cost(Apt_BillAB1 * Apt_BillAB2)))

Tuple Relational Calculus

{AB1.CName, AB1.S_Date, AB1.Cost| Apt_Bill(AB1) ^ (VAB2)(Apt_Bill(AB2) → AB1.Cost >= AB2.Cost)}

Domain Relational Calculus

{<CN, A, SD, C>| Apt_Bill(CN, _, A, _, SD, _, C, _, _,_) ^ (VC2)(Apt_Bill(_, _, _, _, _, _, C2, _, _,_) → C > C2)}

The tenants who are renting at least two apartment rooms in one apartment complex

Relational Algebra

Person * ΠSSN(σT1.SSN = T2.SSN ^ A1.AName = A2.Aname(σT.Apt_Num = A1.Apt_Num(TenantT X Apartment_NumA1) X σT2.Apt_Num = A2.Apt_Num(TenantT2 X Apartment_NumA2)))

Tuple Relational Calculus

{P| Person(P) ^ (ER)(ER2)(Rents(R) ^ Tenant(R2) ^ R.TSSN=R2.TSSN ^ P.SSN = R.TSSN ^ (EA1)(Apartment_Num(A1) ^ (EA2)(Apartment_Num(A2) ^ A1.Apt_Num != A2.Apt_Num ^ A1.AName = A2.AName ^ R.Apt_Num = A1.Apt_Num ^ R2.Apt_Num=A2.Apt_Num)

)

)

}

Domain Relational Calculus

{<F,M,L,SSN,B,S,P >| Person(F,M,L,SSN,B,S,P) ^

 (EAN)(EA1)(Apartment_Num(AN,A1_,_,_) ^

 Rents(SSN,A1,_,_) ^ (EA2)(Apartment_Num(AN,A2,_,_,_)

 ^ Tenant(SSN,A2,_,_)

)

)

}

All tenants who live in apartments located in Bakersfield

Relational Algebra

Person * πSSN(πApt_Num, AName(Apartment_Num) ÷ πA.AName(σCity=“Bakersfield”ApartmentA)

Tuple Relational Calculus

{P| Person(P) ^ (ER)(Rents(R) ^ P.SSN = R.TSSN ^ (VA)(Aparment(A) ^ A.City = “Bakersfield” → (EAN)(Apartment_Num(AN) ^ R.Apt_Num=AN.Apt_Num)

)

)

}

Domain Relational Calculus

 {<F,M,L,SSN,B,S,P >| Person(F,M,L,SSN,B,S,P) ^ RentS(SSN,_,_,_) ^

 (VA)(Apartment(A,_, “Bakersfield”,_,_) →

 (EAN)(Apartment_Num(A,AN,_,_,_,))

)

}

All tenants who lived in “Sunny Apartments” (an imaginary apartment complex) in 2007

Relational Algebra

Person * πT.SSN(σT.SSN = R.TSSN ^ T.Apt_Num = R.Apt_Num(σR.Start_Date <= “12/31/2007” ^ R.End_Date >= “01/01/2007” (σA.AName = “Sunny Apartments”(AparmentA) X RentsR))

Tuple Relational Calculus

{P| Person(P) ^ (ER)(Tenant(T) ^ P.SSN = T.SSN ^ (EA)(Apartment_Num(A) ^ A.AName = “Sunny Apartments” ^ (ER)(Rents(R) ^ T.SSN = R.TSSN ^ T.Apt_Num = R.Apt_Num ^ R.Apt_Num = A.Apt_Num ^ R.Start_Date <= “12/31/2007” ^ R.End_Date >= “01/01/2007”)

)

)

}

Domain Relational Calculus

 {<F,M,L,SSN,B,S,P >| Person(F,M,L,SSN,B,S,P) ^ Tenant(SSN,_) ^

 (EA)(Apartment_Num(”Sunny Apartmets”,A,_,_,_) ^

 Rents(SSN,A,<=”12/31/2007”,>=”01/01/2007)}

The cheapest room in each apartment complex

 Relational Algebra

Π AName, Apt_Num, Price (Π AName, Price, Apt_Num Apartment_Num – Π A1.Name, A1.Price, A1.Apt_Num(σA1.AName = A2.AName ^ A1.Apt_Num != A2.Apt_Num ^ A1.Rent_Price < A2.Rent_Price (Apartment_NumA1 * Apartment_NumA2)))}

Tuple Relational Calculus

{A1.AName, A1.Apt_Num, A1.Price| Apartment_Num(A1) ^ (VA2)(Apartment_Num(A2) ^ A1.AName = A2.AName → A1.Price<A2.Price)}

Domain Relational Calculus

 {<N, AN, P>| Apartment_Num(N, AN, _, _, P) ^ (VP2)

 (Apartment_Num(N, != AN, _, _, P2) → P < P2)}

The apartments that have apartment rooms which contain more than one bedroom and one bathroom

 Relational Algebra

 Π AName, Apt_Num(σA1.AName = AN.AName ^ AN.Num_Beds > 1 ^ AN.Num_Baths > 1

 (ApartmentA X Apartment_NumAN))

 Tuple Relational Calculus

 {A| Apartment(A) ^ (EAN)(Apartment(AN) ^ A.AName = AN.AName

 ^ AN.Num_Beds > 1^ AN.Num_Baths > 1)

)

 }

 Domain Relational Calculus

 {<A,AN>| Apartment(A,_,_,_,_) ^ (ENBE)(ENBA)

 (Apartment_Num(A,AN,NBE,NBA) ^ NBE > 1 ^ NBA > 1)}

The apartments and their rooms with rooms greater than 600

 Relational Algebra

 Π AName, Apt_Num(Apartment * (σRent_Price > 500Apartment_Num))

 Tuple Relational Calculus

 {A| Apartment(A) ^ (EAN)(Apartment_Num(AN) ^

 A.AName=AN.AName ^ AN.Rent_Price > 600)}

 Domain Relational Calculus

 {<A,AN>| Apartment(A,_,_,_,_) ^ (ERP)

 (Apartment_Num(A,AN,_,_,RP) ^ RP > 600)}

 SHAPE

Step 1: Description of SQL*PLUS

The main purpose of SQL*PLUS is to execute SQL and PL/SQL commands in Oracle. It is a command line that controls database object, like tables, an Oracle database. Its functionality is that it allows users to insert, revise, store, and run SQL commands, record the column descriptions for any table, format, make calculations, store, and produce query results in the structure of reports, and retrieve and copy data between SQL databases.

Step 2: Description of Schema Objects in Oracle DBMS

Tables

Tables are the data storage units in a database. Tables contain rows, which represent each data record, and columns, which represent the many types of fields of the record. Tables can have data inserted into it, can be updated, and can be dropped and deleted.

Indexes

Indexes are optional structures which improves the performance of data fetching from tables. They are created inside of the tables.

Views

Views are used to display many different tables at once, which depends on the information of the other tables and views.

Sequences

Sequences are used to generate a list of unique integers for a column that will represent the identification of every record.

Synonyms

Synonyms are alias for tables, views, and other objects. They are used for security purposes and for convenience.

Stored Procedures

Stored Procedures are procedures, functions, and packages as a whole. They are blocks of code that is stored in the database and are callable from client applications that access the database where the stored procedures are stored.

Functions and Packages

Functions manipulate data items and return a result, which takes in zero or more arguments. Packages are objects that supply a way of encapsulating similar procedures and functions as a single unit in the database.

Dimensions

Dimensions are structures that classify data in order to allow users to answer business questions.

Database Links

Database links are pointers which creates a one-way communication path from an Oracle database server to another database server. They allow local users to access data from a remote database from the database they are currently using.

Objects Being Used in the Apartment Database

The objects that are being used the most are tables. The syntax for the creation of tables is as follows:

CREATE TABLE table_name (

column_name1 data_type [NOT NULL, DEFAULT, ETC.]

column_name2 data_type [NOT NULL, DEFAULT, ETC.]

….

CONSTRAINT pk_table_name PRIMARY KEY (table_name)

CONSTRAINT fk_parent_table_child_table FOREIGN KEY

(child_table) REFERENCES (parent_table)

….

)

/

Step 3: The Relations’ Relation Schema and Its Contents

Person Description/Instance

CS342 SQL> desc of_person;

 Name Null? Type

 --- -------- --------------------------------

 FNAME NOT NULL VARCHAR2(15)

 MIDDLE CHAR(1)

 LNAME NOT NULL VARCHAR2(15)

 SSN NOT NULL NUMBER(9)

 BIRTHDATE NOT NULL DATE

 SEX CHAR(1)

 PHONE_NUMBER NOT NULL VARCHAR2(10)

CS342 SQL> select * from of_person;

FNAME M LNAME SSN BIRTHDATE S PHONE_NUMB

--------------- - --------------- ---------- --------- - ----------

John Doe 123456789 21-MAR-77 M 6616765644

Jane Doe 111223333 05-JUL-80 F 6615453333

Frank Smith 333445555 25-NOV-66 M 6612223333

Elaine Anderson 555667777 07-SEP-87 M 6615556666

Juan L Martinez 777889999 12-JUL-59 M 6618889999

Kevin P Young 112233445 01-APR-71 M 6619463597

Victor Lee 224466880 16-DEC-82 M 6616458664

Amy L Jackson 753107846 03-AUG-62 F 6615724698

Emily N Swanson 685297945 28-JAN-75 F 6612580369

Michael Jones 126489753 24-FEB-89 M 6617089832

Steven Sanchez 254687951 30-JUN-74 M 6615579845

11 rows selected.

Apartment Description/Instance

CS342 SQL> desc of_apartment;

 Name Null? Type

 --- -------- --------------------------------

 ANAME NOT NULL VARCHAR2(25)

 STREET NOT NULL VARCHAR2(30)

 CITY VARCHAR2(20)

 STATE CHAR(2)

 ZIP_CODE CHAR(5)

CS342 SQL> select * from of_apartment;

ANAME STREET CITY ST ZIP_C

--------------------- ------------- -------------------- -- -----

Sunny Apartments 222 Left St. Bakersfield CA 93311

Star Light Apartments 333 Right St. Lamont CA 93307

Company Description/Instance

CS342 SQL> desc of_company;

 Name Null? Type

 --- -------- --------------------------------

 COMP_NAME NOT NULL VARCHAR2(30)

 STREET NOT NULL VARCHAR2(30)

 CITY NOT NULL VARCHAR2(20)

 STATE NOT NULL CHAR(2)

 ZIP_CODE NOT NULL CHAR(5)

 PHONE NOT NULL VARCHAR2(10)

 FAX VARCHAR2(10)

CS342 SQL> select * from of_company;

COMP_NAME STREET CITY ST ZIP_C PHONE FAX

---------------- ------------------- ---------- -- ----- ---------- ----------

Mr. Plumber 158 Ming Ave Bakersfield CA 93309 6611111111 6617777777

Garden Boss 6852 Stockdale Hwy Bakersfield CA 93310 6612222222 6618888888

Electric Experts 874 Mt. Vernon Ave Bakersfield CA 93308 6613333333 6619999999

The Exterminator 544 White Lane Bakersfield CA 93310 6614444444 6619874563

The Carpenter 4445 California Ave Bakersfield CA 93308 6615555555 6613699630

The Handy Man 5735 Buena Vista Rd Bakersfield CA 93311 6616666666 6616541239

6 rows selected.

Apartment_Num Description/Instance

CS342 SQL> desc of_apartment_num;

 Name Null? Type

 --- -------- --------------------------------

 ANAME NOT NULL VARCHAR2(25)

 APT_NUM NOT NULL VARCHAR2(6)

 NUM_BEDS NOT NULL NUMBER(38)

 NUM_BATHS NOT NULL NUMBER(38)

 RENT_PRICE NOT NULL NUMBER(10,2)

CS342 SQL> select * from of_apartment_num;

ANAME APT_NU NUM_BEDS NUM_BATHS RENT_PRICE

------------------------- ------ ---------- ---------- ----------

Sunny Apartments 5A 1 1 500

Sunny Apartments 12B 2 2 600

Sunny Apartments 2A 1 1 500

Sunny Apartments 16C 3 2 700

Sunny Apartments 9B 2 2 600

Sunny Apartments 7B 2 2 600

Star Light Apartments 4A 1 1 500

Star Light Apartments 11D 4 3 800

Star Light Apartments 14A 1 1 500

Star Light Apartments 11B 2 2 600

Star Light Apartments 7C 3 2 700

Star Light Apartments 14B 2 2 600

12 rows selected.

Manager Description/Instance

CS342 SQL> desc of_manager;

 Name Null? Type

 --- -------- --------------------------------

 SSN NOT NULL NUMBER(9)

 STREET VARCHAR2(30)

 CITY VARCHAR2(20)

 STATE CHAR(2)

 ZIP_CODE CHAR(5)

 SALARY NUMBER(10,2)

 ANAME NOT NULL VARCHAR2(25)

CS342 SQL> select * from of_manager;

 SSN STREET CITY ST ZIP_C SALARY ANAME

---------- ------------- ----------- -- ----- ---------- -------------------------

 123456789 123 Main St. Bakersfield CA 93310 4000 Sunny Apartments

 111223333 456 Star Ave. Bakersfield CA 93309 5000 Star Light Apartments

Manages Description/Instance

CS342 SQL> desc of_manages;

 Name Null? Type

 --- -------- --------------------------------

 MSSN NOT NULL NUMBER(9)

 ANAME NOT NULL VARCHAR2(25)

 START_DATE NOT NULL DATE

 END_DATE DATE

CS342 SQL> select * from of_manages;

 MSSN ANAME START_DAT END_DATE

---------- ------------------------- --------- ---------

 123456789 Sunny Apartments 12-MAR-06

 111223333 Sunny Apartments 15-DEC-04 11-MAR-06

 111223333 Star Light Apartments 12-MAR-06

Tenant Description/Instance

CS342 SQL> desc of_tenant;

 Name Null? Type

 --- -------- --------------------------------

 SSN NOT NULL NUMBER(9)

 RENT_TYPE VARCHAR2(15)

CS342 SQL> select * from of_tenant;

 SSN RENT_TYPE

---------- ---------------

 333445555 Month-To-Month

 555667777 Six Months

 777889999 Six Months

 112233445 Year

 224466880 Month-To-Month

 753107846 Month-To-Month

 685297945 Year

 126489753 Month-To-Month

 254687951 Six Months

9 rows selected.

Rents Description/Instance

CS342 SQL> desc of_rents;

 Name Null? Type

 -- -------- ---------------------------------

 TSSN NOT NULL NUMBER(9)

 APT_NUM NOT NULL VARCHAR2(6)

 START_DATE NOT NULL DATE

 END_DATE DATE

CS342 SQL> select * from of_rents;

 TSSN APT_NU START_DAT END_DATE

---------- ------ --------- ---------

 333445555 5A 17-FEB-05 04-AUG-05

 333445555 12B 05-AUG-05

 333445555 5A 08-JUL-10

 555667777 2A 08-NOV-06

 777889999 16C 13-OCT-08

 112233445 9B 26-MAR-05

 224466880 7B 24-JUL-04

 753107846 4A 17-MAY-05 18-OCT-07

 753107846 11D 19-OCT-07

 685297945 14A 08-SEP-06

 126489753 11B 18-MAR-05 27-FEB-08

 126489753 7C 03-DEC-08

 254687951 14B 16-JUN-07

13 rows selected.

Apt_Bill Description/Instance

CS342 SQL> desc of_apt_bill;

 Name Null? Type

 --- -------- ------------------------------------

 CNAME NOT NULL VARCHAR2(20)

 BILL_TYPE NOT NULL VARCHAR2(20)

 ACCOUNT_NUM NOT NULL VARCHAR2(15)

 DESCRIPTION VARCHAR2(250)

 S_DATE NOT NULL DATE

 D_DATE NOT NULL DATE

 COST NOT NULL NUMBER(10,2)

 P_DATE DATE

 ANAME NOT NULL VARCHAR2(25)

CS342 SQL> select * from of_apt_bill;

CNAME BILL_TYPE ACCOUNT_NUM DESCRIPTION

---------------- ------------ ----------- ---------------------------------

S_DATE D_DATE COST P_DATE ANAME

--------- --------- ---------- --------- -------------------------

Mr. Plumber Plumbing A123456 Fix Sink Faucet in 5A

15-JUN-07 14-JUL-07 35 01-JUL-07 Sunny Apartments

Garden Boss Gardening B741258 Maintain Garden and Lawn

25-JUN-07 24-JUL-07 50 01-JUL-07 Sunny Apartments

Electric Experts Electrician C365214 Fix Broken Outlets

21-JUL-07 20-AUG-07 55 01-AUG-07 Star Light Apartments

The Exterminator Exterminator D159874 Fumigated in Sunny Apartments

01-AUG-07 01-SEP-07 100 15-AUG-07 Sunny Apartments

The Exterminator Exterminator D159874 Fumigated in Star Light Apartments

01-AUG-07 01-SEP-07 100 15-AUG-07 Star Light Apartments

The Carpenter Carpeting E654789 Installed new carpet in apt 7B

03-AUG-07 02-SEP-07 150 15-AUG-07 Sunny Apartments

Mr. Plumber Plumbing A123456 Fix Toilets in 11D

07-AUG-07 06-SEP-07 130 15-AUG-07 Star Light Apartments

CNAME BILL_TYPE ACCOUNT_NUM DESCRIPTION

---------------- ------------------ ----------- ---------------------------------

S_DATE D_DATE COST P_DATE ANAME

--------- --------- ---------- --------- -------------------------

The Handy Man Miscellaneous Jobs F852258 Fix Broken Windows in 16C

13-AUG-07 12-SEP-07 75 15-AUG-07 Sunny Apartments

8 rows selected.

Rent_Payment Description/Instance

CS342 SQL> desc of_rent_payment;

 Name Null? Type

 --- -------- --------------------------------

 TSSN NOT NULL NUMBER(9)

 ANUM NOT NULL VARCHAR2(6)

 RECNUM NOT NULL NUMBER(5)

 RPRICE NOT NULL NUMBER(10,2)

 DDATE NOT NULL DATE

 PDATE NOT NULL DATE

 AMOUNT_OWED NOT NULL NUMBER(10,2)

 AMOUNT_PAID NOT NULL NUMBER(10,2)

 STILL_OWES NOT NULL NUMBER(10,2)

 PAYMENT_TYPE VARCHAR2(15)

CS342 SQL> select * from of_rent_payment;

 TSSN ANUM RECNUM RPRICE DDATE PDATE AMOUNT_OWED AMOUNT_PAID

---------- ------ ---------- ---------- --------- --------- ----------- -----------

STILL_OWES PAYMENT_TYPE

---------- ---------------

 333445555 12B 1 600 01-OCT-09 01-OCT-09 600 600

 0 Check

 555667777 2A 2 500 01-OCT-09 01-OCT-09 500 500

 0 Money Order

 777889999 16C 3 700 01-OCT-09 01-OCT-09 700 700

 0 Cash

 112233445 9B 4 600 01-OCT-09 01-OCT-09 600 600

 0 Check

 224466880 7B 5 600 01-OCT-09 01-OCT-09 600 300

 300 Cash

 224466880 7B 6 600 01-OCT-09 10-OCT-09 300 300

 0 Check

 753107846 11D 7 800 01-OCT-09 01-OCT-09 800 800

 0 Money Order

 685297945 14A 8 500 01-OCT-09 01-OCT-09 500 500

 0 Check

 126489753 7C 9 700 01-OCT-09 01-OCT-09 700 700

 0 Money Order

 254687951 14B 10 600 01-OCT-09 01-OCT-09 600 600

 0 Check

 TSSN ANUM RECNUM RPRICE DDATE PDATE AMOUNT_OWED AMOUNT_PAID

---------- ------ ---------- ---------- --------- --------- ----------- -----------

STILL_OWES PAYMENT_TYPE

---------- ---------------

 333445555 12B 11 600 01-NOV-09 06-NOV-09 600 600

 0 Cash

 555667777 2A 12 500 01-NOV-09 01-NOV-09 500 500

 0 Check

 777889999 16C 13 700 01-NOV-09 03-NOV-09 700 700

 0 Cash

 112233445 9B 14 600 01-NOV-09 01-NOV-09 600 600

 0 Money Order

 224466880 7B 15 600 01-NOV-09 02-NOV-09 600 500

 100 Check

 224466880 7B 16 600 01-NOV-09 03-NOV-09 100 100

 0 Cash

 753107846 11D 17 800 01-NOV-09 01-NOV-09 800 800

 0 Money Order

 685297945 14A 18 500 01-NOV-09 01-NOV-09 500 500

 0 Money Order

 126489753 7C 19 700 01-NOV-09 01-NOV-09 700 700

 0 Check

 254687951 14B 20 600 01-NOV-09 01-NOV-09 600 300

 300 Check

 TSSN ANUM RECNUM RPRICE DDATE PDATE AMOUNT_OWED AMOUNT_PAID

---------- ------ ---------- ---------- --------- --------- ----------- -----------

STILL_OWES PAYMENT_TYPE

---------- ---------------

 254687951 14B 21 600 01-NOV-09 06-NOV-09 300 300

 0 Check

21 rows selected.

Amount_Owed Description/Instance

CS342 SQL> desc of_amount_owed;

 Name Null? Type

 -- -------- ------------------------------

 TSSN NOT NULL NUMBER(9)

 AMOUNT_OWED NOT NULL NUMBER(10,2)

CS342 SQL> select * from of_amount_owed;

 TSSN AMOUNT_OWED

---------- -----------

 333445555 500

 555667777 300

 777889999 0

 112233445 0

 224466880 100

 753107846 200

 685297945 0

 126489753 150

 254687951 0

9 rows selected.

Step 4: Queries in SQL Language

Here are the queries from Phase 2. They will be converted in SQL language.

1. Most expensive apartment room in each apartment complex.

2. The tenant who owes the most.

3. The tenant who owes the second most.

4. The most expensive bill.

5. The tenants who are currently renting at least two apartment rooms in one apartment complex.

6. All tenants who live in apartments located in Bakersfield.

7. All tenants who lived in “Sunny Apartments” (an imaginary apartment complex) in 2007.

8. The cheapest room in each apartment complex.

9. The apartments that have apartment rooms which contain more than one bedroom and one bathroom.

10. The apartments and their rooms with apartment room prices greater than 600.

Most expensive apartment room in each apartment complex.

Apt_01.sql

--Apartment Query 1: Most expensive apartment room in each apartment complex.

select A1.AName, A1.Apt_Num, A1.Rent_Price

from OF_Apartment_Num A1

where not exists (select * from OF_Apartment_Num A2

 where (A1.AName = A2.AName and A2.Rent_Price > A1.Rent_Price)

)

/

Results:

CS342 SQL> @Apt_01

ANAME APT_NU RENT_PRICE

------------------------- ------ ----------

Star Light Apartments 11D 800

Sunny Apartments 16C 700

The tenant who owes the most.

Apt_02.sql

--Apartment_02 The tenant who owes the most

select Distinct p.FName, p.LName, p.SSN, ao.Amount_Owed

from OF_Person p, OF_Tenant t, OF_Amount_Owed ao

where p.SSN = t.SSN and t.SSN = ao.TSSN and

not exists (select * from OF_Amount_Owed ao2 where

 ao.Amount_Owed < ao2.Amount_Owed and ao.TSSN != ao2.TSSN

)

/

Results:

CS342 SQL> @Apt_02

FNAME LNAME SSN AMOUNT_OWED

--------------- --------------- ---------- -----------

Frank Smith 333445555 500

The tenant who owes the second most.

Apt_03.sql

--Apartment_03 Tenant who owes the second most

select Distinct p.FName, p.LName, p.SSN, ao.Amount_Owed

from OF_Person p, OF_Tenant t, OF_Amount_Owed ao

where p.SSN = t.SSN and t.SSN = ao.TSSN and

 exists (select * from OF_Amount_Owed ao2 where

 ao.Amount_Owed < ao2.Amount_Owed and ao.TSSN != ao2.TSSN and

not exists (select * from OF_Amount_Owed ao3

 where ao3.Amount_Owed > ao.Amount_Owed and

 ao3.Amount_Owed != ao2.Amount_Owed and

 ao3.TSSN != ao2.TSSN and ao3.TSSN != ao.TSSN

)

)

/

Results:

CS342 SQL> @Apt_03

FNAME LNAME SSN AMOUNT_OWED

--------------- --------------- ---------- -----------

Elaine Anderson 555667777 300

The most expensive bill.

Apt_04.sql

--Apartment_O4 The most expensive bill

–-From Phase 2

--select Distinct ab1.CName, ab1.S_Date, ab1.Cost

--from OF_Apt_Bill ab1

--where not exists (select * from OF_Apt_Bill ab2

-- where ab1.Cost < ab2.Cost)

--Aggregate Function

select CName, S_Date, Cost

from OF_Apt_Bill where Cost = (select max(Cost) from OF_Apt_Bill)

/

Results:

CS342 SQL> @Apt_04

CNAME S_DATE COST

-------------------- --------- ----------

The Carpenter 03-AUG-07 150

The tenants who are currently renting at least two apartment rooms in one apartment complex.

Apt_05.sql

--Apartment_05 The tenants who currently are renting at least two apartment rooms in one

--apartment complex.

select Distinct p.*

from OF_Person p, OF_Rents r, OF_Rents r2

where r.TSSN = r2.TSSN and p.SSN = r.TSSN and r.End_Date IS NULL

 and r2.End_Date IS NULL and

 exists (select * from OF_Apartment_Num a1 where

 exists (select * from OF_Apartment_Num a2 where

 a1.Apt_Num != a2.Apt_Num and a1.AName = a2.AName and

 r.Apt_Num = a1.Apt_Num and r2.Apt_Num = a2.Apt_Num)

)

/

--Group By and Having (will only show tenant's SSN)

select TSSN, count(TSSN)

from OF_Rents

where End_Date IS NULL

Group By TSSN

Having count(TSSN) > 1

/

Results:

CS342 SQL> @Apt_05

FNAME M LNAME SSN BIRTHDATE S PHONE_NUMB

--------------- - --------------- ---------- --------- - ----------

Frank Smith 333445555 25-NOV-66 M 6612223333

All tenants who live in apartments located in Bakersfield.

Apt_06.sql

--Apartment_06 All tenants who lived in apartments located in Bakersfield

select Distinct p.*

from OF_Person p inner join OF_Rents r on(p.SSN = r.TSSN)

 inner join OF_Apartment_Num an on(r.Apt_Num = an.Apt_Num)

 inner join OF_Apartment a on(an.AName = a.AName)

where a.City = 'Bakersfield'

/

Results:

CS342 SQL> @Apt_06

FNAME M LNAME SSN BIRTHDATE S PHONE_NUMB

--------------- - --------------- ---------- --------- - ----------

Frank Smith 333445555 25-NOV-66 M 6612223333

Kevin P Young 112233445 01-APR-71 M 6619463597

Juan L Martinez 777889999 12-JUL-59 M 6618889999

Victor Lee 224466880 16-DEC-82 M 6616458664

Elaine Anderson 555667777 07-SEP-87 M 6615556666

All tenants who lived in “Sunny Apartments” (an imaginary apartment complex) in 2007.

Apt_07.sql

--Apartment_07 All tenants who lived in "Sunny Apartments" in 2007

select Distinct p.*, r.Start_Date

from OF_Person p inner join OF_Rents r on(p.SSN = r.TSSN)

 inner join OF_Apartment_Num an on(r.Apt_Num = an.Apt_Num)

 inner join OF_Apartment a on(an.AName = a.AName)

where a.AName = 'Sunny Apartments' and (r.Start_Date <= to_Date('31-Dec-2007')

and (r.End_Date >= to_Date('01-Jan-2007') or r.End_Date IS NULL))

order by (LName)

/

Results:

FNAME M LNAME SSN BIRTHDATE S PHONE_NUMB START_DAT

--------------- - --------------- ---------- --------- - ---------- ---------

Elaine Anderson 555667777 07-SEP-87 M 6615556666 08-NOV-06

Victor Lee 224466880 16-DEC-82 M 6616458664 24-JUL-04

Frank Smith 333445555 25-NOV-66 M 6612223333 05-AUG-05

Kevin P Young 112233445 01-APR-71 M 6619463597 26-MAR-05

The cheapest room in each apartment complex.

Apt_08.sql

--Apartment_08 The cheapest room in each apartment complex

select a.AName, a.Apt_Num, a.Rent_Price

from OF_Apartment_Num a

where not exists (select * from OF_Apartment_Num a2

 where (a.AName = a2.AName and a.Rent_Price > a2.Rent_Price)

)

/

Results:

CS342 SQL> @Apt_08

ANAME APT_NU RENT_PRICE

------------------------- ------ ----------

Star Light Apartments 14A 500

Star Light Apartments 4A 500

Sunny Apartments 2A 500

Sunny Apartments 5A 500

The apartments that have apartment rooms which contain more than one bedroom and one bathroom.

Apt_09.sql

--Apartment_09 The apartments and their rooms that have apartment room

--which contain more than one bedroom and one bathroom

select Distinct a.AName, an.Apt_Num

from OF_Apartment a, OF_Apartment_Num an

where a.AName = an.AName and an.Num_Beds > 1 and an.Num_Baths > 1

/

Results:

CS342 SQL> @Apt_09

ANAME APT_NU

------------------------- ------

Sunny Apartments 16C

Sunny Apartments 9B

Sunny Apartments 7B

Sunny Apartments 12B

Star Light Apartments 11D

Star Light Apartments 11B

Star Light Apartments 7C

Star Light Apartments 14B

8 rows selected.

The apartments and their rooms with apartment room prices greater than 600.

Apt_10.sql

--Apartment_10 The apartments and their rooms with rooms greater than 600

select Distinct a.AName, an.Apt_Num

from OF_Apartment a, OF_Apartment_Num an

where a.AName = an.AName and an.Rent_Price > 600

Results:

CS342 SQL> @Apt_10

ANAME APT_NU

------------------------- ------

Sunny Apartments 16C

Star Light Apartments 11D

Star Light Apartments 7C

Step 5: The Data Loader

The data loading methods are:

INSERT INTO table_name VALUES (value1, value2, value3, ….);

Where only the values that will be inserted into a table are specified.

INSERT INTO table_name (column1, column2, column3, ….)

VALUES (value1, value2, value3, ….);

Where the column names and the values that will be inserted into a table are
specified.

Java DataLoader is use to load data into, import data to, and export data from a database. Java DataLoader was not used in this database.
 SHAPE

Step 1: Common Features of PL/SQL and MS Trans-SQL
Components

The components for PL/SQL and MS Transact-SQL are anonymous blocks, functions, cursors, procedures, triggers, and packages.

Purpose of Stored Subprograms

The purpose of stored subprograms is to store pieces of code and calling them when necessary. They include procedures and functions.

Benefits of calling stored subprograms over inputting data in the front-end over the DBMS

The benefits are that subprograms can be reused when needed, breaks a program into convenient units, it is more efficient calling subprograms, and maintenance is superior to front-end input.
Step 2: Description of Oracle PL/SQL

Typical PL/SQL Program Structure

Here is a typical PL/SQL program structure.
 DECLARE

 /* Declarative section: variables, types, and local subprograms. */

 BEGIN

 /* Executable section: procedural and SQL statements go here. */

 /* This is the only section of the block that is required. */

 EXCEPTION

 /* Exception handling section: error handling statements go here. */

 END;

/

Control Statements

Control Statements are series of statements which are executed based on the condition of the arguments being used. They can have if-else statements and loops. Here is an example structure of a control statement using if-else statements.
IF boolean_expression THEN

 PL/SQL or SQL statements

 END IF ;

 IF boolean_expression THEN

 PL/SQL or SQL statements

 ELSE

 PL/SQL or SQL statements

 END IF ;

 IF boolean_expression THEN

 PL/SQL or SQL statements

 ELSEIF boolean_expression THEN

 PL/SQL or SQL statements

 ELSEIF boolean_expression THEN

 PL/SQL or SQL statements

 ELSE

 PL/SQL or SQL statements

 END IF ;

Cursors

Cursors consist of a control structure for the following movement of records in a result set. Users can obtain, set, and delete database records. Here is an example structure of a cursor.
 DECLARE

 variables;

 records;

 create a cursor;

 BEGIN

 OPEN cursor;

 FETCH cursor;

 process the records;

 CLOSE cursor;

 END;

Stored Procedures

A stored procedure is a subprogram that performs one or more specific tasks, which are called by their name. They are used to merge and integrate logic that was initially applied in applications. They can decrease data transfer and communication cost between the user and the database server. The can improve the modeling power given by views by letting more complex types of derived data to be made available to the users.
Syntax

CREATE [OR REPLACE] PROCEDURE [schema.] procedure

 [(argument [IN | OUT | IN OUT]

 [NOCOPY]

 datatype

 [, argument [IN | OUT | IN OUT]

 [NOCOPY]

 datatype

]...

)

]

 [invoker_rights_clause]

 { IS | AS }

 { pl/sql_subprogram_body | call_spec } ;

Stored Functions

Stored functions are very similar to stored procedure except for the fact that stored functions returns only one value where procedures have many OUT parameters.
Syntax

CREATE [OR REPLACE] FUNCTION [schema.]function

 [(argument [IN | OUT | IN OUT]

 [NOCOPY] datatype

 [, argument [IN | OUT | IN OUT]

 [NOCOPY] datatype

]...

)

]

RETURN datatype

Packages

A package is a schema object that groups logically connected PL/SQL types, items, and subprograms. Packages generally have two parts, a specification and a body, even though sometimes the body is not necessary. The specification is the interface to your applications, which declares the types, variables, constants, exceptions, cursors, and subprograms available for use. The body completely defines cursors and subprograms, and so implements the specification.
Syntax

CREATE [OR REPLACE] PACKAGE [schema.] package

 [invoker_rights_clause]

 { IS | AS } pl/sql_package_spec ;

Trigger

A trigger is procedural code that is automatically executed in response to changes on a specific table or view in a database. The trigger is frequently used for maintaining the integrity of the data on the database.
Syntax

CREATE [OR REPLACE] TRIGGER [schema.]trigger

 { BEFORE | AFTER | INSTEAD INSERT | UPDATE | DELETE OF }

 { dml_event_clause

 | { ddl_event [OR ddl_event]...

 | database_event [OR database_event]...

 }

ON { [schema.]SCHEMA
 | DATABASE
 }

 }

 [WHEN (condition)]

 { pl/sql_block | call_procedure_statement } ;

Step 3: Code and Documentation of Apartment Database

Stored Procedure for Inserting a Record into Person Table
Here is the code for inserting a record into the Person table.
(crt_pro_insert.sql)
CREATE OR REPLACE PROCEDURE of_ins_person (
 iFName in varchar2,
 iMiddle in char,
 iLName in varchar2,
 iSSN in number,
 iBirthdate in date,
 iSex in char,
 iPhone_Number in varchar2
)
AS
Begin
INSERT INTO OF_Person VALUES(iFName, iMiddle, iLName, iSSN, iBirthdate, iSex, iPhone_Number);
EXCEPTION

 WHEN OTHERS THEN
 ROLLBACK;
 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||
 '-ERROR-' || SQLERRM);

END of_ins_person;
/

Stored Procedure for deleting record from Person Table

Here is the code for deleting a record from the Person table.
(crt_pro_delete.sql)
CREATE OR REPLACE PROCEDURE OF_del_person (del_SSN in Number)

AS
BEGIN

 DELETE FROM OF_Person WHERE SSN = del_SSN;
 commit;

EXCEPTION

 WHEN OTHERS THEN
 ROLLBACK;
 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

END of_del_person;
/

Stored Function that Returns the Average Rent Price of Apartment Rooms

Here is the code that returns the average rent price of the apartment rooms where p is the number of room selected to have their average taken. The average will be taken from Rent_Price in the order of the Apartment Name (AName).

(crt_avg_fun.sql)
CREATE OR REPLACE FUNCTION OF_avg_rprice (p IN Number) RETURN Number IS

 total Number(10, 2) := 0.0;
 price Number(10, 2);
 CURSOR cur1 IS SELECT Rent_Price FROM OF_Apartment_Num ORDER BY AName DESC;
BEGIN
 open cur1;

 FOR i IN 1 .. p LOOP
 fetch cur1 into price;
 total := total + price;

 END LOOP;

 CLOSE cur1;

 RETURN total / p;

EXCEPTION

 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-40001, 'An error occurred in ' || SQLCODE ||
 '-ERROR-' || SQLERRM);

END;
/

Trigger which will be fired when Apartment_Num records is updated or deleted

Here is the code for the trigger that will be fired when Apartment_Num is updated or deleted.

(up_Rent_Price.sql)
CREATE OR REPLACE TRIGGER OF_UP_Rent_Price
AFTER Update or Delete on OF_Apartment_Num
FOR EACH ROW
Begin
insert into OF_RP_Log
values (OF_price_sequence.nextval, sysdate, :old.AName, :old.Apt_Num, :old.Rent_Price, :new.Rent_Price);

End;
The Sequence and Log Table Used to Store the Data After the Trigger Has Been Fired
Sequence:

(price_sequence.sql)
CREATE SEQUENCE OF_price_sequence;

Log Table:

(up_RP_log.sql)
CREATE TABLE OF_RP_Log (

LogNum number,

Change_Date date,

AName varchar2(25),

Apt_Num varchar2(6),

Old_Price varchar2(10),

New_Price varchar2(10)

)

/
Attribute Name�
Description�
Domain/Type�
Value-Range�
Default Value�
NULL Allowed?�
Unique?�
Single/ Multi-valued�
Single or Composite Attribute�
�
Address�
Street Number and Name

Where manager lives�
String�
Any�
Empty�
No�
No�
Single�
Single�
�
City�
City�
String�
Any�
Empty�
No�
No�
Single�
Single�
�
State�
The 2-letter State acronym�
String�
2 Characters�
Empty�
No�
No�
Single�
Single�
�
Zip_Code�
5-digit Zip Code�
Integer�
5 Integers�
00000�
No�
No�
Single�
Single�
�
Salary�
Monthly Salary�
Double-Float�
Any�
0.00�
Yes�
No�
Single�
Single�
�

Attribute Name�
Description�
Domain/Type�
Value-Range�
Default Value�
NULL Allowed?�
Unique?�
Single/ Multi-valued�
Single or Composite Attribute�
�
Address�
Street Number and Name

Where apartment is located�
String�
Any�
Empty�
No�
Yes�
Single�
Single�
�
City�
City�
String�
Any�
Empty�
No�
No�
Single�
Single�
�
State�
The 2-letter State acronym�
String�
2 Characters�
Empty�
No�
No�
Single�
Single�
�
Zip_Code�
5-digit Zip Code�
Integer�
5 Integers�
00000�
No�
No�
Single�
Single�
�

Attribute Name�
Description�
Domain/Type�
Value-Range�
Default Value�
NULL Allowed?�
Unique?�
Single/ Multi-valued�
Single or Composite Attribute�
�
Apt_Num�
Number of the apartment room�
String�
Any�
Empty�
No�
Yes�
Single�
Single�
�
Num_Beds�
Number of Bedrooms�
Integer�
1 to many�
Empty�
No�
No�
Single�
Single�
�
Num_Baths�
Number of Bathrooms�
Integer�
1 to many�
Empty�
No�
No�
Single�
Single�
�
Rent_Price�
Price of the apartment room�
Double-Float�
Any�
0.00�
No�
No�
Single�
Single�
�

Attribute Name�
Description�
Domain/Type�
Value-Range�
Default Value�
NULL Allowed?�
Unique?�
Single/ Multi-valued�
Single or Composite Attribute�
�
Due_Date�
Date when the rent is due�
Datetime�
1-12 months, 1-28,30, or 31days

Year of the bill�
The first of every month�
No�
No�
Single�
Single�
�
Pay_Date�
Date of the rent payment�
Datetime�
1-12 months, 1-28,30, or 31days

Year of the bill�
Empty�
Yes�
No�
Single�
Single�
�
Amount_Owed�
The amount owed by the tenant�
Double-Float�
Any�
0.00�
No�
No�
Single�
Single�
�
Amount_Paid�
The amount paid by the tenant�
Double-Float�
Any�
0.00�
No�
No�
Single�
Single�
�
Payment_Type�
Price of the apartment room�
String�
Any�
Empty�
No�
No�
Single�
Single�
�

P_Date�
Past_Due�
AName�
�
07/01/2007�
False�
Sunny Apartments�
�
07/01/2007�
False�
Sunny Apartments�
�
08/01/2007�
False�
Star Light Apartments�
�
08/15/2007�
False�
Sunny Apartments�
�
08/15/2007�
False�
Sunny Apartments�
�
08/15/2007�
False�
Star Light Apartments�
�
08/15/2007�
False�
Sunny Apartments�
�

Person

Name:

 First

 Middle

 Last

SSN

Birthdate:

 Month

 Day

 Year

Sex: {M, F}

Phone_Number

Calc_Age

Tenant

Rent_Type

Change_Apt_Num

Manager

Address:

 Location

 City

 State

 Zip_Code

Salary

Change_Salary

Manages

Apartment

Address:

 Location

 City

 State

 Zip_Code

Change_Manager

Apartment_Num

Apt_Num

Num_Beds

Num_Baths

Rent_Price

Change_Rent

Replace_Tenant

Check_Available

Apt_Bills

Bill_Type

Account_Num

Descritption

S_Date

D_Date

P_Date

Amount_Owed

Amount_Paid

Past_Due

Check_If_Past_Due

Amount_Still_Owed

History

Start_Date

End_Date

Company

Comp_Name

Address:

 Location

 City

 State

 Zip_Code

Phone

Fax

Rent_Payment

Due_Date

Pay_Date

Amount_Owed

Amount_Paid

Payment_Type

Amount_Still_Owed

Calc_Late_Fees

Bills_For

Rents

1

1

1

N

M

N

M

N

N

M

N

71

