Studio Baranda
Luka Leskur

Phase1

CS342

Table Of Contents

Phase1

1. Fact Finding and Data Gathering ………………………………………………………………………………4

Interviewing, Data Analysis, Data Collection

Data Collection.............……………………………………………………………………………………….4
1.2 Introduction to the Enterprise/Organization……………………………………………………………5
1.3 Structure of the Enterprise ……………………….……………………………………………………………5
1.4 Itemized Description of Mayor Objects…………………………………..……………………………….5
1.5 Data Views and Operations for User Groups ………………………………………………………..…6
2.1 Entity Set Description …………………………………………………………………………………………..…7

Employee, Customer, WebSite, Project

2.2 Relationship Set Description …………………………………………………………………………………11
2.3 ER diagram………………………………………………………………………………………………..12
Phase 2
1. E-R model and the relational model…………………………………………………………………………13

Description

Comparison

Conversion from E-R model to relational model

Constraints

2. E-R database to relational database…………………………………………………………………………15

Employee relation

Customer relation

WebSite relation……………………………………………………………………………………………….16

Project relation

Works_on Relation…………………………………………………………………………………………….17

Requires Relation

Orders Relation
3. Relation Instances…………………………………………………………………………………………………….18
4. Queries…….22
Phase 3
1. Implementation of the Relational database..……………………………………………………………26

SQL

Schema Objects in Oracle

2. Schema Objects in this Project…………………………………………………………………………………27

 ll_employee

 ll_customer…………………………………………………………………………………………………….28

 ll_project

 ll_website……………………………………………………………………………………………………….29

 ll_works_on

 ll_requires……………………………………………………………………………………………………….30

 ll_orders
3. SQL Queries……….31
Phase 4

1. Common Features in Oracle PL/SQL and MS Transact-SQL.………………………………………36

2. Oracle PL/SQL……………………….…………………………………………………………………………………36

 Layout

 Stored Procedures

 Stored Functions………………………………………………………………………………………………37

 Trigers
3. Oracle PL/SQL Subprograms …………………………………………………………………………………….38
Phase 5

1. Graphic User Interface Design and Implementation………..………………………………………41

Daily User Activities
2. Relations, views and subprograms related to the activitie…………………….…………………41
3. Screen Shots and descriptions of our menu and display………………………………………….42

Main Menu

EmployeeMain………………………………………………………………………………………………….43

Employee ……44
4. Majors Steps of Designing a User Interface …………………….……………………………………….45

Class Descriptions

Major Features

Development Process ………………………………………………………………………………………46

Design and implementation the application

Conclusion ……………………………………………………………………………………………………….47

1.Fact Finding and Data Gathering

1.1

This step of the process in creating our database helps us to find and gather data and facts about our business, and all the important facts that relate to it so we can have easier path in creating our conceptual model. This step is very important in order to avoid any design flaws and implementation problems before even constructing our database. Furthermore the following methods were used for fact finding and data gathering.

Interviewing- This business environment is consist of only several employees, therefore it was easy to talk to each programmer and designer about the nature of their job. Furthermore, the basic picture of the working environment was created which allowed us to construct the starting diagram of the entity types and relations.

Data Analysis- Data of the working environment was provided in the digital from in which the structure of some of the project was found and the way they are processed through Studio Baranda company. This gave us general idea of how much data will be working with in our data base, and it specified the entities collected during interview.

Data Collection- One of the programmers in the company had an unfinished project of the company’s data base for maintain web sites done in Microsoft Access environment. Moreover, this helped during the starting phase of the project although the project made by one of the employees, was never used.

Techniques Use

Data collected from the Interviewing the employees and Data analysis gave a starting schema of how the entity types are going to look like, and structure of the relationships between them. This phase gave me enough information to start implementing my own information towards process of creating the database.

1.2

Introduction to the Enterprise/Organization

Baranda is a multimedia studio, founded in 2008. They are placed in Split, Croatia. Furthermore, Baranda is a team of enthusiasts with years of experience in video production, photography, motion graphics, web development and graphics design. Together they handle and maintain big projects using different skills and providing good results.

1.3 Structure of the Enterprise

Structure of this enterprise is quite simple. It consists of four programmers and three designers that work together as one team that divides projects depending on the status of the previous project. Furthermore, team of designers is the responsible for contacting the customer and estimating the project itself. Baranda designers, after getting the general idea and sketching the project, forward their work to programmers depending on the complexity, and type of the project. Programmers are responsible for contacting the customer in the case of project being related to maintenance of the following web site. The purpose of this proposed database is to organize division of work between employees, and to have complete set of characteristics of project in order to produce quality report.

1.4 Itemized Description of Major Objects

An Employee entity is the representation of the employee working on certain project. Main purpose of this function is to bring clear picture of division of qualifications in between employee’s and in which project of WebSite they are currently involved in. Moreover, major entity is the WebSite that has relation requires towards Project entity, and works_on relation towards Employee. Moreover, all the objects revolve around this central function, which is main purpose of this enterprise. Furthermore, entity Customer is representation of customer his personal data and request that goes through relationship order into the Project function. Entity Project holds the main info related to WebSite and its development.

1.5 Data Views and Operations for User Groups

As there is no manager in this enterprise, all the employees work on WebSite’s as a group. They are all equally responsible for viewing and modifying all the entities and relationships, which puts team work in between employees as one of the crucial factors for efficient work environment. Main purpose of this data base is to provide division of work among the employees and to have insight of data basic data related to maintaining and developing websites.

2.Conceptual Database Design
2.1 Entity Set Description

Employee

-This entity describes all the employees involved into the enterprise. As

the purpose of this database is to provide division of labor among

employees, only the basic attributes are recorded.

-Candidate Keys: employeeID, Name

-Primary Key: employeeID

-Strong/Weak Entity: Strong

-Fields to be indexed: employeeID, Name, Contact

Atributes:

	Name
	employeeID
	Name
	Contact
	Skill
	

	Description
	Employee ID number
	Employees full name
	Employees contact
	Skill that employees possesses (what type of work is he specialized in)
	

	Domain/type
	String
	String
	String
	String
	

	Value Range
	0…2^32
	any
	any
	any
	

	Default Value
	none
	none
	none
	none
	

	Nullable?
	No
	No
	No
	No
	

	Unique?
	Yes
	Yes
	Yes
	No
	

	Single or

Multiple value
	Single
	Single
	Multiple
	Single
	

	Simple or

composite
	Simple
	Composite
	Composite
	Simple
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Customer

-This entity contains information of the customer that website is for and

his basic info such as name and contact.

-Candidate Keys: customerID, Name

-Primary Key: customerID

-Strong/Weak Entity: Strong

-Fields to be indexed: customerD, Name, Contact

Atributes:

	Name
	customerID
	Name
	Contact
	

	Description
	customerID number
	Customers full name
	Customers contact
	

	Domain/type
	String
	String
	String
	

	Value Range
	0…2^32
	any
	any
	

	Default Value
	none
	none
	none
	

	Nullable?
	No
	No
	No
	

	Unique?
	Yes
	Yes
	Yes
	

	Single or

Multiple value
	Single
	Single
	Multiple
	

	Simple or

composite
	Simple
	Composite
	Composite
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

WebSite

-This entity works as the main entity in this data base and it contains

attributes: page, which defines webpage specifications and tribute server

that defines all the necessary data for online web server, and finally

webpageID attribute that helps us define which website we are handling.

-Candidate Keys: websiteID, server

-Primary Key: websiteID

-Strong/Weak Entity: Strong

-Fields to be indexed: websiteID, page, server

Atributes:
	Name
	websiteID
	page
	server

	Description
	websiteID number

	Web page adress
	Web page server specification (domain and space)

	Domain/type
	String
	String
	String

	Value Range
	0…2^32
	Any
	Any

	Default Value
	None
	None
	None

	Nullable?
	No
	No
	No

	Unique?
	Yes
	Yes
	Yes

	Single or

Multiple value
	Single
	Single
	Multiple

	Simple or

composite
	Simple
	Simple
	Composite

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Project

-This entity is completely depended on the WebSite entity and directly

connects to and describes the WebSite entity. Furthermore, this is the

most complex entity in this entity set and as mentioned before it is there

to provide full description of WebSite project.

-Candidate Keys: projectID, implemantation

-Primary Key: projectID

-Strong/Weak Entity: Strong

-Fields to be indexed: projectID, Implementation

Atributes:
	Name
	projectID
	Start_date
	End_date
	Price
	Implementation

	Description
	Projects ID number
	Starting date of the project
	Ending date of the project
	Price of the corresponding project expressed in dollars
	Information about programming interface that is going to be used for developing of website

	Domain/type
	String
	String
	String
	Integer
	String

	Value Range
	0…2^32
	Any
	Any
	0…2^32
	Any

	Default Value
	None
	None
	None
	None
	None

	Nullable?
	No
	No
	No
	No
	No

	Unique?
	Yes
	Yes
	Yes
	No
	Yes

	Single or

Multiple value
	Single
	Single
	Single
	Single
	Multiple

	Simple or

composite
	Simple
	Simple
	Simple
	Simple
	Composite

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

2.2 Relationship Set Description
Works_on:

-One of the main purposes of this database is to keep track of which

employee is involved in what web site to be able to know with how much

staff resources we dispose with. This relationship records number of

employees involved in various website.

Mapping cardinality:n..n

Descriptive Field: none

Participation Constrain: This relationship is total participation constrain
Orders:

- Following enterprise income is one of the crucial aspects of the existence

of Studio Baranda, although its small corporation with petite number of

employees it makes through its orders from customers enough to sustain

it self. The relationship order in between customer and project keeps track

of which customer is involved in corresponding project.

Mapping cardinality:n..n

Descriptive Field: none

Participation Constrain: This relationship is total participation constrain
Requires:

-Following entity relates WebSite and Project entity in which project

contains dates, prices, and type of implementation of websites that are

being put to procedure of creation.

Mapping cardinality:1..n

Descriptive Field: none

Participation Constrain: This relationship is optional for Website, and

mandatory for Project

2.3 E-R Diagram

n

 n

n

 n

1

 n

Phase 2

E-R model and the relational model

Description

The E-R model represented in phase one is really useful for visual representation of our database and planning our data organization. Furthermore, next step in process of creating data base is converting E-R database in a relational database to our project purposeful for data manipulation. The relational model for database management was first formulated and proposed in 1969 by Edgar “Ted” Codd, British scientist while he was working for IBM. Moreover, this model is based on first-order predicate logic, and it allows us to express all data as the set of mathematical relations.

Comparison

The ER model is an abstract and conceptual representation of data. Moreover it helps us to create visual representation of our database as a plan of data flow between entities and their relations. This step in creating our database serves as illustration of all possible entities, attributes, relation, and cardinality which is finest way to focus on actual design of the database and providing a clearer picture to the users that are not familiar with more technical further steps of implementing the database.

The relational model is less visual than ER model. This model has all the entities and attributes mentioned in ER model but layout is more technical, as entities designed as tables with attributes in the table columns. Moreover, this model is based on mathematical relations and fist-order predicate logic. The relational model represents the database as set of relations, and those relations look like values in our table. This table is usually called relation schema. The relations schema has a relation name, attributes (columns of the table), and rows of the table are records or tuples. The relations model is not as visual appearing as ER model but it has more accurate description of tuple entries and constrains which we miss in ER model.

Conversion from E-R model to Relational Model

In the conversion to relational model it is important to start from the conceptual model. Moreover, conceptual model provides basis of relation – entity structure which requires conversion as this model is not suitable for implementing to actual functioning database. Furthermore, relational model is designed in the way that makes implementing to actual working database possible.

Converting process from E-R model to relational model is consisted of several steps which include entity, relation, and attribute conversion. Furthermore, we start the conversion process by converting previously made strong entity type in E-R model to relation with its previously defined simple attributes, and we take simple component attribute from composite attribute. Secondary we convert week entities into relations by adding primary key of primary entity type to the week entity. Moreover, we convert 1 to 1 relationship set to the relation schema. For this step there are three methods apposite to use:

-Foreign key approach: including primary key of one relation as a foreign key

in the other.

-Merged relation approach: merging two entity types and the relationship into a single relation

-Cross- reference or relationship relation approach: creating extra relation that holds primary keys to each relation. This step is most commonly used for mapping of N:N relationship types

Moreover, in next step we do mapping of binary 1:n relationship types by choosing one the three methods previously mentioned. We chose these methods depending on the participation. Furthermore, if participation is high we generally use foreign key approach otherwise we typically use cross-reference relation approach. Mapping of binary n:n relationship uses one of the three previously mentioned approaches additionally. Final two steps are consisted of creating relation to represent multi-valued attributes and

n-ary relationship type. This relation can have primary key that can be referenced from any other relation that uses corresponding multi value attribute. The n-ary relationship type representation is made by combing the procedures previously mentioned.

Constrains

Entity Constraint:

Following constrain states that value of the primary key cannot be NULL.

Furthermore, if this would be the case it would mean that we cannot

identify some tuples.

Primary Key Constraint:

Following constraint uniquely identifies each record in a database, and

primary key value cannot be NULL.

Unique Key Constraint:

Following constraint shares very similar characteristic with the primary key

constraint.

Referential Constraint:

In the following constrain the tuple that we are referring to must exist.

Check Constraint and the Business rules

The following constraint serves for specific business need for data. Moreover, this constrain exists to make our database more stable.

E-R database to relational database

Employee relation
Attributes

-EmployeeID

Domain: String. Cannot be Null

-Name

Domain: String that holds First and Last name, divided by single space. Only used for display purposes, so no need for splitting into multiple value attribute. Cannot be NULL.

-Contact

Domain: Sting, holds email contact address in format “emailaddrs@server.srext”. Cannot be null

-Skill

Domain: String. No restrictions to attribute value. Cannot be NULL

Constrains:

Primary Key: EmployeeID acts as primary key. This Must be unique and cannot be

NULL.

Candidate Keys:

employeeID, Name

Customer relation
Attributes

-CutomerID

Domain: String. Cannot be Null

-Name

Domain: String that holds First and Last name, divided by single space. Only used for display purposes, so no need for splitting into multiple value attribute. Cannot be NULL.

-Contact

Domain: Sting, holds email contact address in format “emailaddrs@server.srext”. Cannot be null

Constrains:

Primary Key: customerID acts as primary key. This Must be unique and cannot be

NULL.

Candidate keys:

customerID, Name
WebSite relation
Attributes

-WebsiteID

Domain: String. Cannot be Null

-Page

Domain: String. No restrictions to attribute value. Cannot be NULL

-Server

Domain: String. No restrictions to attribute value. Cannot be NULL

Constrains:

Primary Key: WebSiteID acts as primary key. This Must be unique and cannot be

NULL.

Candidate keys:

WebSiteID, server

Project relation
Attributes

-ProjectID

Domain: String. Cannot be Null.

-Start_date

Domain:String that holds full date: “Mnt, dd, yyyy” format. Only used for

display purposes, so no need for splitting into multiple value attribute.

Cannot be NULL

-End_date

Domain:String that holds full date: “Mnt, dd, yyyy” format. Only used for

display purposes, so no need for splitting into multiple value attribute.

Cannot be NULL

-price

Domain: Integer with range of value 1 – 2^32 -1. Cannot be NULL

-implementation

Domain: String. No restrictions to attribute value. Cannot be NULL

Constrains:

Primary Key: projectID acts as primary key. This Must be unique and cannot be

NULL.

Candidate keys:

projectID, implementation

Works_on
Attributes:

-EmployeeID

Domain: String. Cannot be Null.

-WebSiteID

Domain: String. Cannot be Null.

Constrains:

Foreign Keys: EmployeeID and WebSiteID must exist in their relevant relations.
Candidate keys:

-None
Requires
Attributes:

-projectID

Domain: String. Cannot be Null.

-WebSiteID

Domain: String. Cannot be Null.

Constrains:

Foreign Keys: projectID and WebSiteID must exist in their relevant relations.
Candidate keys:

-None

Orders
Attributes:

-projectID

Domain: String. Cannot be Null.

-customerID

Domain: String. Cannot be Null.

Constrains:

Foreign Keys: projectID and cutomerID must exist in their relevant relations.
Candidate keys: -None
Relation Instances

Employee (employeeID, Name, Contact, Skill)

	employeeID
	Name
	Contact
	Skill
	

	1
	Rino Barbir
	rb@baranda.com
	Web Designer
	

	2
	Djole Bari
	doleB@baranda.com
	Web Designer
	

	3
	Luka Leskur
	lleskur@baranda.com
	Programmer
	

	4
	Boris Visic
	bibe@baranda.com
	Programmer
	

	5
	Ante Calic
	calab@baranda.com
	Web Designer
	

	6
	Marijan Stekovic
	mstekovic@baranda.com
	Programmer
	

	
	
	
	
	

	
	
	
	
	

 Customer (customerID, Name, contact)

	customerID
	Name
	Contact
	

	1
	Jack Black
	jblack@gmail.com
	

	2
	Hrvoje Zalukar
	hzalukar@studio.com
	

	3
	Nina Mimica
	nmimica@mark.com
	

	4
	Sash INC.
	jsalim@sashai.com
	

	5
	Cala CORP.
	antec@cala.co.com
	

	6
	Urban Elements
	pike@uelements.st.com
	

	7
	Neda Visic
	nvisic@gmail.com
	

	8
	Jakov Leskur
	jleskur@gmail.com
	

	9
	Ante Klolki
	anteK@koli.st.com
	

	10
	Bobby Klagge
	bobyart@gmail.com
	

	11
	Joao Forest
	maldonalodo@aol.com
	

	
	
	
	

WebSite (websiteID, page, server)

	websiteID
	Page
	Server
	

	1
	www.sash-window.com
	iPage
	

	2
	www.zagi-studio.com
	SuperGreen Hosting
	

	3
	www.caladesign.com
	inmotion hosting
	

	4
	www.stanga-ljubav.hr
	SuperGreen Hosting
	

	5
	www.netcafers.net
	HostClear
	

	6
	www.headvisions.com
	SuperGreen Hosting
	

	7
	www.partyplaners.com
	HostClear
	

	8
	www.marinobrt.com
	HostClear
	

	9
	www.bobbyartstudio.com
	iPage
	

	10
	www.joao-brasilworkout.com
	inmotion hosting
	

	11
	www.ante-apartmants.com
	SuperGreen Hosting
	

	
	
	
	

Requires (ProjectID, WebSiteID)

	ProjectID
	WebSiteID
	

	1
	 5
	

	2
	7
	

	3
	6
	

	4
	10
	

	5
	3
	

	6
	9
	

	7
	8
	

	8
	2
	

	9
	1
	

	10
	4
	

	11
	11
	

	
	
	

Works_On(EmplyeeID, WebSiteID)

	EmployeeID
	WebSiteID
	

	1
	 3
	

	1
	4
	

	1
	6
	

	1
	7
	

	1
	9
	

	2
	1
	

	2
	3
	

	2
	4
	

	2
	7
	

	2
	8
	

	2
	11
	

	3
	2
	

	3
	3
	

	3
	4
	

	3
	7
	

	3
	9
	

	3
	11
	

	4
	1
	

	4
	3
	

	4
	5
	

	4
	6
	

	4
	8
	

	4
	9
	

	6
	1
	

	6
	3
	

	6
	5
	

	6
	7
	

	6
	9
	

	6
	10
	

	6
	11
	

	6
	8
	

	6
	2
	

	6
	4
	

	6
	6
	

	
	
	

Project (ProjectID, start_date, end_date, price, implementation)
	projectID
	start_date
	end_date
	price
	implementation

	1
	Jan 21, 2010
	Feb 19, 2010
	600
	xhtml, javascript, professional

	2
	Mar 22, 2010
	Apr 22, 2010
	400
	xhtml, javascript, personal

	3
	Aug 14, 2010
	Sep 19, 2010
	500
	flash, professional

	4
	Feb 02, 2010
	Apr 24, 2010
	200
	flash, personal

	5
	Aug 15, 2010
	Nov 20, 2010
	700
	xhtml, javascript, other

	6
	Mar 17, 2010
	May 18, 2010
	300
	flash, profesional

	7
	Jul 23, 20010
	Aug 27, 2010
	500
	flash, other

	8
	Jun 22, 2010
	Aug 5, 2010
	300
	xhtml, javascript,personal

	9
	Jan 3, 2010
	Mar 22, 2010
	800
	flash, professional

	10
	Sep 12, 2010
	Dec 24, 2010
	600
	other, private

	11
	Apr 4, 2010
	Jun 16, 2010
	500
	xhtml, flash, javascript, other

	
	
	
	
	

Orders (CustomerID, ProjectID)

	CustomerID
	ProjectID
	

	1
	 2
	

	2
	4
	

	3
	6
	

	4
	5
	

	5
	11
	

	6
	9
	

	7
	7
	

	8
	3
	

	9
	1
	

	10
	8
	

	11
	10
	

	
	
	

Queries

1) List all projects with price > 500 if there are at least 3 projects with price > 500.

2) List all the customers that ordered their projects in between “April 22, 2010”

and “May 18, 2010”

3) List Employee that doesn’t work on any WebSites

4) List Employees that work on at least 2 websites

5) List Employees who are working on website www.zagi-studio.com

(high priority website)

6) List Customers that ordered project with xhtml implementation that is cheaper

than $500 (really simple sites)

7) List Employee that works on each of all WebSites

8) List Projects that are placed on the “iPage” server (designated server for flash

professional websites)

9) List Employees who are working on each WebSite that is placed on HostClear

server (designated server for private, personal, other websites)

10) List customer that ordered Flash environment implementation of project

Employee (eID, name, contact, skill)

WebSite (wID, page, server)

Project (pID, s_date, e_date, price, implementation)

Customer (cID, name, contact)

Works_on (eID, wID)

Requires (wID, pID)

Orders (cID, pID)

1) List all projects with price > 500 if there are at least 3 projects with price > 500.
Relational Algebra:

π p.* (σ (Project(p) x Project(p1))

 p.price != p1.price ^ p.price > 500 ^ p1.price > 500

Tuple Relational Calculus:

{ p | (∃p)(∃p1) ^ (project(p) ^ project(p1) ^ p.price != p1.price ^ p.price > 500

p1.price >500)}

Domain Relational Calculus:

{ <p> | (∃p)(∃p1) ^ (project (_,_,_, >500, _) ^ project (_,_,_, >500,_))}
2) List all the customers that ordered their projects in between “April 22, 2010”

and “May 18, 2010”
Relational Algebra:

π (σ (customer(c1) x (σ (project x orders)))

 c1.* c1.cID = c.cID
p.pID = o.pID ^ s_date <= ‘May 18, 2010 ^ e_date >=

‘Apr 22, 2010’

Tuple Relational Calculus:

{ c | customer (c) (∃p) (project(p) ^ (∃o)(orders(o) ^o.cID = c.cID ^ p.pID = o.pID ^

p.s_date <= ‘ May 18, 2010’ ^ p.e_date >= ‘Apr 22, 2010’)) }

Domain Relational Calculus:

{ <c,n> | customer (c,n,_) ^ (∃p)(project(p,_,<=’May 18, 2010’ >= ‘Apr 22,

2010’,_,_))}
3) List Employee that doesn’t work on any WebSites

Relational Algebra:

π (employee) – π(employee x works_on)

 e.ID

 e.ID

Tuple Relational Calculus:

{ e| employee(e) ^ ~(∃w)(works_on(w) ^ w.eID = e.eID)}

Domain Relational Calculus:

{ <e> | employee(e,_,_,_) ^ ~(∃w)(works_on)(e,i))}
4) List Employees that work on at least 2 websites

Relational Algebra:

π (σ (works_on(a) x works_on(a1)) x employee)

 e.ID a.eID = a1.eID ^ a.wID != a1.wID

Tuple Relational Calculus:

{ e | employee(e) ^ (∃a)(works_on(a)) ^ (∃a1)(works_on(a1)) ^

a.eID = a1.eID ^ a.eID = e.eID ^ a.wID != a1.eID }

Domain Relational Calculus:

{ <e,n> | employee (e,n,_,_) ^ (∃a)(∃a1)(works_on(e,a) ^

(works_on(e,a1) ^ a != a1)) }
5) List Employees who are working on website www.zagi-studio.com

(high priority website)

Relational Algebra:

employee * (π (works_on) ÷ π (σ website))

eID, wID
 wID w.page= ‘www.zagi-studio.com’

Tuple Relational Calculus:

{e | employee(e)(∀p)(website(a) -> (∃w)(works_on(w) ^ w.eID = e.eID ^

w.wID = a.pID ^ w.page = ‘www.zagi-studio.com’) }

Domain Relational Calculus:

{ <n> |(∃e)employee(e,n) ^ (∀a)(website(a,=’www.zagi-studio.com’,_) ->

works_on(e,a))) }

6) List Customers that ordered project with xhtml implementation that is cheaper than

$500 (really simple sites)

Relational Algebra:

π (σ (customer(c2) x (σ (project x orders)))

 c2.* c.cID = c2.cID
 p.pID = o.pID ^ implementation = ‘flash’ ^

 price < 500

Tuple Relational Calculus:

{c | customer(c)(∃p)(project(p) ^ (∃o)(orders(o) ^ o.cID = c.cID ^

p.pID = o.pID ^ p.implementation = ‘flash’

^ p.price <500)) }

Domain Relational Calculus:

{ <c> | customer(c,n,_) ^ (∃p)(project(p,_,_,<500, = ‘flash))) }
7) List Employee that works on each of all WebSites

Relational Algebra:

employee * (π (works_on) ÷ π (works_on))

 eID, wID
 wID

Tuple Relational Calculus:

{ e | employee(e) ^ (∀w)(website(w) -> (∃a)(works_on(a) ^ a.eID = e.eID ^

a.wID = w.wID)) }

Domain Relational Calculus:

{<n> | (∃e)(employee(e,n,_,_) ^ (∀w)(website(w,_,_) -> works_on(e,w)) }

8) List Projects that are placed on the “iPage” server (designated server for flash

professional websites)

Relational Algebra:

π (σ (project(p2) x (σ(website x requires)))

 p2.*
 p.pID = p2.pID
 w.wID = r.wID ^ server = ‘iPage’

Tuple Relational Calculus:

{p | project(p)(∃w)(website(w) ^ (∃r)(requires(r) ^ r.pID = p.pID ^

w.wID = r.wID ^ w.server = ‘iPage’)) }

Domain Relational Calculus:

{<p> | project(p,_,_,_,_) ^ (∃w)(website(w,_,=’iPage’)) }
9) List Employees who are working on each WebSite that is placed on HostClear

server (designated server for private, personal, other websites)

Relational Algebra:

employee * (π (works_on) ÷ π (σ website))

eID, wID
 wID w.server= ‘Host Clear’

Tuple Relational Calculus:

{e | employee(e)(∀p)(website(a) -> (∃w)(works_on(w) ^ w.eID = e.eID ^

w.wID = a.pID ^ w.server = ‘Host Clear’) }

Domain Relational Calculus:

{ <n> |(∃e)employee(e,n) ^ (∀a)(website(a,_,=’Host Clear) ->

works_on(e,a))) }

10) List customer that ordered Flash environment implementation of project

Relational Algebra:

π (σ (customer(c2) x (σ (project x orders)))

 c2.* c.cID = c2.cID
 p.pID = o.pID ^ implementation = ‘flash’

Tuple Relational Calculus:

{c | customer(c)(∃p)(project(p) ^ (∃o)(orders(o) ^ o.cID = c.cID ^

p.pID = o.pID ^ p.implementation = ‘flash’)) }

Domain Relational Calculus:

{ <c> | customer(c,n,_) ^ (∃p)(project(p,_,_,_, = ‘flash))) }
Phase 3: Implementation of the Relational database

SQL PLUS

Now that the relational model has been completed and all the attributes, constrains and relations has been defined we are going to implement all this data into SQL query language, which is step further in creating actual functioning database. Furthermore, in our case we use Oracle 10g (SQL*Plus) command-line utility that can run SQL command. Moreover, SQL (structured query language) is database computer language for managing data in database management systems (DBMS) and it is originally based on relational algebra. SQL made it first appearance in 1974, and it was designed by Donald Chamberlin, and Raymond Boyce in IBM.

Schema Objects in Oracle

In oracle we create collection of representations that define our final database schema. Moreover, the depiction presents actual stored data with its attributes and constraints that are accessible to user as tables similar to relational schema. Schema object is a container for one or more sql objects (table descriptions). Furthermore, these are the schema objects supported by oracle and used in this project

Table – the database table is main structure in sql. Moreover, it is consisted of rows and columns. Rows contain the tuples we use, and columns contain the attributes. Furthermore, each column in table has defined data type and it is accessed and identified by name. In our project a base table definitions is used to create the table >CREATE TABLE.

Views – are query commands that will return tuples from tables that meet certain requirements. Moreover, views are used to optimize and make our database tables more clear. Views can also be the subject of a modification statement with some restrictions. Furthermore, views are added with sql statement >CREATE VIEW.

Constraints – are specifications that add restrictions to the table to make our database stable. Moreover in following project we used: NOT NULL constraint that specifies that the variable cannot be set to null, PRIMARY KEY constraint that specifies the constraint of primary key to variable, FOREIGN KEY that specifies foreign key for certain variable, and REFERENCES which was used in case of referencing foreign key to primary key.

Data Type – describes data type specifications of certain variable. Moreover, in the following project we used Character data type -> VARCHAR (character string), Numeric data type ->INT (integer) and Datetime data type -> DATE (calendar date with year).

Store procedures and functions – this can be presented as script stored on the database that can be executed at any given time to preform same exact task written inside of them. Moreover, in following project we used stored procedures for creating tables, and creating queries.
Schema object in this project

The following schema represents the syntax of creating tables in our process of making database.

create table (table name)

(

attributes attribute types nullable constraint,

…
 …

 …
 …

…
 …

 …
 …

);

->Following Schema Objects created by syntax from example above:

- ll_employee

Employee relation

- ll_customer

Customer relation

- ll_project

Project relation

- ll_website

Website relation

- ll_works_on

Works_on relation

- ll_requires

Requires relation

- ll_orders

Orders relaltion

->Representation of schemas and instances for these relations in sql:
ll_employee
CS342 SQL> desc ll_employee

 Name Null? Type

-- -------- ---------------------

 EMPLOYEEID_PK NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(35)

 CONTACT NOT NULL VARCHAR2(20)

 SKILL NOT NULL VARCHAR2(30)

CS342 SQL> select * from ll_employee;

EMPLOYEEID_PK NAME CONTACT SKILL

------------- ----------------------------------- -------------------- ------------------------------

 1 Rino Barbir rb@baranda.com Web Designer

 2 Djole Bari doleB@baranda.com Web Designer

 3 Luka Leskur lleskur@baranda.com Programer

 4 Boris Visic bibe@baranda.com Programer

 5 Ante Calic cala@baranda.com Web Designer

 6 Marijan Stekovic stekovic@baranda.com Programer

ll_customer
CS342 SQL> desc ll_customer;

 Name Null? Type

 -- -------- ----------------

 CUSTOMERID NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(35)

 CONTACT NOT NULL VARCHAR2(30)

CS342 SQL> select * from ll_customer;

CUSTOMERID NAME CONTACT

---------- ----------------------------------- ------------------------------

 1 Jack Black jblack@gmail.com

 2 Hrvoje Zalukar hzalukar@studio.com

 3 Nina Mimica nmimica@mark.com

 4 Sash INC. jsalim@sashai.com

 5 Cala CORP. antec@cala.co.com

 6 Urban Elements pike@uelements.st.com

 7 Neda Visic nvisic@gmail.com

 8 Jakov Leskur jleskur@gmail.com

 9 Ante Klolki anteK@koli.st.com

 10 Bobby Klagge bobyart@gmail.com

 11 Joao Forest maldonalodo@aol.com

ll_project
CS342 SQL> desc ll_project

 Name Null? Type

 -- -------- ------------------

 PROJECTID NOT NULL NUMBER(38)

 START_DATE NOT NULL DATE

 END_DATE NOT NULL DATE

 PRICE NOT NULL VARCHAR2(10)

 IMPLEMENTATION NOT NULL VARCHAR2(30)

CS342 SQL> select * from ll_project;

 PROJECTID START_DAT END_DATE PRICE IMPLEMENTATION

---------- --------- --------- ---------- ------------------------------

 1 22-JAN-10 19-FEB-10 600 xhtml javascript professional

 2 22-MAR-10 22-APR-10 400 xhtml javascript personal

 3 14-AUG-10 19-SEP-10 500 flash professional

 4 02-FEB-10 24-APR-10 200 flash professional

 5 15-AUG-10 20-NOV-10 700 xhtml javascript, other

 6 17-MAR-10 18-MAY-10 300 flash profesional

 7 23-JUL-10 27-AUG-10 500 flash other

 8 22-JUN-10 05-AUG-10 300 xhtml javascript personal

 9 03-JAN-10 22-MAR-10 800 flash professional

 10 12-SEP-10 24-DEC-10 600 other private

 11 04-APR-10 16-JUN-10 500 xhtml flash javascript

ll_website
CS342 SQL> desc ll_website

 Name Null? Type

 --- -------- ---------------------

 WEBSITEID_PK NOT NULL NUMBER(38)

 PAGE NOT NULL VARCHAR2(35)

 SERVER NOT NULL VARCHAR2(30)

CS342 SQL> select * from ll_website;

WEBSITEID_PK PAGE SERVER

------------ ----------------------------------- --------------------------

 1 www.sash-window.com iPage

 2 www.zagi-studio.com SuperGreen Hosting

 3 www.caladesign.com inmotion hosting

 4 www.stanga-ljubav.hr SuperGreen Hosting

 5 www.netcafers.net HostClear

 6 www.headvisions.com SuperGreen Hosting

 7 www.partyplaners.com HostClear

 8 www.marinobrt.com HostClear

 9 www.bobbyartstudio.com iPage

 10 www.joao-brasilworkout.com inmotion hosting

 11 www.ante-apartmants.com SuperGreen Hosting

ll_works_on
CS342 SQL> desc ll_works_on

 Name Null? Type

 -- -------- -------------------

 EMPLOYEEID_FK NOT NULL NUMBER(38)

 WEBSITEID_FK NOT NULL NUMBER(38)

CS342 SQL> select * from ll_works_on;

EMPLOYEEID_FK WEBSITEID_FK

------------- ------------

 1 3

 1 4

 1 6

 1 7

 1 9

 2 1

 2 3

 2 4

 2 7

 2 8

 2 11

 3 2

 3 3

 3 4

 3 7

 3 9

 3 11

 4 1

 4 3

 4 5

 4 6

 4 8

 4 9

 6 1

 6 3

 6 5

 6 7

 6 9

 6 10

 6 11

 6 8

 6 2

 6 4

 6 6

ll_requires
CS342 SQL> desc ll_requires;

 Name Null? Type

 --- -------- --------------

 PROJECTID_FK NOT NULL NUMBER(38)

 WEBSITEID_FK NOT NULL NUMBER(38)

CS342 SQL> select * from ll_requires;

PROJECTID_FK WEBSITEID_FK

------------ ------------

 1 5

 2 7

 3 6

 4 10

 5 3

 6 9

 7 8

 8 2

 9 1

 10 4

 11 11

ll_orders
CS342 SQL> desc ll_orders;

 Name Null? Type

 --- -------- ------------

 CUSTOMERID_FK NOT NULL NUMBER(38)

 PROJECTID_FK NOT NULL NUMBER(38)

CS342 SQL> select * from ll_orders;

CUSTOMERID_FK PROJECTID_FK

------------- ------------

 1 2

 2 4

 3 6

 4 5

 5 11

 6 9

 7 7

 8 3

 9 1

 10 8

 11 10

SQL Queries

1) List all projects with price > 500 if there are at least 3 projects with price > 500
(in ll1.sql file)

select p.*

from ll_project p

where p.price > 500

 ;

Report:

CS342 SQL> @ll1.sql

 PROJECTID START_DAT END_DATE PRICE IMPLEMENTATION

---------- --------- --------- ---------- ------------------------------

 1 22-JAN-10 19-FEB-10 600 xhtml javascript professional

 5 15-AUG-10 20-NOV-10 700 xhtml javascript, other

 9 03-JAN-10 22-MAR-10 800 flash professional

 10 12-SEP-10 24-DEC-10 600 other private

2) List all the customers that ordered their projects in between “April 22, 2010”

and “May 18, 2010”
(in ll2.sql file)

select c.*

from ll_customer c inner join ll_orders o on (c.customerID=o.customerID_fk)

 inner join ll_project p on(o.projectID_fk = p.projectID)

where p.start_date <= '22-Apr-2010' and p.end_date >= '18-May-2010'

;

Report:

CS342 SQL> @ll2;

CUSTOMERID NAME CONTACT

---------- ----------------------------------- ------------------------------

 3 Nina Mimica nmimica@mark.com

 5 Cala CORP. antec@cala.co.com

3) List Employee that doesn’t work on any WebSites
(in ll3.sql file)

select e.*

from ll_employee e

where not exists(select * from ll_works_on w where w.employeeID_fk=e.employeeID_pk)

;

Report:

CS342 SQL> @ll3

EMPLOYEEID_PK NAME CONTACT SKILL

------------- ------------ -------------------- -----------------------------

 5 Ante Calic cala@baranda.com Web Designer

4) List Employees that work on at least 2 websites
(in ll4.sql file)
select distinct e.name

from ll_employee e, ll_works_on a, ll_website w

where e.employeeID_pk = a.employeeID_fk and w.websiteID_pk = a.websiteID_fk

;
Report:

CS342 SQL> @ll4

NAME

Rino Barbir

Djole Bari

Luka Leskur

Boris Visic

Marijan Stekovic

5) List Employees who are working on website www.zagi-studio.com

(high priority website)
(in ll5.sql file)

select e.*

from ll_employee e

where not exists (select *

 from ll_website w inner join ll_works_on a on (w.websiteID_pk = a.websiteID_fk and w.page = 'www.zagi-studio.com')

 where not exists (

 select *

 from ll_works_on a

 where a.employeeID_fk = e.employeeID_pk and a.websiteID_fk = w.websiteID_pk

)

)

;

Report:

CS342 SQL> @ll5

EMPLOYEEID_PK NAME CONTACT SKILL

------------- ---------------- -------------------- -------------------------

 3 Luka Leskur lleskur@baranda.com Programer

 6 Marijan Stekovic stekovic@baranda.com Programer

6) List Customers that ordered project with xhtml implementation that is cheaper than

$500 (really simple sites)
(in ll6.sql file)

select c.*

from ll_customer c, ll_orders o, ll_project p

where c.customerID = o.customerID_fk and

 p.projectID = o.projectID_fk and

 p.IMPLEMENTATION = 'xhtml javascript personal' and

 p.price < 500

;

Report:

CS342 SQL> @ll6

CUSTOMERID NAME CONTACT

---------- ----------------------------------- ------------------------------

 1 Jack Black jblack@gmail.com

 10 Bobby Klagge bobyart@gmail.com

7) List Employee that works on each of all WebSites
(in ll7.sql file)

select e.*

from ll_employee e

where not exists (select *

 from ll_website w inner join ll_works_on a on (w.websiteID_pk = a.websiteID_fk)

 where not exists(

 select *

 from ll_works_on a

 where a.employeeID_fk = e.employeeID_pk and a.websiteID_fk = w.websiteID_pk

)

)

;

Report:

CS342 SQL> @ll7

EMPLOYEEID_PK NAME CONTACT SKILL

------------- ------------------ -------------------- -----------------------

 6 Marijan Stekovic stekovic@baranda.com Programer

8) List Projects that are placed on the “iPage” server (designated server for flash

professional websites)
(in ll8.sql file)

select p.*

from ll_project p, ll_requires r, ll_website w

where p.projectID = r.projectID_fk and

 w.websiteID_pk = r.websiteID_fk and

 w.server = 'iPage'

;

Report:

CS342 SQL> @ll8

 PROJECTID START_DAT END_DATE PRICE IMPLEMENTATION

---------- --------- --------- ---------- ------------------------------

 6 17-MAR-10 18-MAY-10 300 flash profesional

 9 03-JAN-10 22-MAR-10 800 flash professional

9) List Employees who are working on each WebSite that is placed on HostClear

server (designated server for private, personal, other websites)
(in ll9.sql file)

select e.*

from ll_employee e

where not exists (select *

 from ll_website w inner join ll_works_on a on (w.websiteID_pk = a.websiteID_fk and w.server = 'HostCle

ar')

 where not exists (

 select *

 from ll_works_on a

 where a.employeeID_fk = e.employeeID_pk and a.websiteID_fk = w.websiteID_pk

)

)

;

Report:

CS342 SQL> @ll9

EMPLOYEEID_PK NAME CONTACT SKILL

------------- ------------------ -------------------- -----------------------

 6 Marijan Stekovic stekovic@baranda.com Programer

10) List customer that ordered Flash environment implementation of project
(in ll10.sql file)

select c.*

from ll_customer c, ll_orders o, ll_project p

where c.customerID = o.customerID_fk and

 p.projectID = o.projectID_fk and

 p.implementation = 'flash professional'

 ;
Report:

CS342 SQL> @ll10

CUSTOMERID NAME CONTACT

---------- ----------------------------------- ------------------------------

 2 Hrvoje Zalukar hzalukar@studio.com

 6 Urban Elements pike@uelements.st.com

 8 Jakov Leskur jleskur@gmail.com

Phase 4: Stored Procedures
Common Features in Oracle PL/SQL and MS Transact-SQL

Oracle and Microsoft’s implementation of SQL have some similarities, because both are based off a common language. Both Procedural Language/Structured Query Language and Transaction-SQL share many common features even though they were developed separately by Oracle and Microsoft. Some similarities are that both languages support commands to create tables, constraints, cursors, triggers, constraints, packages, and stored procedures. However, there biggest differences are in the use of syntax to maintain and creating of objects in the database.

Differences between the two forms of SQL is mostly due to the different version used. For example, Oracle 8i does not have a lot of support for nested SELECT statements in cursors, but later versions have improved on the matter.

Oracle PL/SQL
Majority if PL/SQL programs follow the similar syntax, they all are organized into blocks which are divided into declaration, execution and exception

Layout:
DECLARE

variable_name

variable_type

:=value| DEFAULT

BEGIN

SELECT (or) INSERT (or) UPDATE (or) DELETE

END;

Stored Procedures – the stored procedures are useful in preforming very complicated tasks while keeping them user friendly to non-technical users. Depending on the type of task we have to do we define structure of the stored procedures. Moreover, this is the syntax of our definition of stored procedure that is same for all of them in further project.

CREATE OR REPLACE PROCEDURE procedure_name

variablename
IN|OUT
variablename

AS

DECLARE variables

BEGEIN

SQL statements ;
END;

Stored Functions – stored functions syntax is almost the same as previously mentioned stored procedure. Furthermore, they differ by declaration of variable type to make it possible to return that equivalent variable.
CREATE OR REPLACE PROCEDURE procedure_name

variablename
IN|OUT
variablename

RETURN datatype;

AS

DECLARE variables

BEGEIN

SQL statements;

RETURN variables;

END;

Triggers – Triggers are used for easier collecting of records, as an alternative if making users to define procedures that manually executes tasks, triggers are executed when definite condition is met.
CREATE OR REPLACE TRIGGER trigger_name
BEFORE

INSERT|DELETE|UPDATE OF COL [column_name]
ON table_name
DECLARE
 variables
BEGIN

FOR EACH ROW

SQL Statements;
END;

Oracle PL/SQL Subprograms

Stored Procedures

ll_insertCustomer – this stored procedure inserts the new record of the customer in our ll_customer table. Syntax of the following stored procedure:

REATE OR REPLACE PROCEDURE InsertCustomer(

customer_id IN number,

name
 IN varchar2,

contact IN varchar2)

AS

BEGIN

insert into ll_customer values(

customer_id,

name,

contact);

 EXCEPTION

 WHEN OTHERS THEN

 ROLLBACK;

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END InsertCustomer;

/

ll_deleteCustomer – this stored procedure deletes the record of the customer on our ll_cutomer table. Syntax for the following stored procedure
CREATE OR REPLACE PROCEDURE DeleteCustomer(customer_id IN number)

 AS

 BEGIN

 delete from ll_customer

 where customerID = customer_id;

 EXCEPTION

 when others then

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END DeleteCustomer;

/

Stored Functions
ll_nav – this stored function calculates the average of our ll_project table, price attribute. Syntax of the following function

CREATE OR REPLACE FUNCTION NAvgProject(n in NUMBER) RETURN NUMBER

IS

s NUMBER(9, 2) :=0.0;

p NUMBER(7, 2) ;

CURSOR c IS SELECT price from ll_project ORDER BY price DESC;

BEGIN

open c;

FOR i IN 1 .. n LOOP

fetch c into p;

s := s + p;

END LOOP;

close c;

return s / n;

EXCEPTION

 WHEN OTHERS THEN

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

END;

/

Triggers
ll_customerafterupdate – trigger for ll_customer, syntax of the following trigger

CREATE OR REPLACE TRIGGER ll_customerafterupdate

after update of name on ll_customer

for each row

begin

insert into ll_customer_log

values(ll_customer_log_sequence.nextval, sysdate. :old.cusomerID,

:old.contact, :old.name, :new.name);

end;

/
other:

ll_customer_log – syntax
create table ll_customer_log(

logNo number,

eventDate Date default sysdate,

customerID int,

contact varchar(30),

oldName varchar(35),

newName varchar(35)

)

/

ll_cutomer_log_sequence – syntax

CREATE SEQUENCE ll_customer_log_sequence

START WITH

1

INCREMENT BY
1

CACHE

3

/
Phase 5: Graphic User Interface Design and Implementation
Daily User Activities

There in only group of users that will have access to the following database application, and these users are BarandaStudion employees that will have the full access to all the functions of our application.

Baranda Employees

As the following application is built to satisfy the needs of employee, we need to define all the accessibility each employee has. Moreover being built as business consisted of only six employees, each employee has the role of administrator and has full access to all the database functions. Furthermore, all the employees work as a unit and they don’t have limitations of choosing their projects. Every user in this database should have access to usability of adding the new employee (possibility of honorary employees) as all the user have equal share in the company. Moreover, all Baranda Employees can request list of all the customers and projects they requested, and related to that all the employees that work on following projects. Employees can add new Customers and the project they requested depending on necessity and which of employees were contacted by relevant customer.
Relations, views and subprograms related to the activities

Importing our Database (made with purely with sql statements) from helios server to our machine, into visual studio was interesting process that required some time and learning of couple of new skills, but once it was finally imported it was great progress towards our development of graphical interface. Moreover, our data base was imported in of form of DataSet that had all the tables, relations, and constrains previously made in phase3. DataSet that was imported had form our tables that had TableAdapters at the bottom which contained necessary information for manipulation and data access. Moreover here is the brief preview of TableAdapter design:

[image: image1.jpg]e LLPROJECT

7 PROJECTID
START_DATE
END_DATE

PRICE
IMPLEMENTATION

‘8 LLPROJECTTableAdapter [7]

DataBase that was imported had following tables and relations made between which were used in our finally application development:

- ll_employee

-ll_cutomer

-ll_website

-ll_project

-ll_works_on

-ll_requires

-ll_orders

Screen Shots and descriptions of our menu and display

Main goal in our design was to make our application fully accessible and simple to use so functionality can be maximized and all the employees of Baranda studio can do data manipulation in simplest and fastest way.

BarandaStudio database starts with really simple menu consisted of 3 buttons that lets us chose in between View of: employees, customers and websites(projects), and it is starting point of our software

Main Menu

[image: image2.jpg]o BorandaStudio ==
BarandaStudioDatabaseSolution

View Enployess

View WebStes

ViewCustomers

Furthermore by clicking one of the options brings us up to our next menu which has additional function relevant to our choice. Moreover, following our first pick View Employees brings us to the following Windows Form which manipulates Employee.

EmployeeMain

[image: image3.jpg]5 BarandaEmployee

File

Edt Tools Help

Employee

e

| Srwed S

employeelD_fi

webstelD_fk

Webste

| webstelD_pk

2

Our Windows Form has view of employees marked in with label 1 which gives us preview of all the employees in our data base. Moreover, this object uses dataGridView and our table is called with line of code defined in our EmployeeMain.cs file which contains code for the relevant form. Similarly to that view of our Website (labeled with 2) and WorksOn (labeled with 3) are also provided in this example so we can have visual connection in between our employees and which websites they are currently working on.
Moreover, following windows have standard window tool bar at the top as presented on the screenshot below:
[image: image4.jpg]BarandaEmployee.

Edit Toos Help
0 New cwlN
& Open Ctls0

oS Culs
Save As

Furthermore, picking the option new, which also has windows shortcut CTR+N, bring up the menu for adding the new employee in our database and the description and specification of our adding new employee to our database that will be presented in example below.

Employee

[image: image5.jpg]SaveNlewEnployes

Employess

employesiD_pk__name.

contact

sl

‘Smrad Smeivi

smrad@smrad com

beskortan

2 Luka Leskur

Ik @l net

WebDesigrer

-The following feature allows us to add new employee to our database. It is consisted of four buttons which have descriptive label of the function they perform. In the following Windows Form called employee we can add employees to our data base or delete employee from our data base, which are our main manipulative controls in this windows form. Moreover other controlling function is CloseEmployeesEd which closes simply closes the current window that we are at.
Majors Steps of Designing a User Interface

Building the user interface, which we can see in previous example in provided screen shots, was not that easy to build. Moreover, even Microsoft Visual Studio provides great variety of tools; the whole interface had to be changed several times through our programing process to make it most suitable for user to use. Furthermore, after process of figuring out the design, I came to conclusion that it would be more user friendly to make more Form classes and then gradually connect the together, rather than having one big class that could be confusing on the first sight.

Class Description

Start – this from is what is first opened when we start our data base application. It is simple interface with three functions for opening our following form in Baranda Studion Data Base. First function opens up the EmployeeMain form with syntax of (new EmployeeMain().Show();). Moreover the other two functions do the same thing opening relevant forms with similar syntax.

EmployeeMain – this class contains three dataGridViews (employee, project, and works_on) and they are loaded from our data set from helios server. Moreover this class has a path for opening form Employee once we chose options for creating the new file.

Employee – Following class has the ButtonAddEmployee which contains definitions for making all the labels and textboxes for adding new employee, visible again after they are set to invisible in function ButtonSaveEmployee. ButtonSaveEmployee inserts the data from boxes to our database. Moreover ButtonCloseEmployee is button that closes current from by calling generic function close. Finally delete button deletes current row marked.

WebSiteMain – this class follows the syntax of the previously mentioned EmployeeMain class in which we present our data with several dataGridViews

WebSite – This form follows almost exact sytanx of the Employee Class with includes all the options for INSERT and DELETE records from the relevant tables

Major features

As previously mentioned our data base contains features to looking at preview of each employee, website, and working on relation. This feature due to the time limitation was not finalized as planed and should have more complete description of data sets that are covered. Moreover Database provides adding new employee to the database which is usually done in this company by getting some honorary workers for some small operations that regular employees don’t have required skill for. Baranda Studio also provides view of projects, websites and their relation which is not fully developed as well. Furthermore, there is also feature for adding the new customer to our database and customers relation to the following projects. All the features mentioned are still being developed to more functional and user friendly environment.

 Development Process

Programing environment was completely new as I never previously had contact with C#. Moreover, it was long process that required much time and patience. Going through the process of development I found that process becomes much more interesting to work on when we are building something useful and functional, as it is case in developing this project. Developing in Microsoft Visual Studio was interesting as this development tool has plenty of visual tools that help to bring process of plain coding to minimum. Furthermore, connecting to actual data base on helios server was process that required some time, but in the final product it greatly helped and saved a lot of time as the database and its relation were already somewhat made. Finally I found out that searching code examples on internet is possible with really good definition of what we are looking for.
Designing and implementing the application

Design of application started with simple sketch of how would I want application to look from user side. Original plan of design changed through the process of learning all the possibilities of Microsoft Visual Studio development environment.

Learning about hierarchy of the Forms and Classes in developing environment design from just one Windows From changed in several structured forms that created better and more user friendly interface of Studio Baranda Database.

Going through process of development I found out that if trying to implement something new, without having complete reference, can be really long process which might not have positive solution. Moreover, this can be frustrating as you I would have ideas that would never end up working in final application but it helped in process of learning.

Actual process of development was not according to rules, or how it probably it should have been done, as I slowly built all the components piece by piece. Furthermore, I would start with simple for with one function and then I would add all the properties to that function, and finally I would write structure of the function. Moreover, I would follow this simple process for every function, and every piece of environment I would need for my next step. Due to time limitation database is not designed and fully developed and planned, but knowing that I am developing something that could be functional it keeps me going until data base looks like it was originally planned.
Conclusion

Development process was really interesting and challenging. Moreover, I feel that this project can help me in future as I realize how development of complete documentation is necessary to produce more quality product. I was satisfied as in final phase we actually got database to work in user friendly interface; even it was not completely finished due to insufficiency of time. Even process was hard and very demanding I feel I have learned a lot and I will continue working on this DataBase to make it look like originally planned.
Employee

employeeID

Name:(Fname, Lname)

contact

skill

Customer

customerID

Name:(Fname, Lname)

contact

 Orders

Works_on

Project

projectID

start_date

end_date

price

implementation

WebSite

websiteID

page

server

 Requires

4

