
School Tutoring Center

Kevin Velado

Database Systems

1

Table of Contents

Fact Finding and Information Gathering 5

Techniques Used 5

Introduction to Enterprise/Company 5

Structure of Enterprise 5

Itemized Description of Major Objects 6

Data Views and Operations for User Groups 6

Conceptual Database Design 7

Entity Set Description 7

Relationship Set Description 11

E-R Diagram 13

E-R Model and the Relational Model 14

 Description 14

Comparison 14

Conversion From E-R Model to Relational Model 14

Constraints 15

E-R Database to Relational Database 16

Tutor Relation 16

TimeBlock Relation 16

Subject Relation 17

Student Relation 17

Department Relation 17

2

Class Relation 18

Instructor Relation 18

Tutors Relation 18

Works Relation 19

Tutored Relation 19

Taking Relation 19

Studying Relation 20

Relational Instances 21

Tutor Instance 21

TimeBlock Instance 21

Subject Instance 22

Student Instance 22

Department Instance 23

Class Instance 23

Instructor Instance 24

Tutors Instance 24

Works Instance 25

Tutored Instance 26

Taking Instance 26

Studying Instance 27

Queries 29

Phase III: Implementation of the Relational Database 31

SQL PLUS 31

3

Schemas Used 32

SQL Queries 41

PhaseIV: Stored Subprograms, Packages and Triggers 45

Common Features in Oracle PL/SQL and MS Trans-SQL 45

Oracle PL/SQL 45

Oracle PL/SQL Subprogram 48

Phase V: GUI Design and Implementation 50

Description of Program and its Daily Use 50

Relations, Views, and Subprograms Related 50

Screen Shots and Description 50

What I Learned 52

4

Fact Finding and Information Gathering

Techniques Used

In order to better facilitate the needs of a company, fact finding is required in order to know
what their database will be used for. Fact finding will better help me in knowing what the business will
need to keep track of and further operations on that data. Two techniques were the most useful in the
area of fact finding, those being Interviewing and Data Analysis.

Interviewing the employee's allowed me to create the necessary entity classes for the database.
Meetings with the tutors were more or less informal. The main discussion with the tutors focused on
keeping track of data and how their current system is not very sophisticated but works for what they
need. The discussion with the director of the tutoring center was more formal and focused on what they
want to do with the data. Essentially the later interview gave me insight on the operations that they
wanted to do with the data. At the end of the interview process I was able to create the entity types
required for the database and their most basic relationship. Although details were gathered about each
type, I needed more information. So the next fact finding method filled in those blanks.

The next step in the fact finding process was data analysis. The tutoring center was using a very
simple method to keep track of how many students came in for tutoring each day and what they needed
help in. Essentially they created an excel spreadsheet and asked for the students to fill out a row.
Looking at the data I was able to see what additional details each entity type needed.

Introduction to Enterprise/Company

The business I am focusing on for this project can be considered small. The Tutoring Center is
based on campus and is comprised of a small number of employees. The Tutoring Center's focus is on
the student's understanding of a subject. The center has tutors for the primary subjects that all students
that attend the university will take. The two most important subjects are Mathematics and English,
These two subjects see the most traffic flow and have the most tutors allocated to. With that being said
all of the Tutoring Center is important, especially for the development of the students.

Structure of the Enterprise

The Tutoring Center is comprised of four main sections. They have a dedicated Computer
Science and Mathematic area, meaning only one subject is tutored in one location. The reason being is
that for Computer Science there is no other location on campus that facilitate the needs for computer
science tutoring and for mathematics the traffic flow of students needing help is so great that they were
granted their own tutoring location. Then there are two more locations that are for the purposes of
tutoring English and other language based subjects and Biology, Physics and the other sciences that
have not been listed. How the center works is as follows, during operating hours there are somewhere
between 1 and 4 tutors working in one of the locations. Students will come in and sign in, meaning
enter the data that the tutoring center wants (name, date, subject, etc.). Then they will proceed to sit
down somewhere in the tutoring center and enlist the help of the tutors when they require it. After the

5

students are done, they simply sign out and leave to come another day. Since the Tutoring Center is
being funded by a grant on the campus, they do not have to worry about a staff or payment to the tutors
themselves. Also each tutoring center will have a head tutor, who will manage the tutors and be in
charge of the data being correct and making any necessary changes.

Itemized Description of Major Objects

The Tutor entity is one of the two main entities of the system. The purpose of this entity is to
represent the tutors in the relationships of the database system. The tutor entity will have relations with
two other entities: Timeblock and Student. The Timeblock entity is a lesser entity and is used mainly to
define at what hours the tutors will work. Whilst Student is the other main Entity type of the database.
Student is quite possibly the most important entity due to the fact that the reason a database is being
created is for the sole purpose of keeping track of the number of students coming in the tutoring center.
The Student entity then in turn has a relationship with a Class entity and a Department entity. Class will
be what the class the student is coming in for tutoring and the students major will be determined by the
department.

Data Views and Operations for User Groups

The head tutor will be in charge of each tutoring facility and determine tutor grades and changes
to time blocks if necessary. The head tutors only have this privilege in their respected section of the
tutoring center. Meaning that the mathematics's head tutor can only change the tutor grades and time
blocks of the tutors in the mathematics tutoring center. All the tutors will have no access to the database
itself. Operations on the data will be made by the director of the Tutoring Center.

6

Conceptual Database Design

Entity Set Description

Tutor
• This entity type describes the tutors working in the tutoring center. This entity is mainly created

to keep track of the tutors and how well they are doing.
• Candidate Key(s): TutorID
• Primary Key: TutorID
• Strong/Weak Entity: Strong
• Fields to be Indexed: TutorID, Name
• Attributes:

Name TutorID Name TutorGrade PhoneNumber PayRate

Description Tutor ID
Number

The Name of
the Tutor

A tutoring grade for the
tutor

The phone number of the
tutor

Determines the
pay rate for the
tutor

Domain/Type Unsigned
Integer

String Character Integer Double

Value Range 0...2^32 Any A,B,C,D,F (000)000-0000 -
(999)999-9999

00.00 – 99.99

Default Value None None None None 10.5

Nullable No No No Yes No

Unique Yes No No Yes No

Single or
Multiple value

Single Single Single Single Single

Simple or
Composite

Simple Composite Simple Composite Simple

7

TimeBlock
• This entity type comprises of the shifts that the tutoring center is open for. For example Shift 1

will be from 9:30 am to 10:45 am.
• Candidate Key: TimeID
• Primary Key: TimeID
• Strong/Weak Entity: Strong
• Fields to be Indexed: TimeID
• Attributes:

Name TimeID StartTime EndTime

Description The Time slot's ID Beginning time of the shift Ending time of the shift

Domain/Type Unsigned Integer Unsigned Integer Unsigned Integer

Value Range 0...2^32 09:30 – 22:00 09:30 – 22:00

Default Value None None None

Nullable No No No

Unique Yes No No

Single or Multiple value Single Single Single

Simple or Composite Simple Composite Composite

Subject
• This entity class contains the subjects that the tutoring center tutors in.
• Candidate Key: SubjectID
• Primary Key: SubjectID
• Strong/Weak Entitiy: Strong
• Fields to be Indexed: SubjectID
• Attributes:

Name SubjectID SubjectDescription

Description The ID of the subject A description of the subject

Domain/Type String String

Value Range Any Any

Default Value None None

Nullable No Yes

Unique Yes Yes

Single or Multiple value Single Single

Simple or Composite Simple Simple

8

Student
• This entity is to represent the students that come to the tutoring center for tutoring. The data that

comes from this entity will be used to better accommodate future students.
• Candidate Key: StudentID
• Primary Key: Student ID
• Strong/Weak Entity: Strong
• Fields to be Indexed: StudentID, Name
• Attributes:

Name StudentID Name

Description The student's ID number The student's name

Domain/Type Unsigned Integer String

Value Range 0...2^32 Any

Default Value None None

Nullable No No

Unique Yes No

Single or Multiple value Single Single

Simple or Composite Simple Composite

Department
• This entity will be used to determine the student's disciplines. A student can theoretically have

as many disciplines as he can.
• Candidate Keys: DepartmentID, DepartmentHead
• Primary Key: DepartmentID
• Strong/Weak Entity: Strong
• Fields to be Indexed: DepartmentID
• Attributes:

Name DepartmentID DepartmentHead Extension

Description The Department's ID The name of the
department head

The extension to the department's head office.

Domain/Type String String Unsigned Integer

Value Range Any Any 1000-9999

Default Value None None None

Nullable No No No

Unique Yes Yes Yes

Single or Multiple value Single Single Single

Simple or Composite Simple Composite Simple

9

Class
• The Class entity will comprise of the classes that are being offered at the school and the classes

that the students can be tutored in.
• Candidate Key: ClassID
• Primary Key: ClassID
• Strong/Weak Entity: Strong
• Fields to be Indexed: ClassID
• Attributes:

Name ClassID ClassDescription

Description The ID number of the class. The description of the course.

Domain/Type String String

Value Range Any Any

Default Value None None

Nullable No No

Unique Yes Yes

Single or Multiple value Single Single

Simple or Composite Simple Simple

Instructor
• The Instructor entity contains information of the faculty of the university
• Candidate Key: InstructorID, InstructorName
• Primary Key: InstructorID
• Strong/Weak Entity: Strong
• Fields to be Indexed: ClassID
• Attributes:

Name InstructorID InstructorName Extension

Description The ID number of the class. The description of the course. The extension to the
instructor's office.

Domain/Type Unsigned Integer String Unsigned Integer

Value Range 0...2^32 Any 1000 - 9999

Default Value None None None

Nullable No No Yes

Unique Yes Yes Yes

Single or Multiple value Single Single Single

Simple or Composite Simple Simple Simple

10

Relationship Set Description

Tutors
Tutors is a binary relationship between the Tutor entity and the Subject entity. This relationship
maps a tutor to a specific subject they are able to tutor.
– Mapping Cardinality: M..N
– Descriptive Field: None
– Participation Constraint: In order to be a tutor you must be able to tutor in one of the

subject areas. Therefore there is total participation.

Works
Works is a relationship between the Tutor entity and the Timeblock entity. The relationships
describes the amount of hours that a tutor works as well as the tutor's tutoring schedule.
– Mapping Cardinality: M..N
– Descriptive Field: None
– Participation Constraint: If you are not working any hours in the tutoring center then you are

not a tutor, therefore the participation constraint is total.

Tutored
Tutored is a binary relationship between the Student entity, and the Class entity. This will keep
track of which students a certain tutor has tutored, as well as the class tutored. This would
provide clarity to which tutor is doing well. Also Tutored will keep track of the time a certain
student was being tutored.
– Mapping Cardinality: M..N
– Descriptive Field: None
– Participation Constraint: This has partial participation due to the fact that student may forget

to record their students id numbers and the time spent in the tutoring center.

Studying
Studying is a relationship between the student and the school's department. The relationship will
inform us what the student's major is. This relationship will help the tutoring center
have an idea on who they should focus on.
– Mapping Cardinality: M..N
– Descriptive Field: None
– Participation Constraint: This has total participation.

Taking

Taking is a ternary relationship between the Student entity, the Class entity, and the Instructor
entity. This relationship will map a student to a class that he or she is taking. It will also give a
class description and the instructor teaching the course, as well more information on the class
itself.
– Mapping Cardinality: M..N

11

– Descriptive Field: None
– Participation Constraint: This has total participation for the students.

Related Entity Set

Since this is a relatively small business there are no related entity sets. There is divide between
the two major entities in this database and thus do not share any entities. If the database
becomes more complex there then may be some related entity sets.

12

E-R Diagram

13

E-R Model and the Relational Model

Description

The E-R Model just discussed recently helps in creating and planning out how a database
should function. With that in mind, we can not simply use this model to implement the database, we
must first convert the E-R Model to a Relational Model. The Relational Model provides a declarative
method for specifying our data and queries. In other words this model allows us to state exactly what
we want to gather from the database. For instance, if we had a database that kept track of baseball stats,
we demand from the database a list of all pitchers who have an E.R.A (earned run average) less than
2.5, and the database will take that query and return us the results. As opposed to the E-R model, where
if we gave that query it will not know how to find that information.

Comparison

The entity-relationship model is a conceptual model which allows us to design our database.
Essentially it is a visual description of the database's format, attributes, relationships and its cardinality.
But this model does not provide any details in actually implementing our database, and that is where
the problem lies. The entity-relationship is a great first step in visualizing and designing our database,
but the relational model is the next step of making the database an actuality.

The relational model on the other hand represents the entities and relationships in a table format
with its attributes as the columns of the tables. Each row in the tables created by the relational model
are tuples in the database, a tuple is a record of the database. The tables themselves represent a
relationship in the model. All this information allows us to understand the size, constraints, and
structure of the database more.

Conversion From E-R Model to Relational Model

To convert our E-R Model into a relational model we need follow an algorithm for each of our
entities and our relationships. Our E-R model will provide the foundation of our relational model,
meaning we will build off of the ideas and structure presented by the E-R Model to create our relational
model.

The first step in converting our conceptual model to a relational model is to map the regular
(strong) entities of the conceptual model. This is achieved by creating a relation using the same
attributes from the entity from the E-R model. From here an attribute will be chosen to represent the
primary key for the relation. If an attribute that is composite is chosen to be the primary key then a
combination of those sections will be chosen as the primary key. If necessary a secondary key can be
used as well.

The second step in the conversion will be to map all the weak entities in the E-R model. With
the weak entities a relation will be created by using all the simple attributes of said entity. Then the

14

primary keys of the entity that owns the weak entity will be used as the foreign key for the relation.
Finally the primary key for the weak entity will consist of the combination of the primary key(s) of the
owner entity and the partial key of the weak entity, if any exist.

Next will be the mapping of all binary relationships will be handled. The relationships from the
E-R model will be mapped to separate relations S and T. There are three methods to create this
representation in the relational model:

• Include the primary key of one relation as a foreign key of another. This method is best used
for total participation of one the entities.

• Merge both entity types into one relation. This method fits those relationships in which both
entities exhibit total participation.

• Create a relation that holds all the primary keys of the entities participating in the relationship.
This is necessary for relationships that have M:N cardinality. But this can still be used for
relationships that do not have that.

The given steps are used to map all binary relationships that map from 1:1, 1:M, and M:N.

Next for each multivalued attribute you will need to create a relation for it. The relation will
have an attribute for each section of the multivalued attribute. The relation will also contain, as the
foreign key, the primary key of the entity. Then the primary key for the relation will be the combination
of the foreign key and the attributes.

The final step is to convert any n-ary relationships you have in the E-R model, where n > 2, into
a relation. So for any n-ary relationship type R, create a new relation S to represent the R. Include in S,
as the foreign key, the primary keys of the entities involved in the relationship.

For conceptual models that involve specialization or generalization, more steps are needed in
order to properly represent them in the relational model. There are several approaches for this step:

• Create one relation for the superclass with {k, a1, a2, …, an} attributes, and create m relations
for each subclass with its own attributes unioned with the superclass’ attributes, and specify k as
the subclass’ primary key. This works for any arrangement of specialization: total, partial,
disjoint, or overlapping

• Create a relation for each subclass, and union the subclass’ attributes with the superclass’
attributes. This works for when every superclass object belongs to at least one subclass.

• Create a single relation with all subclass and superclass attributes unioned. This can create
many NULL entries in the resulting tuples.

Constraints

A relation is a set of unique tuples where in each tuple contains the same attributes as one
another, same meaning number and type not actual value. With that in mind there constraints to these
entities. Entity constraints are used to ensure that there are unique elements of each tuple in the
relation. Also constraints ensure that no primary key are left NULL. For foreign keys there are
constraints that make sure that there is valid reference to any other tuples in the relation. There are also
constraints that serve the purpose of the company or business, these are called business constraints and
check constraints. These constraints are specific to each type of business.

15

E-R Database to Relational Database

Tutor Relation

Attributes:
• TutorID

◦ Domain: Unsigned integer: 1 to 2^(32) – 1. Value must not be Null.
• Name

◦ Domain: String. The string will hold the name of the tutor in the following format:
“Firstname Lastname.” The string will be strictly for display purposes. Should not be
Null.

• TutorGrade
◦ Domain: Character. The character will hold the present grade of the tutor, in terms of

how well the tutor tutors. Ranges from {A,B,C,D,F}. Value can not be Null.
• PhoneNumber

◦ Domain: Integer. The phone number of a tutor will be stored as a 10 digit integer,
where the first 3 digits represent the area code. Can be Null.

• PayRate
◦ Domain: Double. This is the payrate for each tutor. Can not be Null.

Constraints:
• Primary Key: TutorID will be the Primary Key. This value can not be null and must be

unique.
• Business Rule: Pay rate can not exceed 12.00 dollars per hour.

Candidate Keys:
• TutorID

TimeBlock Relation

Attributes
• TimeID

◦ Domain: Unsigned Integer: 1 to 2^(32)-1. Value can not be Null.
• StartTime

◦ Domain: String. Value can not be Null. The string will be written in the following
format “DD HH:MM”, and follow a 24 hour time type.

• EndTime
◦ Domain: String. Value can not be Null. The string will be written in the following

format “DD HH:MM”, and follow a 24 hour time type.
Constraints:

16

• Primary Key: TimeID acts as the primary key. Can not be Null. Must be unique.
• Business Rule: StartTime has to be smaller than EndTime.

Candidate Keys:
• TimeID

Subject Relation

Attributes
• SubjectID

◦ Domain: String. Value can be of any length. Can not be Null.
• Description

◦ Domain: String. Value can range from any length. Can be Null. Will describe the
subject.

Constraints:
• Primary Key: SubjectID is the primary key, thus it can not be null and must be unique.

Candidate Keys:
• SubjectID

Student Relation

Attributes
• StudentID

◦ Domain: Unsigned Integer. Value can range from 0 to 2^(32)-1. Can not be null.
• Name

◦ Domain: String. The string will hold the name of the student in the following format:
“Firstname Lastname.” The string will be strictly for display purposes. Should not be
Null.

Constraints:
• Primary Key: StudentID is the primary key, thus it can not be null and must be unique.

Candidate Keys:
• StudentID

Department Relation

Attributes
• DepartmentID

◦ Domain: String. Can not be null.
• DepartmentHead

◦ Domain: String. String can be of any size following the format “Firstname
Lastname”. Can not be null.

• DepartmentExtension
◦ Domain: Unsigned Integer. Ranges from 0 to 2^(32)-1. Can be null. Represents the

extension to the department.

17

Constraints:
• Primary Key: Department is the primary key so it must be unique and can not be null.
• Business Rule: Department extension must be between 1000 and 9999.

Candidate Keys:
• DepartmentID

Class Relation

Attributes
• ClassID

◦ Domain: String. Can not be NULL.
• ClassDescription

◦ Domain: String. Value can range from any length. Can be Null. Will describe the
class.

Constraints:
• Primary Key: ClassID is the primary key so it can not be null and must be unique.

Candidate Keys:
• ClassID

Instructor Relation

Attributes
• InstructorID

◦ Domain: Unsigned Integer. 1 to 2^(32)-1. Can not be null.
• InstructorName

◦ Domain: String. String can be of any size following the format “Firstname
Lastname”. Can not be null.

• InstructorExtension
◦ Domain: Unsigned Integer. Ranges from 0 to 2^(32)-1. Can be null. Represents the

extension to the instructor's office.
Constraints:

• Primary Key: InstrutorID is the primary key so it can not be nullable and must be
unique.

• Business Rule: InstructorExtension must be between 1000 and 9999.
Candidate Keys:

• InstructorID

Tutors Relation

Attributes
• TutorID

◦ Domain: Unsigned integer: 1 to 2^(32) – 1. Value must not be Null.
• SubjectID

18

◦ Domain: String. Value can be of any length. Can not be Null.
Constraints:

• Foreign Keys: The foreign keys TutorID and SubjectID must be a valid record from
each relation.

Candidate Keys:
• None

Works Relation

Attributes:
• TutorID

◦ Domain: Unsigned integer: 1 to 2^(32) – 1. Value must not be Null.
• TimeID

◦ Domain: Unsigned Integer: 1 to 2^(32)-1. Value can not be Null.
Constraints:

• Foreign Keys: TutorID must be a valid record from the relation, as well as
TimeBlockID.

Candidate Keys:
• None

Tutored Relation

Attributes:
• StudentID

◦ Domain: Unsigned Integer. Value can range from 0 to 2^(32)-1. Can not be null.
• SignIn

◦ Domain: String Value. Can be Null. The string will be written in the following
format “MM/YY/DD HH:MM AM/PM”.

• SignOut
◦ Domain: String Value. Can be Null. The string will be written in the following

format “MM/YY/DD HH:MM AM/PM”.
• ClassID

◦ Domain: String. Can not be null.

Constraints:
• Foreign Keys: TutorID, StudentID, and ClassID must be valid relations and exist.
• Business Rule: SignOut can not be smaller than SignIn.

Candidate Keys:
• None

Taking Relation

Attributes:

19

• StudentID
◦ Domain: Unsigned Integer. Value can range from 0 to 2^(32)-1. Can not be null.

• ClassID
◦ Domain: String. Can not be null.

• InstructorID
◦ Domain: Unsigned Integer. 1 to 2^(32)-1. Can not be null.

• Grade
◦ Domain: Character. The character will hold the present grade of the student, in terms

of how well the student is doing in the class. Ranges from {A,B,C,D,F}. Value can
not be Null.

Constraints:
• Foreign Keys: StudentID, ClassID, and InstructorID must exist in their respective

relation.
Candidate Keys:

• None

Studying Relation

Attributes:
• StudentID

◦ Domain: Unsigned Integer. Value can range from 0 to 2^(32)-1. Can not be null.
• DepartmentID

◦ Domain: Unsigned Integer. Value can range from 0 to 2^(32)-1. Can not be null.

Constraints:
• Foreign Keys: StudentID and DepartmentID must be valid records from their respective

relaitons.

Candidate Keys:
• None.

20

Relational Instances

Tutor(TutorID, Name, TutorGrade, PhoneNumber, PayRate)

TutorID Name TutorGrade PhoneNumber PayRate
1 Kevin Velado A (555)555-5555 12
2 Chuck Cupani A (555)555-5556 10.5
3 Vianey Leos A (555)555-5557 10.5
4 Daniel Betancourt A (555)555-5558 10.5
5 Derrick McKee A (555)555-5559 10.5
6 Walter Morales A (555)555-5560 10.5
6 Chris Gutierrez A (555)555-5561 10.5
7 John Doe B (555)555-5562 10.5
8 Susie Q B (555)555-5563 10.5
9 Doreteo Rivera A (555)555-5564 10.5
10 Jane Doe C (555)555-5565 10.5

TimeBlock(TimeID, StartTime, EndTime)

TimeID StartTime EndTime
1 Mon 08:00 Mon 9:30
2 Mon 09:30 Mon 10:45
3 Mon 10:45 Mon 12:15
4 Mon 12:15 Mon 13:45
5 Mon 13:45 Mon 15:00
6 Mon 15:00 Mon 17:00
7 Mon 17:00 Mon 18:30
8 Mon 18:30 Mon 20:00
9 Sun 13:00 Sun 17:00
10 Tues 08:00 Tues 11:00

21

Subject (SubjectID, Description)

SubjectID Description
1 Computer Science
2 Mathematics
3 Biology
4 English
5 French
6 Physics
7 Nursing
8 Psychology
9 Spanish
10 Geology

Student (StudentID, Name)

StudentID Name
1 Gina Gonzales
2 Nehemias Ulloa
3 Jason Cotton
4 John Doe
5 Don Passion
6 Bob Smith
7 Tom Wallace
8 Reggie Roberson
9 Vianey Leos
10 Chris G

22

Department (DepartmentID, DepartmentHead, DepartmentExtension)

DepartmentID DepartmentHead DepartmentExtension
1 Marc Thomas 1000
2 Javier Trigos 1001
3 Thomas Meyers 1002
4 Charles Lam 1003
5 Robert Smith 1004
6 Jane Doe 1005
7 Edgar Buenrostro 1006
8 Alven Diaz 1007
9 Dig Dug 1008
10 Pac Man 1337

Class (ClassID, ClassDescription)

ClassID ClassDescription
CS 221 Introduction to C++
FR 101 Intro to French
PHY 221 Classical Physics
Math 101 Finite Mathematics
Math 191 Precalculus I
Math 192 Precalculus II
CS 295 Discrete Structures
Bio 100 Introduction to Biology
PSY 100 Introduction to Psychology
Math 300 Sets and Logic

23

Instructor (InstructorID, InstructorName, InstructorExtension)

InstructorID InstructorName InstructorExtension
1 Charles Lam 1003
2 David Gove 1123
3 Pac Man 1337
4 Marc Thomas 1000
5 Dig Dug 1008
6 Max Velado 1466
7 Aaron Rodgers 1212
8 Gregory Jennings 1385
9 Ryan Grant 3232
10 John Doe 4367

Tutors (TutorID, SubjectID)

TutorID SubjectID
1 1
1 2
1 3
1 4
1 5
1 6
1 7
2 2
2 4
2 5
2 6
3 2
3 1
4 2
5 5
5 6

TutorID SubjectID
6 1
7 2
7 3
8 4
8 5
8 6
9 7
9 2
10 4
12 5
12 6
13 2
13 1
14 2
15 5
16 6

TutorID SubjectID
21 1
21 2
21 3
21 4
21 5
21 6
21 7
22 2
22 4
22 5
22 6
23 2
23 1
24 2
25 5
25 6

24

5 7
5 8
5 9
5 10

16 7
16 8
16 9
17 10

52 7
75 8
85 9
95 10

Works (TutorID, TimeID)

TutorID TimeID
1 1
1 9
1 16
1 24
1 32
2 2
2 10
2 18
2 26
2 34
3 3
3 11
3 19
3 27
3 35
4 4
4 12
4 20
4 28
4 36

TutorID TimeID
5 5
5 13
5 21
5 29
5 37
6 6
6 14
6 22
6 30
6 38
7 7
7 15
7 23
7 31
7 39
8 8
8 16
8 24
8 32
8 40

TutorID TimeID
9 9
9 17
9 25
9 33
9 41
10 10
10 18
10 26
10 34
10 42
11 11
11 19
11 27
11 35
11 43
12 12
12 20
12 28
12 36
12 42

25

Tutored (StudentID, SignIn, SignOut, ClassID)

StudentID SignIn SignOut ClassID
23 10/10/10 08:00 AM 10/10/10 08:45 AM CS 221
42 10/10/10 08:05 AM 10/10/10 09:00 AM CS 223
34 10/10/10 09:15 AM 10/10/10 10:00 AM Math 140
23 10/10/10 09:15 AM 10/10/10 11:00 AM Bio 100
11 10/10/10 09:15 AM 10/10/10 10:00 AM Math 140
10 10/10/10 09:15 AM 10/10/10 10:00 AM Math 140
23 10/10/10 10:30 AM 10/10/10 10:45 AM English 101
11 10/10/10 10:30 AM 10/10/10 01:00 PM FR 101
15 10/10/10 10:30 AM 10/10/10 12:00 PM Math 191
16 10/10/10 10:30 AM 10/10/10 12:00 PM Math 191
15 10/10/10 10:30 AM 10/10/10 12:00 PM Math 191
34 10/10/10 03:00 PM 10/10/10 04:15 PM Math 201
27 10/10/10 06:00 PM 10/10/10 08:00 PM Math 202

Taking (StudentID, ClassID, InstructorID, Grade)

StudentID ClassID InstructorID Grade
1 CS 221 21 A
2 CS 221 21 B
3 CS 221 21 A
4 CS 221 21 B
5 MATH 101 45 A
6 MATH 101 45 D
7 MATH 101 45 A
8 MATH 101 45 B
9 MATH 101 45 C
10 MATH 101 45 C
11 BIO 101 54 C
12 MATH 101 45 B
13 MATH 101 45 A

StudentID ClassID InstructorID Grade
31 CS 221 21 A
32 MATH 101 45 A
33 CS 221 21 A
34 MATH 101 45 A
35 CS 221 21 A
36 BIO 101 54 A
37 CS 221 21 A
38 CS 221 21 A
39 BIO 101 54 A
40 CS 221 21 B
41 MATH 101 45 B
42 MATH 101 45 B
43 BIO 101 B

26

14 BIO 101 54 A
15 BIO 101 54 A
16 BIO 101 54 A
17 MATH 101 45 B
18 MATH 101 45 F
19 MATH 101 45 B
20 BIO 101 54 B
21 BIO 101 54 B
22 MATH 101 45 B
23 BIO 101 54 C
24 CS 221 21 B
25 CS 221 21 B
26 CS 221 21 B
27 CS 221 21 C
28 CS 221 21 A
29 CS 221 21 D
30 CS 221 21 A

44 CS 221 21 B
45 CS 221 21 B
46 CS 221 21 B
47 BIO 101 54 C
48 CS 221 21 B
49 CS 221 21 B
50 CS 221 21 B
51 CS 221 21 B
52 BIO 101 54 B
53 CS 221 21 B
54 CS 221 21 B
55 MATH 101 45 B
56 CS 221 21 B
57 MATH 101 45 B
58 CS 221 21 B
59 CS 221 21 B
60 MATH 101 45 B

Studying (StudentID, DepartmentID)

StudentID DepartmentID
1 CS
2 BIO
3 MATH
4 PHY
5 CS
6 BIO
7 MATH
8 BIO
9 CS
10 CS
11 BIO

StudentID DepartmentID
31 MATH
32 MATH
33 MATH
34 CS
35 CS
36 MATH
37 MATH
38 CJ
39 CJ
40 MATH
41 MATH

27

12 MATH
13 MATH
14 CS
15 BIO
16 CS
17 BIO
18 CS
19 BIO
20 MATH
21 BIO
22 CS
23 MATH
24 MATH
25 BIO
26 CS
27 MATH
28 CS
29 BIO
30 CS

42 PHY
43 MATH
44 MATH
45 CJ
46 BIO
47 BIO
48 MATH
48 GEO
49 BIO
50 MATH
51 GEO
52 BIO
53 BIO
54 MATH
55 CS
56 MATH
57 BIO
58 MATH
59 BIO

28

Queries
• List all students taking Math 140
• List students only taking Math 140
• List tutors that tutor at least 2 subjects
• List Instructors who are also Department Heads
• List all Physics majors who are being tutored

Query Representation
List All Students Taking Math 140

• Relational Algebra
 π (StudentID)(σ (Taking t1) * Student)
 t1.ClassID = “Math 140”

• Tuple Relational Calculus
{s | Student(s) ^ (t) (Taking(t) ^ s.StudentID = t.StudentID ^ t.ClassID = “Math∃
140”)}

• Domain Relational Calculus
{<s,n> | Student(s,n) ^ (t)(Taking(t = s, “Math 140”, –, –)) }∃

List Students Only Taking Math 140
• Relational Algebra

 π (StudentID)((π(StudentID)(σ(Taking t1)) -
t1.ClassID = “Math 140”

 π (StudentID)(σ (Taking t2)))* Student)
 t2.ClassID != “Math 140”

• Tuple Relational Calculus
{t | Taking(t) ^ t.ClassID = “Math 140” ^ ~(t2)(Taking(t2) ^ t.StudentID =∃
t2.StudentID ^ t.ClassID != t2.ClassID)}

• Domain Relational Calculus
{ <s> | Taking(s,“Math 140”, – , –) ^ ~(c)(Taking(s,c!= “Math140”, – , –))}∃

List Tutors That Tutor at Least 2 Subjects
• Relational Algebra

π(TutorID)(σ(Tutors t1 x Tutors t2) * Tutor)
t1.TutorID = t2.TutorID

 ^ t1.SubjectID != t2.SubjectID

• Tuple Relational Calculus
{t | Tutors(t) ^ (t2)(Tutors(t2)^t.TutorID= t2.TutorID ^ t.SubjectID != t2.SubjectID)}∃

• Domain Relational Calculus
{<t,s>| Tutors(t,s) ^ (t2)(s2)(Tutors(t2 = t, s2!=s))}∃ ∃

29

List All Instructors Who Are Also Department Heads
• Relational Algebra

π(InstructorName)(σ(Instructor i x Department d) * Instructor)
i.InstructorName = d.DepartmentHead

• Tuple Relational Calculus
{i | Instructor(i) ^ (d)(Department(d) ^ d.DepartmentHead= i.InstructorName) } ∃

• Domain Relational Calculus
{<i> | Instructor(– , i , –) ^ (c) (Department(– , c = i , –))}∃

List All Physics Majors Who Are Being Tutored
• Relational Algebra

π(Name)(σ(Tutored t x Studying s) * Student)
 t.StudentID = s.StudentID
 ^ s.Major = “PHYS”

• Tuple Relational Calculus
{ n | Student(n) ^ (t)(s)(Tutored(t) ^ Studying(s) ^ t.StudentID = s.StudentID∃ ∃

 ^ s.StudentID = n.StudentID
 ^ s.Major = “Math 140”) }

• Domain Relational Calculus
{<s,n> | Student(s,n) ^ (x)(y)(Tutored(x = s, – , – , –) ^ Studying(y = s,“Phys”))}∃ ∃

30

Phase III: Implementation of the Relational
Database

SQLPLUS
Now that the relational model has been completed, the description for each relation can be used

to actually create a database that meets its requirements regarding attributes, constraints, and
relationships. To do this, I will use the implementation of SQL from the Oracle Relational Database
Management System (hereafter referred to as Oracle). Structured Query Language, or SQL, was first
developed at IBM in the 1970s. Since then, it has undergone rigorous optimization and
standardization, and several popular implementations are used for most databases. These include
Microsoft’s Transact-SQL, or T-SQL, MySQL, and Oracle. Oracle provides a tool called SQL*PLUS
that allows users to interactively run any SQL commands. It’s a command-line tool that supports both
user interaction and automated scripts. By using a hierarchy of scripts to call appropriate commands, a
database can be destroyed and re-created very quickly using SQL*PLUS.

Schema Objects in Oracle

Oracle has a collection of schema objects objects that create schema. The tablespace organizes
the structutre of the database taking into consideration the different kinds of schemas. As well as
containing the loactions used to store data on the database. Schema objects are data structures that are
stored in a given database, logically. Oracle has the following schema objects:

Tables
Tables represent each relation from the relational model. Tables are the basic storage system
used in an Oracle database. The columns on a table represent the attributes of that relation.
Each column has a unique name and data type for that relation. The rows represent a valid
record in that relation with certain unique attributes. Tables also hold information about the
relation's primary keys, foreign keys, and constraints.

 Views
Views act like read-only commands that return tuples from tables that meet some requirements.
Views allow for better organization and optimization of the database. The output of a view can
be seen as a table in a sense, thus can be accessed and modified like one. Unlike tables, views
will not keep track of referential or integrity constraints. The results of a view are not stored
anywhere, they are only simply displayed. Therefore views do not use up any storage space.
Views can be used to obfuscate data, prevent direct access for certain users, and simplify
representation for users. Materialized views are special views that perform a specific function
on the data it retrieves, including aggregate functions, sorting, summations, data transfer, and
reorganization.

31

Sequences
Sequence generators create a sequential set of numbers for use in a multi-user environment.
These sequence numbers can then be used to determine order for queued operations or requests.
They are not dependent on any table, but they can be used to generate primary keys for a
specific table. Sequence numbers can also be used to keep track of roll-backs in transactions,
ensuring that the right commands are reversed without confliction between separate users.

Synonyms
Synonyms are alternate aliases for certain types of schema objects, such as tables, procedures,
functions, or views. They do not require any additional storage space other than their entries in
the database’s data dictionary. Synonyms can be used to directly hide internal data for outside
users or to simplify complex SQL commands.

Indexes
Databases attempt to optimize traversal of each table by caching the values of unique attributes,
such as primary keys. Additional attributes can be specified such that the database more
quickly accesses their values during comparisons for overall faster results. Indexes can also be
created for combinations of certain attributes. Furthermore, an existing index can be used to
create another dependent index. An Oracle system will automatically maintain indexes once
specified by a user.

Database Links
Put simply, database links are hard-coded, read-only links to another database. This allows one
database to perform queries and retrieve results using another database, while simultaneously
preventing both databases from risking the integrity of one another.

Stored procedures and functions
These can be seen as scripts that are stored on the database. When executed, a stored procedure
or function always performs the same task as instructed upon its creation. Functions in Oracle
always return a single value to the user, while stored procedures do not.

Packages
Packages are a specific collection of stored procedures, functions, and cursors. Combined, they
act as a single unit of instructions. This is critical for large-scale operations performed by
stored procedures. Packages organize and simplify design requirements for databases that
require persistent, complex tasks.

Schema objects in this project

In this project, the two most frequently used schema objects are the table and the view.
Most of the tables are created using syntax similar to this:

32

CREATE Table [TableName]
(

attributes attribute types null? ,
… … … ,

CONSTRAINT pk_tablename PRIMARY KEY (AttributeName),
CONSTRAINT k_ParentName_ChildName FOREIGN KEY (AttributeName)

REFERENCESParentName (ParentAttributeName)

);
The scheme objects created using this syntax are as follows:

• kv_tutor Tutor relation
• kv_timeblock Timeblock relation
• kv_subject Subject relation
• kv_student Student relation
• kv_department Department relation
• kv_class Class relation
• kv_instructor Instructor relation
• kv_tutors Tutors relation
• kv_works Works relation
• kv_tutored Tutored relation
• kv_taking Taking relation
• kv_studying Studying relation

Following are the schemas and instances for each relation:

kv_tutor
CS342 SQL> desc kv_tutor;
 Name Null? Type
 --- -------- --
 TUTORID NOT NULL NUMBER(5)
 TUTORNAME NOT NULL VARCHAR2(20)
 TUTORGRADE NOT NULL VARCHAR2(1)
 PHONENUMBER NOT NULL VARCHAR2(13)
 PAYRATE NOT NULL NUMBER(4,2)

CS342 SQL> select * from kv_tutor;

 TUTORID TUTORNAME T PHONENUMBER PAYRATE
---------- -------------------- - ------------- ----------
 1 Kevin Velado A 555-555-5555 12
 2 Chuck Cupani A 555-555-5556 2
 3 Vianey Leos A 555-555-5557 10.5
 4 Daniel Betancourt A 555-558-5555 10.5

33

 5 Derrick McKee A 555-555-5559 10.5
 6 Walter Morales A 555-555-5550 10.5
 7 Chris Gutierrez A 555-555-5551 10.75
 8 Susie Q A 555-555-5552 9.5
 9 Doreteo Rivera A 555-555-5553 11.5
 10 Jane Doe C 555-555-5554 10.25

10 rows selected.

kv_timeblock

CS342 SQL> desc kv_timeblock;
 Name Null? Type
 --- -------- --
 TIMEID NOT NULL NUMBER(5)
 STARTTIME NOT NULL VARCHAR2(20)
 ENDTIME NOT NULL VARCHAR2(20)

CS342 SQL> select * from kv_timeblock;

 TIMEID STARTTIME ENDTIME
---------- -------------------- --------------------
 1 Sun 13:00 Sun 18:00
 2 Mon 08:00 Mon 09:30
 3 Mon 09:30 Mon 10:45
 4 Mon 10:45 Mon 12:15
 5 Mon 12:15 Mon 13:45
 6 Mon 13:45 Mon 15:00
 7 Mon 15:00 Mon 17:00
 8 Mon 17:00 Mon 18:30
 9 Mon 18:00 Mon 20:00
 10 Tue 08:00 Tue 09:30

10 rows selected.

kv_subject

34

CS342 SQL> desc kv_subject;
 Name Null? Type
 --- -------- --
 SUBJECTID NOT NULL NUMBER(5)
 DESCRIP NOT NULL VARCHAR2(20)

CS342 SQL> select * from kv_subject;

 SUBJECTID DESCRIP
---------- --------------------
 1 Computer Science
 2 Math
 3 Biology
 4 English
 5 French
 6 Physics
 7 Nursing
 8 Psychology
 9 Spanish
 10 Geology

10 rows selected.

kv_student

CS342 SQL> desc kv_student;
 Name Null? Type
 --- -------- --
 STUDENTID NOT NULL NUMBER(9)
 STUDENTNAME NOT NULL VARCHAR2(20)

CS342 SQL> select * from kv_student;

 STUDENTID STUDENTNAME
---------- --------------------
 1 Gina Gonzales
 2 Nehemias Ulloa
 3 Jason Cotton
 4 John Doe
 5 Don Pasion
 6 Bob Smith
 7 Tom Wallace
 8 Reggie Roberson
 9 Vianey Leos
 10 Chris G

35

10 rows selected.

kv_department
CS342 SQL> desc kv_department
 Name Null? Type
 --- -------- --
 DEPARTMENTID NOT NULL VARCHAR2(10)
 DEPARTMENTHEAD NOT NULL VARCHAR2(20)
 DEPARTMENTEXT NOT NULL NUMBER(4)

CS342 SQL> select * from kv_department;

DEPARTMENT DEPARTMENTHEAD DEPARTMENTEXT
---------- -------------------- -------------
CS Marc Thomas 1000
MATH Javier Trigos 1001
BIO Todd McBride 1002
PHYS Thomas Meyer 1003
NUR Norman Keltner 1004
MDRNLAN Teresa Fernandez 1005
ENG Sophia Adjaye 1006
BUS Mary Doucet 1007
CJ Robert Fong 1008
PSY Steve Bacon 1009

10 rows selected.

kv_class
CS342 SQL> desc kv_class;
 Name Null? Type
 --- -------- --
 CLASSID NOT NULL VARCHAR2(15)
 CLASSDESCRIP NOT NULL VARCHAR2(30)

CS342 SQL> select * from kv_class;

CLASSID CLASSDESCRIP
--------------- ------------------------------
CS 221 Introduction to C++
FR 101 Introduction to French
PHY 221 Classical Physics
MATH 101 Finite Mathematics
MATH 191 Precalculus I
MATH 192 Precalculus II
CS 295 Discrete Structures

36

BIO 101 Introduction to Biology
PSY 100 Introduction to Psychology
MATH 300 Sets and Logics
MATH 140 Intro to Statistics

11 rows selected.

kv_instructor
CS342 SQL> desc kv_instructor
 Name Null? Type
 --- -------- --
 INSTRUCTORID NOT NULL NUMBER(5)
 INSTRUCTORNAME NOT NULL VARCHAR2(20)
 INSTRUCTOREXT NOT NULL NUMBER(4)

CS342 SQL> select * from kv_instructor;

INSTRUCTORID INSTRUCTORNAME INSTRUCTOREXT
------------ -------------------- -------------
 1 Marc Thomas 1000
 2 Javier Trigos 1001
 3 Charles Lam 1122
 4 David Gove 1123
 5 Pac Man 1337
 6 Dig Dug 1238
 7 Donna Meyers 2022
 8 Thomas Meyer 1003
 9 Ryan Grant 3225
 10 Aaron Rodgers 1212

10 rows selected.

kv_tutors
CS342 SQL> desc kv_tutors;
 Name Null? Type
 --- -------- --
 TUTORID NOT NULL NUMBER(5)
 SUBJECTID NOT NULL NUMBER(5)

CS342 SQL> select * from kv_tutors;

 TUTORID SUBJECTID
---------- ----------
 1 1
 1 2
 2 2
 3 2

37

 4 4
 4 5
 4 9
 5 6
 6 1
 6 2
 6 3
 6 4
 6 5
 6 6
 6 7
 6 8
 6 9
 6 10
 7 10
 8 3
 9 3
 10 2

22 rows selected.

kv_works
CS342 SQL> desc kv_works;
 Name Null? Type
 --- -------- --
 TUTORID NOT NULL NUMBER(5)
 TIMEID NOT NULL NUMBER(5)

CS342 SQL> select * from kv_works;

 TUTORID TIMEID
---------- ----------
 1 2
 1 7
 1 10
 2 3
 2 4
 3 1
 3 5
 4 1
 5 6
 6 7
 7 8
 8 9
 9 10
 10 5

38

14 rows selected.

kv_tutored
CS342 SQL> desc kv_tutored;
 Name Null? Type
 --- -------- --
 STUDENTID NOT NULL NUMBER(9)
 CLASSID NOT NULL VARCHAR2(15)
 SIGNIN NOT NULL DATE
 SIGNOUT NOT NULL DATE

CS342 SQL> select * from kv_tutored;

 STUDENTID CLASSID SIGNIN SIGNOUT
---------- --------------- --------- ---------
 1 CS 221 10-OCT-10 10-OCT-10
 2 BIO 101 13-OCT-10 13-OCT-10
 2 CS 221 10-OCT-10 10-OCT-10
 3 CS 221 10-OCT-10 10-OCT-10
 4 CS 221 11-OCT-10 11-OCT-10
 4 FR 101 11-OCT-10 11-OCT-10
 5 MATH 140 12-OCT-10 12-OCT-10
 5 MATH 140 13-OCT-10 13-OCT-10
 5 MATH 140 13-OCT-10 13-OCT-10
 6 MATH 140 12-OCT-10 12-OCT-10
 7 MATH 140 12-OCT-10 12-OCT-10
 8 BIO 101 13-OCT-10 13-OCT-10
 8 MATH 140 12-OCT-10 12-OCT-10
 9 CS 295 13-OCT-10 13-OCT-10
 10 MATH 140 13-OCT-10 13-OCT-10
 10 PSY 100 13-OCT-10 13-OCT-10

16 rows selected.

kv_taking
CS342 SQL> desc kv_taking;
 Name Null? Type
 --- -------- --
 STUDENTID NOT NULL NUMBER(9)
 CLASSID NOT NULL VARCHAR2(15)
 INSTRUCTORID NOT NULL NUMBER(5)
 CLASSGRADE NOT NULL VARCHAR2(1)

CS342 SQL> select * from kv_taking;

 STUDENTID CLASSID INSTRUCTORID C

39

---------- --------------- ------------ -
 1 CS 221 1 A
 2 BIO 101 5 B
 2 CS 221 1 C
 3 CS 221 7 A
 4 CS 221 1 B
 4 FR 101 6 C
 5 MATH 140 4 C
 6 MATH 140 3 A
 7 MATH 140 4 D
 8 BIO 101 5 C
 8 MATH 140 3 B
 9 CS 295 7 B
 10 MATH 140 3 A
 10 PSY 100 10 A

14 rows selected.

kv_studying
CS342 SQL> desc kv_studying
 Name Null? Type
 --- -------- --
 STUDENTID NOT NULL NUMBER(9)
 DEPARTMENTID NOT NULL VARCHAR2(10)

CS342 SQL> select * from kv_studying;

 STUDENTID DEPARTMENT
---------- ----------
 1 CS
 1 MATH
 2 CJ
 3 BIO
 4 BUS
 5 PHYS
 6 NUR
 7 MDRNLAN
 8 ENG
 9 PSY
 10 CS

11 rows selected.

40

SQL Queries

List all students taking math 140:
select unique s.studentID, s.studentName from kv_taking t, kv_student s

where (s.studentID = t.studentID and t.classID = 'MATH 140')
order by s.studentID
/

CS342 SQL> @tutor_query01.sql;

 STUDENTID STUDENTNAME
---------- --------------------
 5 Don Pasion
 6 Bob Smith
 7 Tom Wallace
 8 Reggie Roberson
 10 Chris G

List all students that are only taking math 140:
select unique s.studentID, s.studentName from kv_taking t, kv_student s

where (s.studentID = t.studentID and t.classID = 'MATH 140'
and not exists (select s.studentID, s.studentname from kv_taking t2
where(t2.classID <> 'MATH 140' and t2.studentID = s.studentID)))
order by s.studentID
/

CS342 SQL> @tutor_query02.sql;

 STUDENTID STUDENTNAME
---------- --------------------
 5 Don Pasion
 6 Bob Smith
 7 Tom Wallace

List tutors that tutor at least 2 subjects:
select unique t.tutorid, t.tutorname from kv_tutor t, kv_tutors s, kv_tutors s2

where (t.tutorid = s.tutorid and s2.tutorid = t.tutorid
and s2.subjectid <> s.subjectid) order by t.tutorid
/

CS342 SQL> @tutor_query03.sql;

41

 TUTORID TUTORNAME
---------- --------------------
 1 Kevin Velado
 4 Daniel Betancourt
 6 Walter Morales

List all instructors who are also department heads:
select unique i.instructorid, i.instructorname from kv_instructor i, kv_department d

where (d.departmenthead = i.instructorname) order by i.instructorid
/

CS342 SQL> @tutor_query04.sql;

INSTRUCTORID INSTRUCTORNAME
------------ --------------------
 1 Marc Thomas
 2 Javier Trigos
 8 Thomas Meyer

List all physics majors who are being tutored:
select unique s.studentid, s.studentname from kv_student s, kv_tutored t, kv_studying st

where(t.studentid = st.studentid and st.studentid = s.studentid
and st.departmentid = 'PHYS')
/

CS342 SQL> @tutor_query05.sql;

 STUDENTID STUDENTNAME
---------- --------------------
 5 Don Pasion

List the number of subjects each tutor tutors:
select tutorid, count(subjectid) from kv_tutors group by tutorid

 /

CS342 SQL> @tutor_query06.sql;

 TUTORID COUNT(SUBJECTID)
---------- ----------------
 1 2
 2 1
 3 1
 4 3
 5 1
 6 10
 7 1
 8 1

42

 9 1
 10 1

10 rows selected.

List the number of subjects for tutors who tutor at least 2 subjects:
select tutorid, count(subjectid) from kv_tutors

group by tutorid having count(subjectid) > 1
/

CS342 SQL> @tutor_query07.sql;

 TUTORID COUNT(SUBJECTID)
---------- ----------------
 1 2
 4 3
 6 10

List all students who have an A in math 140:
select unique s.studentid, t.classgrade from kv_student s, kv_taking t

where (t.classid = 'MATH 140' and t.studentid = s.studentid
and t.classgrade = 'A')
/

CS342 SQL> @tutor_query08.sql;

 STUDENTID C
---------- -
 6 A
 10 A

List all departments who do not have a department chair who is also currently teaching:
select unique departmentid from kv_instructor outer join kv_department

on (departmenthead != instructorname)
/

CS342 SQL> @tutor_query09.sql;

DEPARTMENT

PHYS
NUR
MDRNLAN
BIO
BUS
ENG

43

CS
MATH
CJ
PSY

10 rows selected.

44

Phase IV: Stored Subprograms, Packages and
Triggers

Common Features in Oracle PL/SQL and MS Trans-SQL

MS trans-sql and oracle pl/sql have similar implementations of SQL. Both languages have the
following a method to create tables, constraints, functions, stored procedures, triggers and packages.
The most obvious difference between the two languages is of course the language structure. By this I
mean the language used to implement the commands listed have different syntax.

The differences between MS and Oracle SQL are usually due to the fact that there are many
different versions of Oracle SQL. In Trans-SQL it is not possible to update a huge amount of records,
while Oracle does support this. Stored procedures are supported in both PL/SQL and Trans-SQL, so
depending on the database it would be wise to implement procedures. Stored procedures are useful to
perform basic SQL commands, and make it less tedious to the programmer to insert, delete, or update
any records in the database. Some more positives from using stored procedures is that it will allow the
programmer to hide any important tasks from the user, thus making the database more protected from
their users.

Oracle PL/SQL

PL/SQL have three main sections in their programs Declaration, Execution, and Exception.
Declarations is the section where variables, cursors, and user defined exceptions are declared or
created. Executions is where the SQL commands are that perform the program's intent. Exception is
where all the exception handling is performed, both user defined and system defined exceptions.

Most PL/SQL procedures have the following general structure:
DECLARE

variableName variableType := value;
.
.
.

BEGIN
SQL Commands go here (SELECT,INSERT,UPDATE,DELETE etc.)

.

.

.
END;

You can use all the variable types that are supported by Oracle are supported in PL/SQL.

Cursors are used to traverse a table, essentially a cursor is able to store tuples. Cursors are defined by

45

doing the following:
DECLARE

CURSOR name (parameter_list)
IS select_statement;

Control statements are supported in PL/SQL procedures. IF ELSE IF, FOR loops, and WHILE loops
are supported in PL/SQL procedures. They follow the following format:

IF condition THEN statement;
ELSEIF condition THEN statement;
END IF;
LOOP

EXIT WHEN can be used to quit this loop
END LOOP;
FOR I IN lower .. upper LOOP

statement
END LOOP;

Exception handling follow the following format:

DECLARE
* the procedures declarations *

BEGIN
IF condition THEN RAISE exception;

END IF;
EXCEPTION

WHEN exception_name THEN statement;
END;

Stored procedures can greatly facilitate performing complex jobs on the SQL server’s data while
maintaining abstraction for non-technical users. The structure of a stored procedure depends on the
type what you want to perform, yet the syntax is the similar:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(variablename IN|OUT variabletype)]
AS
(DECLARE variables go here)
BEGIN

SQL statements
END;
Execution of a stored procedure from SQL*PLUS can be accomplished as follows:

SQL> exec procedure_name(arguments);

46

Stored functions are created and run in a method similar to stored procedures. But, stored functions
declare a variable type that they will return. These can be used to guarantee that a variable will be
returned. The syntax is as follows:

CREATE [OR REPLACE] FUNCTION function_name
[(variablename IN|OUT variabletype)]
RETURN datatype;
AS
(DECLARE variables go here)
BEGIN

SQL statements;
RETURN variable;

END;

Packages are a distinct collection of procedures and functions very similar to classes in C/C++.
Creating a package requires a prototype for each included procedure and function:
CREATE PACKAGE package_name AS

PROCEDURE names..;
FUNCTION names…;

END package_name;
CREATE PACKAGE BODY package_name AS

PROCEDURE name IS…
BEGIN

Statements
END;
FUNCTION name RETURN DATATYPE IS…
BEGIN

Statements
RETURN variable

END;
END package_name;

Triggers make collecting records and logs easy to manage. The alternative would be to make the
database manager to manually run commands when a certain action was performed on the database. A
trigger would run the commands when the condition was met. Since these tasks are automated after the
trigger’s creation, the user does not have to worry about maintaining or checking data before or after
the operations.
CREATE [OR REPLACE] TRIGGER trigger_name
BEFORE|AFTER INSERT|DELETE|UPDATE OF COL [column_name] [OR DELETE|
UPDATE|INSERT]
ON table_name
DECLARE
 variables
BEGIN

FOR EACH ROW
[WHEN CONDITION]
Statements;

47

END;

Oracle PL/SQL Subprograms

I created 2 procedures, 1 function, and 1 trigger for this database. They are as follow:

Procedure 1: kv_deleteTutor.sql
This stored procedure simply takes in the number passed into the argument and deletes all records
associated with the tutor id.

CREATE OR REPLACE PROCEDURE kv_deleteTutor(Tutor_ID IN number)
AS
BEGIN

delete from kv_works
where tutorID = Tutor_ID;

delete from kv_tutors
where tutorID = Tutor_ID;

delete from kv_tutor
where tutorID = Tutor_ID;

EXCEPTION
 when others then
 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||
 '-ERROR-' || SQLERRM);

END kv_deleteTutor;
/

Procedure 2: kv_insertTutored.sql
This procedure takes in the arguments needed to add a valid record into Tutored table.

CREATE OR REPLACE PROCEDURE kv_insertTutored(
studentID IN number,

 classID IN varchar,
signIn IN varchar,
signOut IN varchar)
AS
BEGIN

insert into kv_tutored values(
studentID,
classID,
to_timestamp(signIn,'MM/DD/YY HH24:MI'),
to_timestamp(signOut,'MM/DD/YY HH24:MI'));

EXCEPTION

48

 when others then
 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||
 '-ERROR-' || SQLERRM);

END kv_insertTutored;
/

Function 1: topNAvgPayrate.sql
This function, when called, will calculate the average of the top 'n' pay rates of the tutors.

CREATE OR REPLACE FUNCTION kv_topNAvgPayrate(n IN NUMBER) RETURN NUMBER IS
s NUMBER(9,2) := 0.0;
p NUMBER(4,2) ;
CURSOR c1 IS SELECT payRate FROM kv_tutor

ORDER BY payRate DESC;
BEGIN

open c1;
FOR i IN 1..n LOOP

fetch c1 into p;
s := s+p;

END LOOP;
CLOSE c1;
RETURN s/n;

EXCEPTION
when others then

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||
 '-ERROR-' || SQLERRM);
END kv_topNAvgPayrate;
/

Trigger 1: kv_PhoneTrigger.sql
This trigger will fire off when the Phone number of a tutor is updated in any fashion. When done so the
trigger will write the information into a log file.

CREATE OR REPLACE TRIGGER kv_phone_afterupdate
after update of phoneNumber on kv_tutor
for each row
BEGIN

insert into kv_tutorLog
values(tutor_log_sequence.nextval, sysdate, :old.tutorID, :old.tutorName, :old.phoneNumber,

:new.phoneNumber, :old.payRate);
END;
/

49

Phase V: GUI Design and Implementation

Description of Program and Its Daily Use

There are two applications essential for the organization of the Tutoring Center. The first is the
management of the tutor's personal information and the statistics of the tutoring center (meaning how
many students came in for tutoring, what class was most popular, etc.). The use of this application is
limited due to the fact that updates to tutor personal information would be mainly done during the
beginning of the year and sparsely throughout the year. Also printing out statements that show the
statistics of the tutoring center are not needed until after current school period.

The second application for the Tutoring Center is the signing in system. The way the sign in
system works is that the student will walk into the tutoring center and then input his information before
he or she takes a seat. At the log in screen there are three options. They are as follows: New Student,
Log In, and Log Out. These options are essential for the tutoring center. New Student will add a new
record to the student database and keep track of that student's statistics. Log In and Log Out will verify
the fact that tutoring center is in fact receiving traffic flow, and statistics from the log in system will be
used to show how well the tutoring center is working out. This application is the most important of the
two and is also used on a daily basis. Since this application was the most important this is the
application I chose to create.

Relations, Views, and Subprograms Related

The first application is heavy with the amount of views, and subprograms used for it. But seeing
that I did not code that program I am not sure which specific views and subprograms would be used. I
could tell you that in general there would be a need to have a view that lists out the tutor's personal
information, specialization, and work schedule. As well as a subprogram that will printout the tutoring
center's statistics and other specific needs (e.g. which major comes in the most, what subject is being
tutored the most, etc,).

The second application can use a few views. The views necessary would be to show which
majors, classes, and instructors the students can choose from. Besides that there are no other needs.
Same goes with subprograms. The idea behind the second application is to be simple and hidden.
Meaning the students who sign in and sign out should not see more information than they need and
they should not be burdened with options.

Screen Shots and Description

Since I only coded the second application I can only show screen shots on that application.

50

This first image shows the main menu for the second application of the Tutoring Center. As you
can see simplicity is the key for this application. If the student is entering the tutoring center for the
first time they will choose the option of New Student and create a record and unique ID for themselves.
If they are returning to the tutoring center they will simply click on log in and enter their information.
And regardless if it is the student's first time or not they will click on log out when they leave the
tutoring center. Exit is simply there for debugging and should not be included in the final product as a
visible obvious option.

This image shows what the student needs to input in order to create an valid id for the
application. For now the information needed is bare, but in the final product it should ask for which
classes they are currently taking and their grade and other information. Also to keep things simple all
these decisions will be options shown to them in drop down menus. After they enter their information
and click submit the application will return to the main menu and create an ID for that student to sign in
with. Cancel will simply return to the main menu and not create a record for that student.

51

These two images show the Log In and Log Out systems. To Log In all you have to do is simply
enter your ID number and choose which class you are taking from the drop down menu. In this
iteration the classes are added to the drop down menu manually, hopefully in the future the menu will
be created by reading it from the Class table from the database. Also to simplify searching adding a
subject box will narrow down the results. The log out system is fairly simple, all you need to do is to
enter you ID number and choose the option to log out.

What I Learned

I learned that creating a GUI is a very difficult task. There are two major and equal aspects to
creating the GUI. The first is creating the lay out of your application. This step takes time and hard
work to create. The second aspect to creating a GUI is the code. This aspect of the GUI is interesting
due to the fact that coding for a GUI is very different than creating a console based program. This
amplifies when you are to use a Database as a main feature in the application. The largest hurdle in this
step was properly connecting to the database in order to use its features. All in all I'm glad I had this
experience and hopefully this will prepare me in the future if I was ever tasked to create a GUI.

52

	Schema Objects in Oracle
	Tables
	 Views
	Sequences
	Synonyms
	Indexes
	Database Links
	Stored procedures and functions
	Packages

	Schema objects in this project

