
1

Database Project
Edgar Buenrostro

CMPS 342

Fall 2010

2

Table of Contents

Phase I …………………………………………………………………………….. 3

Fact-Finding Techniques and Information Gathering ……………………………... 4

Introduction to the Enterprise/Organization………………………………………... 4

Structure of the Enterprise………………………………………………………….. 4

Itemized Descriptions of Major Objects…………………………………………….5

Data Views and Operations for User Groups………………………………………. 6

Entity Set Description……………………………………………………………….6

Related Entity Set…………………………………………………………………. 12

ER Diagram………………………………………………………………………...13

Phase II ………………………………………………………………………….. 14

ER Model and the Relational Model……………………………………………… 15

ER Database to Relational Database……………………………………………… 18

Relation Instances …………………………………………………………………27

Queries……………………………………………………………………………..31

Query Representation …………………………………………………………….. 31

Phase III …………………………………………………………………………. 37

SQL*Plus…………………………………………………………………………..38

Schema Objects in Oracle………………………………………………………… 38

Schema Objects in This Project……………………………………………………41

SQL Queries………………………………………………………………………. 48

Phase IV …………………………………………………………………………. 55

Common Features in Oracle PL?SQL and Microsoft Transact-SQL……………...55

3

Oracle PL/SQL……………………………………………………………………. 55

Oracle PL/SQL SubPrograms……………………………………………………...60

 Phase V…………………………………………………………………………... 63

Daily User Activities……………………………………………………………… 64

Relations, Views and Subprograms………………………………………………..64

Application Screenshots……………………………………………………………65

Code Description and GUI Design……………………………………………….. 68

Development Process………………………………………………………………70

Conclusion…………………………………………………………………………70

4

Phase I:

Fact-Finding, Information Gathering and

Conceptual Database Design
Edgar Buenrostro

CMPS 342

Fall 2010

5

Fact-Finding Techniques and Information Gathering

 The database will keep track of data for a small gardening company. The main

fact-finding technique used to gather information needed to design the database was

interviewing. An interview with the owners of the company was necessary to find out

what needs the company has and how a database can help the business.

The first step was to find out exactly what kind of data they would need keep

stored. They stored information regarding current employees, suppliers and clients. Once

they started imagining how the database can be used for their company, they expressed

how important it is to keep other types of information stored. Certain clients have very

unique preferences regarding their gardens and flowers and they often like to keep the

same arrangements for the same season next year in order to stay consistent and keep the

pricing the same. This means that the details of that project needs to be saved as well, so

it can be accessed in future years.

Introduction to the Enterprise/Organization

 The gardening company in this case is called Buenrostro’s Gardening. It’s a very

small family business that has been in business for about a decade. The services they

provide evolved marginally from the initial years. At first, they primarily focused on

tending to the flower beds and occasionally the shrubs. Later the services offered

expanded to include landscaping and other bigger tasks.

Structure of the Enterprise

 The company is actually very small because it is a family business. The two

owners are a married couple and are the primary workers in the business. There are also

other workers on occasion that also tend to be part of the family. The pay and specific

6

hours of those workers have to be organized. The company has numerous clients who all

receive somewhat different services. There are some clients that are primarily concerned

with the care of their flower beds and shrubs. There are still others that receive those

services in addition to landscaping and mowing the lawn. Some receive routine weekly

maintenance while others only prefer occasional plantings. All of the flowers that are

used for the projects are obtained by Buenrostro’s Gardening via other suppliers that also

need to be saved in the database.

Itemized Descriptions of Major Objects

 The main data that has to be organized is supplier data. This is, in some ways,

where business starts. It can keep track of all the suppliers that are used for the plants.

This will have a relationship with another entity called Plants. This will keep track of

those plants that were supplied along with the name, plant type and quantity. This needs a

relationship with a Project entity because the specific types of plants and the number of

plants has to be saved somewhere so that it is known exactly what services the client

received. Employee’s information has to be kept in its own. This will be a very small bit

of data because there are so few employees, but it is important to keep track of each

employee’s hours, work days, and pay rate. It is related to the Project entity via a

relationship called Works On. This relationship will actually keep track how many hours

the employee worked on that specific project. The Project entity has a relationship with

an entity called Client. This keeps information on the clients’ names, address and the rate

that they are charged.

7

Data Views and Operations for User Groups

 All of the information that is going to be stored in the database will be for the

benefit of the owners of the company and none of it is created for the customer. The

customer will have zero access to it and will not even be able to view it. All the

information will be accessible only to the two owners and me. They will have to learn to

add, delete, modify and access the information using the user interface that will

eventually be created.

Entity Set Description

Supplier

 Description: Contains information regarding the other companies that supply

Buenrostro’s Gardening with flowers and other plants.

 Candidate keys: Supplier_PK

 Primary Key: Supplier_PK

 Strong/Weak Entity: Strong

 Fields to be indexed: Supplier_PK

 Attributes: Supplier_PK, Name, Address, Phone

Name Supplier_PK Name Address Phone

Description The primary

key

Supplier’s

name.

Address of

the supplier

Supplier’s

phone

number

Domain/Type Integer String String String

Value – Range 1…n n/a n/a n/a

Default Value None None None None

Nullable? No No No No

Unique? Yes Yes Yes Yes

Single/Multiple Single Single Multiple Single

Simple/Composite Simple Simple Composite Simple

8

Plants

 Description: Keeps track of all the plants that have been obtained from various

suppliers. It should keep the name of the plant, color, if applicable and quantity.

There will be frequent updating of the records in this table because there will be a

constant supply of new plants.

 Candidate keys: Plant_PK

 Primary Key: Plant_PK

 Strong/Weak Entity: Strong

 Fields to be indexed: Plant_PK

 Attributes: Plant_PK, Name, Color, Quantity

Name Plant_PK Name Color Quantity

Description The primary

key

Plant’s

name.

Plant color if

applicable.

How many

of that

particular

plant.

Domain/Type Integer String String Integer

Value – Range 1…n n/a n/a 1…n

Default Value None None Null None

Nullable? No No Null No

Unique? Yes Yes No No

Single/Multiple Single Single Single Single

Simple/Composite Simple Simple Simple Simple

9

Project

 Description: Keeps track of certain projects that will be done for clients. Such

projects can have very specific quantities, colors, and types of flowers that were

requested by the client. This is meant to keep it stored just in case it’s needed for

reference in the future and the client wants to keep it the same.

 Candidate keys: Project_PK

 Primary Key: Project_PK

 Strong/Weak Entity: Strong

 Fields to be indexed: Project_PK

 Attributes: Project_PK, StartDate, EndDate, Season, EstimatedPrice, Description

Name Project_P

K

StartDate EndDate Season Estimated

Price

Description

Description The

primary

key

Project’s

start date

Project’s

end date

The

season

for the

project.

The

estimated

price for

the

project.

Describing

the project.

Domain/Type Integer DateTime DateTime Integer Double String

Value – Range 1…n n/a n/a 1…n 0…n n/a

Default Value None None Null None None None

Nullable? No Yes Yes No No No

Unique? Yes No No No No No

Single/Multiple Single Single Single Single Single Single

Simple/Compo

site

Simple Simple Simple Simple Simple Simple

10

Employee

 Description: Keeps track of all the employee’s information which includes their

name and pay rate.

 Candidate keys: Employee_PK

 Primary Key: Employee_PK

 Strong/Weak Entity: Strong

 Fields to be indexed: Employee_PK

 Attributes: Employee_PK, FirstName, LastName, PayRate

Name Employee_PK FirstName LastName PayRate

Description The primary

key

Employee’s

first name.

Employee’s

last name.

Employee’s

hourly pay

rate

Domain/Type Integer String String Double

Value – Range 1…n n/a n/a 1…n

Default Value None None None None

Nullable? No No No No

Unique? Yes Yes No No

Single/Multiple Single Single Single Single

Simple/Composite Simple Simple Simple Simple

11

Clients

 Description: Keeps track the clients’ information. This includes the name, address

and how much they are charged for the services.

 Candidate keys: Client_PK

 Primary Key: Client_PK

 Strong/Weak Entity: Strong

 Fields to be indexed: Client_PK

 Attributes: Client_PK, FirstName, LastName, Address, Rate

Name Client_PK FirstName LastName Address Rate

Description The

primary

key

Client’s

first name.

Client’s

last name

Client’s

address.

Rate

charged.

Domain/Type Integer String String String Double

Value – Range 1…n n/a n/a n/a 1…n

Default Value None None None None None

Nullable? No No No No No

Unique? Yes No No No No

Single/Multiple Single Single Single Multiple Single

Simple/Composite Simple Simple Simple Simple Composite

12

Data Views and Operations for User Groups

Supplies

 Description: This is a relationship between the Suppliers entity and the Plants

entity. Each supplier supplies some sort of plant to the business.

 Mapping cardinality: M:N

 Participation constraint: The left side has a partial participation constraint because

not all of the suppliers will be supplying plants all the time. There will be times

where the supplier will be in the database, but they won’t be supplying anything

currently, but perhaps in the future.

UsedOn

 Description: This is a relationship between Plants and Project that indicates which

plants and how many were used on a certain project.

 Mapping cardinality: M:N

 Participation constraint: The left side has a partial participation constraint because

not all plants will be used on a project. There are sometimes leftovers. The right

side has complete participation because all of the projects require some plants.

WorksOn

 Description: This is a relationship between the Employee entity and the Project

entity. It also keeps track of the hours that was worked on that particular project.

 Mapping cardinality: M:N

13

 Participation constraint: The left side has a complete participation because all the

employees work on a project. The right side has complete participation because

they all have at least one employee to work on that project.

For

 Description: This is a relationship between the Project entity and the Client entity.

It specifies which project is done for which client.

 Mapping cardinality: M:N

 Participation constraint: The left side has a partial participation because some of

the projects may be done certain years and sometimes it’s not done for anybody.

The right side also has partial participation because sometimes they don’t want an

elaborate project. They just might want routine services.

Related Entity Set

 The relationships consist of the ones titled Supplies, UsedOn, WorksOn and For.

The Supplies describes the relationship between the supplier and the plants it supplies the

business. UsedOn is between the plants and the projects they are used on. It also

describes how many of each particular plant are used on that project. WorksOn describes

the Employee entity and how many hours the person worked on a project. For is a

relationship between the Project and the Client it’s for.

14

ER Diagram

Supplier

Supplier_PK

Name

Address

Phone

Plants

Plant_PK

Name

Color

Quantity

Project

Project_PK

StartDate

EndDate

Season

EstimatedPrice

Description

Employee

Employee_PK

FirstName

LastName

PayRate

Client

Client_PK

FirstName

LastName

Address

Rate

Supplies

For

WorksOn

Hours

UsedOn

HowMany

15

Phase II:

From ER Model to Relational Model
Edgar Buenrostro

CMPS 342

Fall 2010

16

ER Model and the Relational Model

Description

 Now with the ER Model done, it is time to convert the design to the Relational

Model. This gives us the opportunity to represent the database as a collection of tables

with columns and records. The database becomes a set of relations consisting of those

tables. Each row represents a record of a specific entry into that table. It is a tuple that

holds the information for a specific instance of that entity or relation. Each column will

contain information regarding that attribute.

Comparison

 The ER model and the Relational model are both very important steps in

designing and eventually implementing a well-built database. The previous phase dealt

primarily with the design of the ER model. That model was much more general in nature

and does not provide enough detail for the proper implementation of the design. The

primary purpose of the ER model is to create the base design at first that can be expanded

into a more detailed relational model. It is helpful because of its visual nature and the

overall design and structure of the database is more immediately apparent.

 The relational model is a bit harsher on the eyes. It doesn’t depend on on the

visuals and diagramming. While, it doesn’t provide as much of an overarching view of

the design it allows us to look at the details of the databases and its tables. The relational

model is primarily built of various tables and grids that contain the names of the

attributes as columns. There is information in each column and there is a more detailed

view of the attribute types, constraints and keys. The relational model for this particular

database of Buenrostro’s Gardening will be shown in this phase.

17

Conversion from ER Model to Relational Model

In order to convert from an ER model to a relational model, we need to establish

certain characteristics for each attribute in each of the tables. The relational model is

much more detailed, so we have to be aware of the domains, types, ranges, keys,

constraints, foreign keys, candidate keys and any other information that might be needed.

First thing, we have to decide which tables will have a primary key attribute. It can either

be a single attribute acting as the primary key or it can be a composite primary key where

it is composed of two or more attributes that together will give make the attribute unique

to any other record in the table. Once it is known which type of primary key if any will be

used, actually decide which attribute will be the primary key. In addition to that, the

foreign keys have to be fine tuned so that each table that has a relationship with another

table uses foreign keys properly. The foreign key has to make a reference to the primary

key of the table it is referencing. Also be aware of any other possible candidate keys.

Each attribute also has to have their characteristics defined. What type will it be?

What will be its domain and is their any specific range that it has to fall in? The relational

model also has to specify which attributes will allow for a NULL to be stored. This is

very important especially for attributes that will need to be unique like keys. Allowing for

NULL in your attribute means that it allows for multiple records to have that NULL

value. That gets rid of its unique characteristic.

During this time, the business logic required for the attributes should be

established. Sometimes, a company requires specific things out of the data they store and

check constraints allow for making sure the data follows that business logic. Keeping

these constraints and all of the other information in mind for the conversion means we’ll

18

have all the information organized in the relational model ready for its eventual

implementation.

Constraints

A lot of the data that will be saved into the tables will require some forms of

restrictions in order to make sure the information stored makes sense for what the

database is needed and for what the system can handle. Implementing constraints into the

relational model means we can keep track of those restrictions and keep the exact type of

data that we want and need for the project. A constraint can apply to numeric data by

restricting the domain of that data. Domain constraints can apply to any attribute by

specifying its data type as well as its limited range if there is any. For strings, this can

mean that there is a limit on how many characters can be stored for that specific entry.

There are also key constraints that deal with primary keys, foreign keys and

candidate keys. The primary key has to be a unique attribute that acts as the way that

specific record can be identified and referred to. Another type of key constraint is the

foreign key. The foreign key is a way that a table can have a relationship with a different

table. The foreign key is an attribute that must be the primary key of the table it is

referencing. If the foreign key placed in the table does not exist as a primary key on the

other table then it is not valid. Another constraint is whether a NULL should be allowed

or not. If the attribute needs to be unique like a primary key then it does not make sense

to allow a NULL. If there is no need for uniqueness then sometimes it makes sense to

allow for a NULL if no other default value makes sense. Sometimes having zero as the

default value doesn’t make sense, so a NULL is necessary. Other times it is possible that

that specific attribute is not applicable to that particular record so a NULL can be used.

19

ER Database to Relational Database

Supplier

Attributes

 Supplier_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 Name

o Domain: String must be at least one character. Not NULL.

 Address

o Domain: String must be composed of numbers or letters. Not NULL.

 Phone

o Domain: Unsigned integer. Must be ten digits. Not NULL.

Constraints

 Primary key: Supplier_PK is the primary key. It must be unique and not NULL.

Candidate Keys

 Supplier_PK

Order

Attributes

 Order_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 Date

o Domain: Datetime. Not NULL.

20

 Supplier_FK

o Domain: Integer that is the primary key of the Supplier table. Not NULL.

Constraints

 Primary key: Order_PK is the primary key. It must be unique and not NULL.

Candidate Keys

 Order_PK

Contains Relation

Attributes

 Quantity

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 Price

o Domain: Double. Not NULL.

 Order_FK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL. It’s the

pimary key of the Order table.

 Plants_FK

o Domain: Integer that’s the primary key of the Plants table. Not NULL.

 Color_FK

o Domain: Integer that’s the primary key of the Color table. Not NULL.

Constraints

 Primary key: Order_PK is the primary key. It must be unique and not NULL.

 Foreign key: Order_FK, Plants_FK and Color_FK are foreign keys.

21

Candidate Keys

 Order_PK

Color

Attributes

 Color_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 Name

o Domain: String. Not NULL.

Constraints

 Primary key: Color_PK is the primary key. It must be unique and not NULL.

Candidate Keys

 Color_PK

Plants

Attributes

 Plants_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 Name

o Domain: String. Not NULL.

 Quantity

o Domain: Unsigned integer. Not NULL.

 Order_FK

22

o Domain: Unsigned integer that is the primary key of the Order key. Not

NULL.

 Color_FK

o Domain: Unsigned integer that is the primary key of the Color table.

Constraints

 Primary key: Color_PK is the primary key. It must be unique and not NULL.

 Foreign key: Color_FK and Order FK are foreign keys.

Candidate Keys

 Color_PK

UsedOn Relation

Attributes

 HowMany

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 StartDate

o Domain: DateTime. Not NULL.

 EndDate

o Domain: DateTime. Not NULL.

 Price

o Domain: Double. Not NULL.

 Plants_FK

o Domain: Unsigned integer that is the primary key of the Plants table. Not

NULL.

23

 Project_FK

o Domain: Unsigned integer that is the primary key of the Project table. Not

NULL.

Constraints

 Foreign key: Plant_FK and Project_FK are foreign keys.

Candidate Keys

 Plant_FK

 Project_FK

Project

Attributes

 Project_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 StartDate

o Domain: DateTime. Not NULL.

 EndDate

o Domain: DateTime. Not NULL.

 Season

o Domain: String.

 EstimatedPrice

o Domain: Double. Not NULL.

 Description

o Domain: String.

24

 For_FK

o Domain: Primary key of a client.

Constraints

 Foreign key: For_FK is a foreign key.

Candidate Keys

 Project_PK

Employee

Attributes

 Employee_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 FirstName

o Domain: String. Not NULL.

 LastName

o Domain: String. Not NULL.

 PayRate

o Domain: Double. Not NULL.

 EstimatedPrice

o Domain: Double. Not NULL.

 Description

o Domain: String.

Constraints

 Primary Key: Employee_PK is the primary key.

25

Candidate Keys

 Employee_PK

Client_PK

Attributes

 Hours

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 Employee_FK

o Domain: Unsigned integer must be the primary key of the Employee table.

Not NULL.

 Project_FK

o Domain: Unsigned integer must be the primary key of the Project table.

Not NULL.

Constraints

 Foreign Key: Employee_FK and Project_FK are foreign keys.

Candidate Keys

 Employee_FK

 Project_FK

For Relation

Attributes

 Hours

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

26

 Employee_FK

o Domain: Unsigned integer must be the primary key of the Employee table.

Not NULL.

 Project_FK

o Domain: Unsigned integer must be the primary key of the Project table.

Not NULL.

Constraints

 Foreign Key: Employee_FK and Project_FK are foreign keys.

Candidate Keys

 Employee_FK

 Project_FK

Client

Attributes

 Client_PK

o Domain: Unsigned integer: 1 to 2^32 – 1. Cannot be NULL

 FirstName

o Domain: String. Not NULL.

 LastName

o Domain: String. Not NULL.

 Address

o Domain: String. Not NULL.

 Rate

27

o Domain: Double. Not NULL.

Constraints

 Primary key: Client_PK is the primary key.

Candidate Keys

 Client_PK

28

Relation Instances

Supplier

Supplier(Supplier_PK, Name, Address, Phone)

Supplier_PK Name Address Phone

1 Do Right’s Plant

Growers

2155 Horton

Avenue Los

Angeles, CA 90025

8055252155

2 Bolles Nursery 1112 Wible Road

Bakersfield, CA

93304

6613988128

3 White Forest

Nursery

300 Morning Drive

Bakersfield, CA

93306

6613666291

4 Calloway Nursery 2828 Calloway

Drive

Bakersfield, CA

93312

6615887708

Order

Order(Order_PK, Date, Supplier_FK)

Order_PK Date Supplier_FK

1 8/15/2010 2155 Horton Avenue Los

Angeles, CA 90025

2 9/13/2010 1112 Wible Road

Bakersfield, CA 93304

3 9/25/2010 300 Morning Drive

Bakersfield, CA 93306

4 10/15/2010 2828 Calloway Drive

Bakersfield, CA 93312

29

Contains

Contains(Quantity, Price, Order_FK, Plant_FK, Color_FK)

Quantity Price Order_FK Plant_FK Color_FK

15 $9.50 1 1 1

10 $4.00 1 2 2

5 $12.50 1 3 1

10 $3.00 2 4 3

4 $15.00 2 6 NULL

20 $4.00 3 2 5

16 $7.50 3 7 4

8 $7.00 3 5 4

9 $7.50 4 7 1

10 $12.00 4 3 5

2 $14.50 4 1 1

Color

Color(Color_PK, Name)

Supplier_PK Name

1 Red

2 Yellow

3 Pink

4 Purple

5 White

Supplier

Plants (Plants_PK, Name, Quantity, Color_FK)

Plants_PK Name Quantity Color_FK

1 Impatiens 20 3

2 Cyclamen 10 4

3 Zinnia 10 2

4 Zinnia 5 1

5 Poppies 9 1

6 Privet 5 NULL

7 Snapdragon 12 3

30

UsedOn

UsedOn(HowMany, StartDate, EndDate, Price, Plants_FK, Project_FK)

HowMany StartDate EndDate Price Plants_FK Project_FK

5 8/15/2010 8/17/2010 $10.00 1 1

10 8/15/2010 8/17/2010 $5.50 2 1

12 8/15/2010 8/17/2010 $3.00 4 1

4 9/15/2010 9/16/2010 $15.00 1 2

5 9/15/2010 9/16/2010 $8.00 5 2

3 9/18/2010 9/18/2010 $8.00 7 3

3 9/18/2010 9/18/2010 $8.00 5 3

2 9/25/2010 9/25/2010 $16.00 6 4

5 9/25/2010 9/25/2010 $8.00 3 4

2 10/16/2010 10/17/2010 $16.00 6 5

20 10/16/2010 10/17/2010 $10.00 1 5

Employee

Employee(Employee_PK, FirstName, LastName, PayRate, PayRate)

Employee_PK FirstName LastName PayRate

1 Jose Peña $9.00

2 Antonia Buentello $10.50

3 Sergio Valdez $10.50

4 Victor Morelos $9.00

5 Manuela Villa $9.00

6 John Collins $12.50

WorksOn

WorksOn(Hours, Employee_FK, Project_FK)

Hours Employee_FK Project_FK

8 1 1

8 4 1

10 2 2

10 3 2

4 6 3

12 5 4

15 2 5

8 3 5

31

Project

Project(Project_PK, StartDate, EndDate, Season, EstPrice, Description, For_FK)

Project_PK StartDate EndDate Season EstPrice Description For_FK

1 8/15/2010 8/17/2010 Summer $100.00 NULL 1

2 9/15/2010 9/16/2010 Summer $120.00 NULL 2

3 9/18/2010 9/18/2010 Summer $80.00 NULL 3

4 9/25/2010 9/25/2010 Fall $95.00 NULL 4

5 10/16/2010 10/17/2010 Fall $110.00 NULL 1

Client

Client(Client_PK, FirstName, LastName Address, Rate)

Client_PK FirstName LastName Address Rate

1 Dwight Byrum 2135 Newport

Drive

Bakersfield,

CA 93307

$13.00

2 Tracy Burns 388 Alexis

Avenue

Bakersfield,

CA 93308

$12.00

3 Chris Sanders 1190 Howley

Drive

Bakersfield,

CA 93308

$13.00

4 Heather Johns 8865 Aguila

Road

Bakersfield,

CA 93307

$12.50

32

Queries

 Select the employees who have worked on projects for Dwight Byrum.

 Select projects that require plants other than flowers.

 Select the supplier that has sold Impatiens.

 Select the suppliers that have supplied the most recent order.

 Select the employee who has worked the most hours on a project.

 Select the clients that have a fall project.

 Select the clients that will have a project in the summer.

 Select the project that requires the most Impatiens.

 Select the plants that are red.

 Select the plant that is most numerous at the moment.

Query Representation

Select the employees who have worked on projects for Dwight Byrum.

Relational Algebra:

 π(e.*) σ(Employee e X WorksOn w X Project p X Client c)
 e.Employee_PK = w.Employee_FK ^

 w.Project_FK = p.Project_PK ^

 p.For_FK = c.Client_PK ^

 c.FirstName = “Dwight” ^

 c.LastName = “Byrum”

Tuple Relational Calculus:

 * e | employee(e) ^ (∃w)(WorksOn(w) ^ e.Employee_PK = w.Employee_FK ^
 (∃p)(Project(p) ^ p.Project_PK = w.Project_FK ^
 (∃c)(Client(c) ^ c.Client_PK = p.For_FK ^
 c.FirstName = “Dwight” ^ c.LastName = “Byrum”))
 }

33

Domain Relational Calculus:

 {<e, f, l, p> | Employee(e,f,l,)^(∃p)(WorksOn(_,e,p)^(∃c)(Project(p,_,_,_,_,_,c)^

 Client(c, “Dwight”, “Byrum”,_,_)))

 }

Select projects that require plants other than flowers.

Relational Algebra:

 π(p.*) σ(Plants pl X UsedOn u X Project p)
 u.Project_FK = p.Project_PK ^

 u.Plant_FK = pl.Plant_PK ^

 pl.color = NULL

Tuple Relational Calculus:

 { p | Project(p) ^ (∃u)(UsedOn(u) ^ u.Project_FK = p.Project_PK ^
 (∃pl)(pl.Plant_PK = u.Plant_FK ^ pl.Color = NULL))
 }

Domain Relational Calculus:

 {<p> | Project(p,_,_,_,_,_,_) ^ (∃pl)(Plant(pl,_,_,NULL) ^ UsedOn(_,_,_,_,pl,p))}

Select the suppliers that have sold Impatiens.

Relational Algebra:

 π(s.*) σ(Supplier s X Order o X Contains c X Plants p)
 s.Supplier_PK = o.Supplier_FK ^

 c.Order_FK = o.Order_PK ^

 c.Plant_FK = p.Plant_PK ^

 p.Name = “Impatiens”

34

Tuple Relational Calculus:

 { s | Supplier(s) ^ (∃o)(Order(o) ^ o.Supplier_FK = s.Supplier_PK ^
 (∃c)(Contains(c) ^ c.Order_FK = o.Order_PK ^
 (∃p)(Plants(p) ^ p.Plant_PK = c.Plant_FK ^
 p.Name = “Impatiens”)))
 }

Domain Relational Calculus:

 { <s> | Supplier(s,_,_,_) ^ (∃o)(Order(o,_,s) ^ (∃p)(Plants(p,_,_,_) ^
 (∃c)(Contains(_,_,o,p,_)))
 }

Select the suppliers that have supplied the most recent order.

Relational Algebra:

 π(s1.*) Supplier s1 - σ(Supplier s X Order o X Order o2)
 s.Supplier_PK = o.Supplier_FK ^

 o.Date < o2.Date

Tuple Relational Calculus:

 { s | Supplier(s) ^ (∃o)(Order(o) ^ o.Supplier_FK = s.Supplier_PK ^
 (∀o2)(Order(o2) (o2.date <= o.date)))
 }

Domain Relational Calculus:

 {<s> | Supplier(s,_,_) ^ (∃o)(∃d)(Order(o,d,s) ^ (∀o2)(Order(o2,<d,_))+

Select the employee who has worked the most hours on a project.

Relational Algebra:

 π(e1.*) (Employee e1 - σ(Employee e X WorksOn w X WorksOn w2))
 e.Employee_PK = w.Employee_FK ^

 w.Hours < w2.Hours

35

Tuple Relational Calculus:

 { e | Employee(e)^(∃w)(WorkedOn(w) ^ w.Employee_FK = w.Employee_PK^
 (∀w2)(WorkedOn(w2) (w2.hours <= w.hours)))
 }

Domain Relational Calculus:

 {<e> | Employee(e,_,_,_,_)^(∃h)(WorksOn(h,e,_) ^ (∀e2)(Order(<h,e2,_))+

Select the clients that have a fall project.

Relational Algebra:

 π(c.*) σ(Client c X Project p)
 c.Client_PK = p.For_FK ^

 p.Season = “Fall”

Tuple Relational Calculus:

 { c | Client(c) ^ (∃p)(Project(p) ^ p.For_FK = c.Client_PK ^ p.Season = “Fall”)+

Domain Relational Calculus:

 {<c> | Client(c,_,_,_,_) ^ (∃p)(Project(p,_,_, “Fall”,_,_))+

Select the clients that will have a project in the summer.

Relational Algebra:

 π(c.*) σ(Client c X Project p)
 c.Client_PK = p.For_FK ^

 p.Season = “Summer”

Tuple Relational Calculus:

 { c | Client(c) ^ (∃p)(Project(p) ^ p.For_FK = c.Client_PK ^ p.Season =

 “Summer”)+

Domain Relational Calculus:

 {<c> | Client(c,_,_,_,_) ^ (∃p)(Project(p,_,_, “Summer”,_,_))

36

Select the project that requires the most Impatiens

Relational Algebra:

 π(p1.*) (Project p1 - σ(Project p X UsedOn u X UsedOn u2 X Plant pa))
 e.Employee_PK = w.Employee_FK ^

 p.Project_PK = u.Project_FK ^ u.Plant_FK = pa.Plant_PK ^

 pa.Name = “Impatiens” ^ u2.Plant_FK = pa.Plant_PK ^

 u.HowMany < u2.HowMany

Tuple Relational Calculus:

 ∃ ∀

 { p | Project(p) ^ (∃u)(UsedOn(u) ^ u.Project_FK = p.Project_PK^
 (∃pl)(Plant(pl) ^ pl.Name = “Impatiens” ^
 pl.Plant_PK = u.Plant_FK ^
 (∀u2)((UsedOn(u2)^u2.Plant_FK = pl.Plant_PK
 (u2.HowMany<= u.HowMany)))
 }

Domain Relational Calculus:

 {<p> | Project(p,_,_,_,_,_)^ (∃pa)(Plant(pa, “Impatiens”,_) ^
 (∃u)UsedOn(u,_,_,_,pa,p) ^ (∀p2)(UsedOn(<u,_,_,_,pa,p2))+

Select the plants that are red.

Relational Algebra:

 π(p.*) σ(Plant p X Color c)
 p.Color_FK = c.Color_PK ^

 c.Name= “Red”

Tuple Relational Calculus:

 { p | Plant(p) ^ (∃c)(Color(c) ^ c.Color_PK = p.Color_FK ^ c.Name = “Red”)+

Domain Relational Calculus:

 {<p> | (∃c)(Color(c, “Red”), Plant(p,_,_,c))}

37

Select the plant that is most numerous at the moment.

Relational Algebra:

 π(p1.name) (Plant p1 - σ(Plant p2 X Plant p3))
 p2.Quantity < p3.Quantity

Tuple Relational Calculus:

 { p | Plant(p)^(∀p2)(Plant(p2) (p2.Quantity <= p.Quantity))}

Domain Relational Calculus:

 {<p,n,q> | Plant(p, n,q)^(∀p2)(Plant(p2,_,<q)+

38

Phase III:

Implementation of the Relational Database
Edgar Buenrostro

CMPS 342

Fall 2010

39

SQL*Plus

 The relational model we have created in the previous phase provides us with

enough detailed information on the records we’ll be saving in the database as well as the

structure and characteristics regarding the relationships, primary keys and other

constraints needed for the database. To do this, a database management system is needed

to keep track of the database and manipulate its records. In order to implement this

database, we’ll be using the Oracle Database Management System. This also makes use

of SQL*Plus which is a command line system that allows us to create, access and

manipulate the tables of our database through the use of queries, scripts or other

commands. SQL*Plus makes use of SQL, a query language that is used for creating those

commands that affect the database.

Schema Objects in Oracle

 A schema in oracle can be comprised of various schema objects. Usually a

schema is associated with one user on the database and the schema objects are contained

within that schema. Those objects are typically structures used to save data related to the

database. Examples of schema objects include:

Table

 A table is probably the most commonly used schema object. It is the object that

stores the information relating to a relation or entity that has been previously outlined in

the relational model. Each table consists of attributes or columns. Each one of those

attributes should have its own type. The tables can also have primary keys, foreign keys

or other constraints.

40

Views

 Views are used when there is a specific query that is frequently used. The view is

a common query stored for later use and it returns the resulting tuples from that query. It

can be used within other queries and used a bit like a table although it’s not really storing

any records in it of itself. Each time it is used, it is newly invoked and it might be

different every time depending on the query.

Dimensions

 These schema objects help reorganize records to make it easier for someone to

use or to be used with other queries. They are typically meant for categorizing data.

Sequences

 Sequences are objects that helps generate a numbered sequence. This is good for

primary keys since each key has to be unique. The sequence helps auto increment to

make sure each primary key is different. It can also be used to keep an order of something

like commands and it can even be helpful for rollbacks since it needs to be in reverse

order.

Synonyms

 A synonym is simply another term that can be used for schema objects. A

synonym can be created for various objects like tables, views and packages.

Indexes

 An index is an object that helps with efficiency of accessing or searching through

the records. Retrieval and traversal of the tuples is a little faster, so it’s a good idea to

apply an index to attributes that are commonly used or retrieved. Since the index needs to

41

be created there is more space taken up, so the indexing should probably not be applied to

too many attributes.

Database links

 A database link is a connection between two databases that allows the access of

information saved in those databases. It is usually a one way link, so the database being

accessed cannot use the same link to access information the opposite way.

Stored Procedures and Functions

 These are stored sets of commands that are meant to perform some type of

manipulation on the database. They usually consist of SQL commands and queries.

Procedures are usually just a set of tasks and they sometimes have their own parameters

that are either IN, OUT or IN OUT. Functions are similar, but while procedures don’t

return a variable, functions do.

Packages

 A package is a collection of objects like functions or procedures. The objects it

holds together as a collection are usually related. It is divided into parts. One

specification part takes care of the declarations, variables and cursors. The other part

functions as the body and actually implements all those parts.

42

Schema Objects in this Project

 This database project will primarily make use of tables as its schema objects. To

create a table a SQL query has to be written with the following syntax.

create table tablename(

 PrimaryKeyName int PRIMARY KEY,

 attributename type NOT NULL,

 attributename2 type NULL,

 CONSTRAINT RelationshipName

 FOREIGN KEY(ForeignKeyName) REFERENCES

 TableReferenced(AttributeReferenced)

);

Syntax like this was used to create all of the object schemas on this database projects and

they are as follows:

 eb_client Client Relation

 eb_color Color Relation

 eb_contains Contains Relation

 eb_employee Employee Relation

 eb_order Order Relation

 eb_plant Plant Relation

 eb_project Project Relation

 eb_supplier Supplier Relation

 eb_usedon UsedOn Relation

 eb_workson WorksOn Relation

43

eb_client

CS342 SQL> desc eb_client;

 Name Null? Type

 ----------------- -------- -----------------------

 CLIENT_PK NOT NULL NUMBER(38)

 FIRSTNAME NOT NULL VARCHAR2(15)

 LASTNAME NOT NULL VARCHAR2(15)

 ADDRESS NOT NULL VARCHAR2(50)

 RATE NUMBER(5,2)

CS342 SQL> select * from eb_client;

 CLIENT_PK FIRSTNAME LASTNAME ADDRESS RATE

---------- --------------- ---------- -- ------

 1 Dwight Byrum 2135 Newport Drive Bakersfield, CA 93307 13

 2 Tracy Burns 388 Alexis Avenue Bakersfield, CA 93308 12

 3 Chris Sanders 1190 Howley Drive Bakersfield, CA 93308 13

 4 Heather Johns 8865 Aguila Road Bakersfield, CA 93307 12.5

eb_color

CS342 SQL> desc eb_color;

 Name Null? Type

 -------------- -------- ----------------------------------

 COLOR_PK NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(20)

CS342 SQL> select * from eb_color;

 COLOR_PK NAME

---------- -------------------------

 1 Red

 2 Yellow

 3 Pink

 4 Purple

 5 White

44

eb_contains

CS342 SQL> desc eb_contains;

 Name Null? Type

 --------------- -------- --------------------------------

 QUANTITY NOT NULL NUMBER(38)

 PRICE NOT NULL NUMBER(5,2)

 ORDER_FK NOT NULL NUMBER(38)

 PLANT_FK NOT NULL NUMBER(38)

 COLOR_FK NUMBER(38)

CS342 SQL> select * from eb_contains;

 QUANTITY PRICE ORDER_FK PLANT_FK COLOR_FK

---------- ---------- ---------- ---------- ----------

 15 9.5 1 1 1

 10 4 1 2 2

 5 12.5 1 3 1

 10 3 2 4 3

 4 15 2 6

 20 4 3 2 5

 16 7.5 3 7 4

 8 7 3 5 4

 9 7.5 4 7 1

 10 12 4 3 5

 2 14.5 4 1 1

11 rows selected.

eb_employee

CS342 SQL> desc eb_employee;

 Name Null? Type

 ------------- -------- ----------------------------------

 EMPLOYEE_PK NOT NULL NUMBER(38)

 FIRSTNAME NOT NULL VARCHAR2(15)

 LASTNAME NOT NULL VARCHAR2(15)

 PAYRATE NOT NULL NUMBER(5,2)

45

CS342 SQL> select * from eb_employee;

EMPLOYEE_PK FIRSTNAME LASTNAME PAYRATE

----------- --------------- --------------- ----------

 1 Jose Perez 9

 2 Antonia Buentello 10.5

 3 Sergio Valdez 10.5

 4 Victor Morelos 9

 5 Manuela Villa 9

 6 John Collins 12.5

6 rows selected.

eb_order

CS342 SQL> desc eb_order;

 Name Null? Type

 --------------- -------- --------------------------------

 ORDER_PK NOT NULL NUMBER(38)

 ORDERDATE NOT NULL DATE

 SUPPLIER_FK NOT NULL NUMBER(38)

CS342 SQL> select * from eb_order;

 ORDER_PK ORDERDATE SUPPLIER_FK

---------- --------- -----------

 1 15-AUG-10 1

 2 13-SEP-10 2

 3 25-SEP-10 3

 4 15-OCT-10 4

eb_plant

CS342 SQL> desc eb_plant;

 Name Null? Type

 ------------- -------- ----------------------------------

 PLANT_PK NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(20)

 QUANTITY NOT NULL NUMBER(38)

 COLOR_FK NUMBER(38)

46

CS342 SQL> select * from eb_plant;

 PLANT_PK NAME QUANTITY COLOR_FK

---------- ------------------------- ---------- ----------

 1 Impatiens 20 3

 2 Cyclamen 10 4

 3 Zinnia 10 2

 4 Zinnia 5 1

 5 Poppies 9 1

 6 Privet 5

 7 Snapdragon 12 3

7 rows selected.

eb_project

CS342 SQL> desc eb_project

 Name Null? Type

 ------------ -------- ------------------------------------

 PROJECT_PK NOT NULL NUMBER(38)

 STARTDATE NOT NULL DATE

 ENDDATE NOT NULL DATE

 SEASON NOT NULL VARCHAR2(7)

 ESTPRICE NOT NULL NUMBER(5,2)

 DESCRIPTION VARCHAR2(100)

 FOR_FK NOT NULL NUMBER(38)

CS342 SQL> select * from eb_project;

PROJECT_PK STARTDATE ENDDATE SEASON ESTPRICE DESCRIPTION FOR_FK

---------- --------- --------- ------- ---------- ------------- -------

 1 15-AUG-10 17-AUG-10 Summer 100 1

 2 15-SEP-10 16-SEP-10 Summer 120 2

 3 18-SEP-10 18-SEP-10 Summer 80 3

 4 25-SEP-10 25-SEP-10 Fall 95 4

 5 16-OCT-10 17-OCT-10 Fall 110 1

47

eb_supplier

CS342 SQL> desc eb_supplier

 Name Null? Type

 ------------ -------- ------------------------------------

 SUPPLIER_PK NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(50)

 ADDRESS NOT NULL VARCHAR2(50)

 PHONE NOT NULL VARCHAR2(12)

CS342 SQL> select * from eb_supplier;

SUPPLIER_PK NAME ADDRESS PHONE

----------- ------------------------- ------------------------- ------------

 1 Do Rights Plant Growers 2155 Horton Avenue Los An 805-525-2155

 geles, CA 90025

 2 Bolles Nursery 1112 Wible Road Bakersfie 661-398-8128

 ld, CA 93304

 3 White Forest Nursery 300 Morning Drive Bakersf 661-366-6291

 ield, CA 93306

 4 Calloway Nursery 2828 Calloway Drive Baker 661-588-7708

 sfield, CA 93312

eb_usedon

CS342 SQL> desc eb_usedon

 Name Null? Type

 ------------ -------- ------------------------------------

 HOWMANY NOT NULL NUMBER(38)

 STARTDATE DATE

 ENDDATE DATE

 PRICE NOT NULL NUMBER(5,2)

 PLANT_FK NOT NULL NUMBER(38)

 PROJECT_FK NOT NULL NUMBER(38)

CS342 SQL> select * from eb_usedon;

 HOWMANY STARTDATE ENDDATE PRICE PLANT_FK PROJECT_FK

---------- --------- --------- ----- ---------- ----------

 5 15-AUG-10 17-AUG-10 10 1 1

 10 15-AUG-10 17-AUG-10 5.5 2 1

 12 15-AUG-10 17-AUG-10 3 4 1

 4 15-SEP-10 16-SEP-10 15 1 2

 5 15-SEP-10 16-SEP-10 8 5 2

 3 18-SEP-10 18-SEP-10 8 7 3

 3 18-SEP-10 18-SEP-10 8 5 3

 2 25-SEP-10 25-SEP-10 6 6 4

48

 5 25-SEP-10 25-SEP-10 8 3 4

 2 16-OCT-10 17-OCT-10 16 6 5

 20 16-OCT-10 17-OCT-10 10 1 5

11 rows selected.

eb_workson

CS342 SQL> desc eb_workson

 Name Null? Type

 --------------- -------- --------------------------------

 HOURS NOT NULL NUMBER(38)

 EMPLOYEE_FK NOT NULL NUMBER(38)

 PROJECT_FK NOT NULL NUMBER(38)

CS342 SQL> select * from eb_workson;

 HOURS EMPLOYEE_FK PROJECT_FK

---------- ----------- ----------

 8 1 1

 8 4 1

 10 2 2

 10 3 2

 4 6 3

 12 5 4

 15 2 5

 8 3 5

8 rows selected.

49

SQL Queries

Select the employees who have worked on projects for Dwight Byrum.

select e.*

from eb_employee e, eb_workson w, eb_project p,

eb_client c

where e.employee_pk = w.employee_fk and

 w.project_fk = p.project_pk and

 p.for_fk = c.client_pk and

 c.firstname = 'Dwight' and c.lastname = 'Byrum'

;

REPORT:

EMPLOYEE_PK FIRSTNAME LASTNAME PAYRATE

----------- --------------- --------------- ----------

 1 Jose Perez 9

 4 Victor Morelos 9

 2 Antonia Buentello 10.5

 3 Sergio Valdez 10.5

Select projects that require plants other than flowers.

select p.*

from eb_plant pl, eb_usedon u, eb_project p

where u.project_fk = p.project_pk and

 u.plant_fk = pl.plant_pk and pl.color_fk IS NULL

;

50

REPORT:

PROJECT_PK STARTDATE ENDDATE SEASON ESTPRICE DESCRIPTION FOR_FK

---------- --------- --------- ------- ---------- -------------- ------

 4 25-SEP-10 25-SEP-10 Fall 95 4

 5 16-OCT-10 17-OCT-10 Fall 110 1

Select the suppliers that have sold Impatiens.

select unique s.*

from eb_supplier s, eb_order o, eb_contains c, eb_plant

p

where s.supplier_pk = o.supplier_fk and

 c.order_fk = o.order_pk and

 c.plant_fk = p.plant_pk and

 p.name = 'Impatiens'

;

REPORT:

SUPPLIER_PK NAME ADDRESS PHONE

----------- ---------------------- ------------------------ ------------

 1 Do Rights Plant Grower 2155 Horton Avenue Los A 805-525-2155

 s ngeles, CA 90025

 4 Calloway Nursery 2828 Calloway Drive Bake 661-588-7708

 rsfield, CA 93312

Select the suppliers that have supplied the most recent order.

select s.*

from eb_supplier s, eb_order o

where s.supplier_pk = o.supplier_fk and

 not exists (select o2.*

 from eb_order o2

 where o2.orderdate > o.orderdate

);

51

REPORT:

SUPPLIER_PK NAME ADDRESS PHONE

----------- ---------------------- ------------------------ ------------

 4 Calloway Nursery 2828 Calloway Drive Bake 661-588-7708

 rsfield, CA 93312

Select the employee who has worked the most hours on a project.

select e.*

from eb_employee e, eb_workson w

where e.employee_pk = w.employee_fk and

 not exists (select e2.*

 from eb_employee e2, eb_workson w2

 where e2.employee_pk = w2.employee_fk and

 e2.employee_pk != e.employee_pk and

 w2.hours > w.hours

)

;

REPORT:

EMPLOYEE_PK FIRSTNAME LASTNAME PAYRATE

----------- --------------- --------------- ----------

 2 Antonia Buentello 10.5

Select the clients that have a fall project.

select c.*

from eb_client c, eb_project p

where c.client_pk = p.for_fk and p.season = 'Fall'

;

52

REPORT:

CLIENT_PK FIRSTNAME LASTNAME ADDRESS RATE

---------- --------------- --------------- ------------------------ ----------

 4 Heather Johns 8865 Aguila Road Bakersf 12.5

 ield, CA 93307

 1 Dwight Byrum 2135 Newport Drive Baker 13

 sfield, CA 93307

Select the clients that will have a project in the summer.

select c.*

from eb_client c, eb_project p

where c.client_pk = p.for_fk and p.season = 'Summer'

;

REPORT:

CLIENT_PK FIRSTNAME LASTNAME ADDRESS RATE

---------- --------------- --------------- ------------------------ ----------

 1 Dwight Byrum 2135 Newport Drive Baker 13

 sfield, CA 93307

 2 Tracy Burns 388 Alexis Avenue Bakers 12

 field, CA 93308

 3 Chris Sanders 1190 Howley Drive Bakers 13

 field, CA 93308

53

Select the project that requires the most Impatiens

select p.*

from eb_project p, eb_usedon u, eb_plant pa

where p.project_pk = u.project_fk and u.plant_fk = pa.plant_pk

and

 pa.name = 'Impatiens' and

 not exists (

 select p1.*

 from eb_project p1, eb_usedon u2, eb_plant pa2

 where p1.project_pk = u2.project_fk and

 u2.plant_fk = pa2.plant_pk and

 pa2.name = 'Impatiens' and

 u2.howmany > u.howmany

)

;

REPORT:

PROJECT_PK STARTDATE ENDDATE SEASON ESTPRICE DESCRIPTION FOR_FK

---------- --------- --------- ------- ---------- -------------- ------

 5 16-OCT-10 17-OCT-10 Fall 110 1

Select the plants that are red.

select p.*

from eb_plant p, eb_color c

where p.color_fk = c.color_pk and c.name = 'Red'

;

REPORT:

 PLANT_PK NAME QUANTITY COLOR_FK

---------- ---------------------- ---------- ----------

 4 Zinnia 5 1

 5 Poppies 9 1

54

Select the plant that is most numerous at the moment.

select p1.name

from eb_plant p1

minus(

select p2.name

from eb_plant p2, eb_plant p3

where p2.quantity < p3.quantity

);

REPORT:

NAME

Impatiens

55

Phase IV:

Stored Procedures
Edgar Buenrostro

CMPS 342

Fall 2010

56

Common Features in Oracle PL/SQL & Microsoft Trans-SQL

 Oracle PL/SQL and Microsoft Transact SQL are two valuable tools that can be

used to create stored subprograms and are extensions of SQL. PL/SQL is one of the more

important languages needed for Oracle Databases. Its syntax resembles the structure of

Ada with a declaration block a main body block and an exception block. By comparison

Transact-SQL is also an extension of SQL that is instead used for Microsoft SQL Server.

They follow a similar structure with a declaration block and a main body block. It also

makes use of the regular flow control tools like if statements.

 These languages are used to create stored procedures. These stored subprograms

consist of procedures, functions, triggers and other similar objects. For the oracle

database used in this project, we make use of PL/SQL for creating the stored procedures.

They are able to accept arguments and they can access and manipulate the database. They

can simply run queries or do more complex stuff. Procedures and functions are nearly

identical, but functions are able to return a value. Triggers can also access tables in a

database, but they are invoked automatically when something specific occurs to the

database.

Oracle PL/SQL

 As previously indicated, we will use PL/SQL for our stored procedures since we

are using an Oracle database. All stored procedures using PL/SQL have a structure that

divides the code into several blocks.

 Declaration: This section is used to declare local variables and cursors

 Execution: This part makes use of all the variables and performs the primary

 tasks of the subprograms

57

 Exception: This section is meant to catch any exceptions that are thrown.

Layout:

CREATE OR REPLACE PROCEDURE procedureName(parametername IN datatype)

AS

 variablename variabletype := value;

 CURSOR c IS query;

BEGIN

 -- main body

EXCEPTION

 -- exception things

END procedureName;

Variable Types:

 Stored procedures are able to use all of the regular datatypes that are supported in

Oracle databases. They are also able to use cursors which can store the list of records

returned by a query.

Cursor:

 A cursor is a specific type used in stored procedures that allows us to name a

query like a select statement and have the cursor point to where that sql statement is

saved so we can later traverse the rows resulting from that query.

Control Statements:

 PL/SQL can also make use of flow control statements like an if statement. It is

used like any other programming languages and opens up opportunities to do many

58

things in our stored procedures. The general syntax of an if statement is as follows:

IF <condition> THEN

 -- body

ELSE

 -- body

END IF;

LOOP

 -- body

END LOOP;

FOR I IN first..last LOOP

 -- body

END LOOP;

Exception Handling:

 Exception handling is similar to other programming languages. If something in

the program goes wrong and it throws an exception the exception block at the bottom is

responsible for catching it and displaying the appropriate error.

EXCEPTION

 WHEN OTHERS THEN

 -- raise_application_error

Stored Procedures:

59

 Stored procedures allow us to access and make use of the data in a database in

order to perform more complex tasks that are inconvenient to perform on the SQL*PLUS

command line. A procedure can also accept parameters.

CREATE OR REPLACE PROCEDURE ProcedureName(name IN datatype)

AS

 -- Declarations

BEGIN

 -- Body

EXCEPTION

 -- exception

END ProcedureName;

Stored Functions:

 Functions work very similar to stored procedures, but in addition to manipulating

the data in the database they can also return a value.

CREATE OR REPLACE FUNCTION funcName (name IN datatype) RETURN TYPE

IS

 -- Declarations

BEGIN

 -- Body

END;

Triggers:

 Triggers are subprograms that are automatically invoked when a specific

condition is met. They are ideal for keeping update logs that update automatically. For

60

example, you can write a trigger that activates when a specific attribute of a table is

updated. At that point, the trigger can insert a record into a log table.

CREATE OR REPLACE TRIGGER triggerName

AFTER statement

FOR EACH ROW

BEGIN

 -- Body

END;

Oracle PL/SQL SubPrograms

Stored Procedures:

InsertClient

 This procedure takes in five parameters that correspond to the fields of the

eb_client table that will be inserted as a new row.

CREATE OR REPLACE PROCEDURE InsertClient(

 clientpk IN number,

 firstname IN varchar2,

 lastname IN varchar2,

 address IN varchar2,

 rate IN number)

 AS

 BEGIN

 insert into eb_client values(

 clientpk,

 firstname,

 lastname,

 address,

 rate);

 EXCEPTION

 WHEN OTHERS THEN

61

 ROLLBACK;

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END InsertClient;

/

DeleteClient

 This procedure takes in only one parameter. It is a number that will correspond to

a primary key in the eb_client table. The procedure will declare a cursor that selects all

the primary keys of the table and when it finds a record that matches the parameter, it’ll

delete that record.

CREATE OR REPLACE PROCEDURE DeleteClient(clientpk IN number)

 AS

 CURSOR c IS select client_pk from eb_client;

 BEGIN

 FOR rec IN c LOOP

 IF rec = clientpk

 delete from eb_client

 where client_pk = clientpk;

 END LOOP;

 EXCEPTION

 WHEN OTHERS THEN

 ROLLBACK;

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END DeleteClient;

/

Stored Functions:

NavgHours

62

 This is a function that takes in one number as a parameter and returns one number

as well. The number it accepts is n. The function gets the hours found in the eb_workson

table and lists them in descending order it then gets the top n number of hours and

averages them. It returns that average.

CREATE OR REPLACE FUNCTION NAvgHours(n IN NUMBER) RETURN

NUMBER

IS

 s number(9,2) := 0.0;

 p number(7,2);

 CURSOR c IS select hours from eb_workson ORDER BY hours DESC;

BEGIN

 open c;

 FOR i IN 1..n LOOP

 fetch c into p;

 s := s + p;

 END LOOP;

 close c;

 RETURN s/n;

EXCEPTION

 WHEN OTHERS THEN

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

END ;

/

63

Phase V:

GUI Design and Implementation
Edgar Buenrostro

CMPS 342

Fall 2010

64

Daily User Activities

Administrator

 The main user that will make use of the interface created for this is the

administrator, which can be the owner or one of the owners of the company. The

interface will be used to pretty much keep information useful to the company organized.

The user should have access to the information so he or she can edit it, add new

information or delete records from any of the relations.

Relations, Views and Subprograms

 The interface makes use of most of the relations and relationships made for the

database. If there are specific types of views that are needed for some of the interface

then views can be created on sql*plus for those needs. The entities and relations used on

this phase are as follows

 eb_client

 eb_color

 eb_contains

 eb_employee

 eb_logtable

 eb_order

 eb_plant

 eb_project

 eb_supplier

 eb_usedon

 eb_workson

65

Application Screenshots

 The following will be a few screenshots portraying some of the functionality for

the interface created in this phase. It’s primarily an admin interface, so it is meant to give

you access to the information and being able to manipulate the information.

Main Screen

This is the main screen. It is the first screen introduced to the user. From here there are

pretty much three simple options that the user can take. They take a look at all the clients,

employees or suppliers. Those will take the user to their own screens where they can

manipulate the data as they see fit.

Client Screen

66

This is the client screen. The datagrid will get the information from the eb_client relation

and display it as a list. Each client has several projects that are done for them by the

gardening company. In order to find the projects that are associated with a specific client,

the user should first click on the client in the datagrid. Then the user clicks on the “Show

Selected Client’s Projects” button and it expands the window so it looks like this:

67

It now makes use of eb_clients and eb_projects and the relationship between that to

match up the client’s primary key to the project’s foreign key.

Employee Screen

This is very similar to the other screen since it shows the information in the datagrid. This

screenshot shows off how an employee is added. The user clicks on add and those fields

appear where the information can be entered.

Supplier Screen

68

This functions in the exact same way as the other screens

Code Description and GUI Design

User Interface Design

 The primary purpose of the interface design was to aim it towards an

administrator or company owner. So the program should allow the user to have access to

the information in all the relations. They should be able to view all the relations as well as

group the in certain ways. Of course they should also be able to delete, insert or

manipulate the data.

Data Access Descriptions

 The data needs to be accessed so they can be displayed in each of the datagrids.

All of this is done within a single class called DatabaseDB.cs where the data access is

accomplished. Each datagrid needs to bind to a datatable to display information. It calls a

method in the DatabaseDB class that returns a datatable to bind it to the datagrid. Each

69

method returns a specific datatable that contains the necessary information. The method

in the DatabaseDB uses select statement to get information from relations or views.

Class Descriptions

 DatabaseDB.cs This class is used to access information from the database on

Oracle. It has multiple methods that return datatables that are meant to bind to

datagrids. The methods fill those datatables with information obtained with select

statements

 OCommand.cs This also communicates with the database, but instead of getting

information and returning datatables it is meant for insert and delete functions

 Form1.cs This class was the one in charge of the main screen. It was my first

windows form class, so I left it with the default name. It is just in charge of those

initial buttons.

 ViewAllClients.cs This is in charge of the clients screen that is in charge of the

datagrids, adding and deleting. It also has to take into account the eb_project

relation.

 ViewAllEmployees.cs This class is similar to the other class, but it is in charge of

the employees screen.

 ViewAllSuppliers.cs is also similar to the previous classes in that it takes care of

the screen that shows the suppliers and it interacts with the classes that can

manipulate and access data from the database.

70

Development Process

Designing and Implementing the Application

 The development process for this phase was extremely difficult. It is a completely

different from any of the previous phases. It’s a completely different type of task and it

was a lot to learn for one phase. The hardest part was trying to figure out how to connect

to the database. Actually accessing information from the database proved to be the most

difficult. Inserting and deleting was a bit simpler, but using select statements to display

the information in the datagrids was quite difficult.

Conclusion

 This whole project has been quite a challenge, but it has been a valuable learning

experience. I got a lot of understanding from the first four phases and how a database

should be built and how to make use of queries, stored procedures and views. The

difficult part was actually implementing it and putting it to use in a program. I think I still

have a long way to go in that regard and I still have a lot to learn. The interface I created

can still have new functionality added to it, and I’m glad I already have some familiarity

from these phases, so I can continue to work on it and improve.

