

1

Database Systems Project

CS 342

Derrick McKee

Dr. H. Wang, Professor

Computer Science Department

California State University, Bakersfield

November 29, 2010

2

Table of Contents

Phase I

1.1) Finding Facts and Techniques Used pg.4

1.2) Introduction to Organization

1.3) Structure of the Organization

1.4) Itemized Description of Major Objects

1.5) Data Views and Operations

2.1) Entities pg.4-11

2.2) Relationship Set Description pg.11

2.3) E-R Diagram pg.12

Phase II

3.1) E-R model and Relational Model pg.13

3.1.1) Description

3.1.2) Comparison

3.1.3) Conversion

3.1.4) Constraints

3.2) Relational Database

3.2.1) Train pg.13

3.2.2) Cars pg.14

3.2.3) Schedule

3.2.4) Employee pg.15

3.2.5) SecurityGuard

3.2.6) Conductor pg.16

3.2.7) Engineer

3.2.8) TrainStation

3.2.9) Pulls pg.17

3.2.10) Assigned_To

3.2.11) EnRoute_To pg.18

3.3) Relational Instances pg.19-22

4.1) Queries pg.23

5.1) Queries Representation pg.24-26

Phase III

1) Purpose of SQL and Functionality pg.27

2) Oracle DBMS Schema Objects

3) Relational Schema and Contents pg.28

3.1) djm_Assigned_To

3.2) djm_Cars pg.29
3.3) djm_Conductor pg.30
3.4) djm_Employee
3.5) djm_EnRoute_To pg.31
3.6) djm_Engineer pg.32

3

3.7) djm_Pulls
3.8) djm_Schedule pg.33
3.9) djm_SecurityGuard
3.10) djm_Train pg.34
3.11) djm_TrainStation pg.35
4) SQL Queries pg.36-40

Phase IV

1) Common Features in Oracle PL/SQL and MS Trans-SQL pg. 41

2) Oracle PL/SQL pg.41-44

3) Oracle PL/SQL Subprograms pg.44-46

Phase V

1) Daily Activities pg.47

2) Relations, View, and Subprograms

3) Screenshots pg.47-52

4) Description of GUI Code pg.53-54

5) Designing and Implementing a Database Application pg. 55

6) Conclusion pg.55

4

Phase I

1.1) Finding Facts and Techniques Used - A fact finding technique that I used to gather data and operational data was
personal experience with the company. As a consumer, I have used the Amtrak to transport myself to northern
California. Another source I used was the company Amtrak’s website to observe train scheduling, locations of train
stations, and jobs onboard the train.

1.2) Introduction to Organization - As the nation's intercity passenger rail operator, Amtrak connects America in safer,
greener and healthier ways. With 21,000 route miles in 46 states, the District of Columbia and three Canadian
provinces, Amtrak operates more than 300 trains each day — at speeds up to 150 mph — to more than 500
destinations.

1.3) Structure of the Organization - The database for this project will derive from Amtrak’s Pacific Surfliner branch of

California and focus on the characteristics of the branches scheduling of trains, arrival and departure times of trains,
and the persons on the trains. The database will also include information about the relationships between entities.
For example, cars and train in which train ‘pulls’ cars, and train, employee, schedule in which each are ‘assigned’ to
each other at a certain time.

1.4) Itemized Description of Major Objects - The objects train and cars are related to each other by ‘pulls’. Schedule,
Employee, and train are related to ‘assigned to’ in which employee and train are given a specific schedule. Finally,
train and train station are related by ‘enroute to’ in which a train will depart train station A and arrive to train
station B.

1.5) Data Views and Operations -The data views and operations for the user are solely based off train, the train’s travel,
employees, and how they are all related to each other by being assigned to a schedule.

2.1) Entities

2.1.1)

Name: Train
Description: The train engine
Attributes:
 Name: TrainNumCode
 Description: A number given to all the train engines to easily identify
 Domain/Type: Number(5)
 Value-Range: integers 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: TrainStartDate
 Description: The starting date a train was created (Mo/Yr)
 Domain/Type: Date

5

 Value-Range: 0001-01-01 through 9999-12-31
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Multiple
 Simple or Composite: Composite

 Name: TrainEndDate
 Description: The ending date of a train (Mo/Yr)
 Domain/Type: Date
 Value-Range: 0001-01-01 through 9999-12-31
 Default Value: none
 Null Value Allowed: Yes
 Unique: No
 Single or Multiple Value: Multiple
 Simple or Composite: Composite

Candidate Keys: TrainNumCode
Primary Key: TrainNumCode
Strong/Weak Entity: Strong
Fields to be Indexed: TrainNumCode, TrainStartDate, TrainEndDate

2.1.2)

Name: Cars
Description: The identical cars that the Train Engine pulls
Attributes:
 Name: CarNumCode
 Description: A number given to all the train engines to easily identify
 Domain/Type: Number(4)
 Value-Range: integers 1-9999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: NumSeats
 Description: The maximum number of seats in the car (2 sets of 2x10 seats separated by the aisle)
 Domain/Type: Number(4)
 Value-Range: integers 1-9999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: CarStartDate
 Description: The starting date a car assigned to a train (Mo/Yr)
 Domain/Type: Date

6

 Value-Range: 0001-01-01 through 9999-12-31
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Multiple
 Simple or Composite: Composite

 Name: CarEndDate
 Description: The ending date a car was assigned to a train (Mo/Yr)
 Domain/Type: Date
 Value-Range: 0001-01-01 through 9999-12-31
 Default Value: none
 Null Value Allowed: Yes
 Unique: No
 Single or Multiple Value: Multiple
 Simple or Composite: Composite

Candidate Keys: CarNumCode
Primary Key: CarNumCode
Strong/Weak Entity: Strong
Fields to be Indexed: CarNumCode, NumSeats, CarStartDate, CarEndDate

2.1.3)

Name: Schedule
Description: The scheduling of a specific trip
Attributes:
 Name: SchdleCode
 Description: A number given to all the schedules to easily identify the trip
 Domain/Type: Number(5)
 Value-Range: 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: Schedule_Dept
 Description: The departing date and time
 Domain/Type: DateTime
 Value-Range: 0001-01-01 00:00:00 through 9999-12-31 23:59:59
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Multiple
 Simple or Composite: Composite

 Name: Schedule_Arr
 Description: The arrival date and time
 Domain/Type: DateTime

7

 Value-Range: 0001-01-01 00:00:00 through 9999-12-31 23:59:59
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Multiple
 Simple or Composite: Composite

Candidate Keys: SchdleCode
Primary Key: SchdleCode
Strong/Weak Entity: Strong
Fields to be Indexed: SchdleCode

2.1.4)

Name: Employee
Description: Persons who work directly on the Train and Cars
Attributes:
 Name: EmpCode
 Description: A number given to all the employees to easily identify
 Domain/Type: Number(5)
 Value-Range: 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

Name: Empfname
 Description: The first name of the employee
 Domain/Type: Varchar2(15)
 Value-Range: 15 chars
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: Emplname
 Description: The last name of the employee
 Domain/Type: Varchar2(15)
 Value-Range: 15 chars
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

8

 Name: EmpPhoneNum
 Description: Employee’s telephone number
 Domain/Type: Varchar2(12)
 Value-Range: 12 chars
 Default Value: 0
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: multiple
 Simple or Composite: Simple

Candidate Keys: EmpCode
Primary Key: EmpCode
Strong/Weak Entity: Strong
Fields to be Indexed: EmpCode

2.1.5)

Name: SecurityGuard
Description: Person who works directly on the Train or Car
Attributes:
 Name: SGcode
 Description: A number given to all the employee of this department to easily identify
 Domain/Type: Number(5)
 Value-Range: integers 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: SGAddress
 Description: The employee’s address
 Domain/Type: Varchar2(45)
 Value-Range: 45 chars
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Single
 Simple or Composite: Multiple

// This attribute was added later to implement topNavg

Name: SGSalary
 Description: The employee’s annual salary
 Domain/Type: Number(5)
 Value-Range: 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Single

9

 Simple or Composite: Multiple

Candidate Keys: SGCode
Primary Key: SGCode
Strong/Weak Entity: Strong
Fields to be Indexed: SGCode, SGAddress, SGSalary

2.1.6)

Name: Conductor
Description: Person who works directly on the Train or Car
Attributes:
 Name: Condcode
 Description: A number given to all the employee of this department to easily identify
 Domain/Type: Number(5)
 Value-Range: 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: CondAddress
 Description: The employee’s address
 Domain/Type: Varchar2(45)
 Value-Range: 45 chars
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Single
 Simple or Composite: Multiple

Candidate Keys: CondCode
Primary Key: CondCode
Strong/Weak Entity: Strong
Fields to be Indexed: CondCode, CondAddress

2.1.7)

Name: Engineer
Description: Person who works directly on the Train or Car
Attributes:
 Name: Engcode
 Description: A number given to all the employee of this department to easily identify
 Domain/Type: Number(5)
 Value-Range: integers 1-99999

10

 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: EngAddress
 Description: The employee’s address
 Domain/Type: Varchar2(45)
 Value-Range: 45 chars
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Single
 Simple or Composite: Multiple

Candidate Keys: EngCode
Primary Key: EngCode
Strong/Weak Entity: Strong
Fields to be Indexed: EngCode, EngAddress

2.1.8)

Name: TrainStation
Description: The train station at which trains and persons arrive and depart from
Attributes:

 Name: StationName
 Description: The train station’s name
 Domain/Type: Varchar2(15)
 Value-Range: 15 chars
 Default Value: Null
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

 Name: StationAddress
 Description: The train station’s address
 Domain/Type: Varchar(25)
 Value-Range: 25 chars
 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: Single
 Simple or Composite: Multiple

 Name: StationPhoneNum
 Description: Employee’s telephone number
 Domain/Type: Varchar(11)
 Value-Range: 11 chars

11

 Default Value: none
 Null Value Allowed: No
 Unique: No
 Single or Multiple Value: multiple
 Simple or Composite: Simple

Name: StationCode
 Description: A number given to all the train stations to easily identify
 Domain/Type: Number(5)
 Value-Range: 1-99999
 Default Value: none
 Null Value Allowed: No
 Unique: Yes
 Single or Multiple Value: Single
 Simple or Composite: Simple

Candidate Keys: StationCode
Primary Key: StationCode
Strong/Weak Entity: Strong
Fields to be Indexed: StationName, StationAddress, StationPhoneNum, StationCode

2.2) Relationship Set Description

2.2.1)

Name: Pulls
Description: A train “pulls” the cars. The cars assigned to train
Entity Sets Involved: Train, Cars
Mapping Cardinality: 1:M
Participation Constraint: total/mandatory

2.2.2)

Name: Assigned_To
Description: The entities Employee and Train are all assigned to Schedule
Entity Sets Involved: Train, Schedule
Mapping Cardinality: M:1
Participation Constraint: total/mandatory

2.2.3)

Name: EnRoute_To
Description: The attributes used are ScheduleCode, StationCode, Actual_Arr, Actual_Dept, and StationCodeB
Entity Sets Involved: Schedule, TrainStation
Mapping Cardinality: M:1
Participation Constraint: total/madatory

12

2.3) E-R Diagram

Train

TrainNumCode

TrainStartDate

TrainEndDate

Schedule

ScheduleCode

Schedule_Dept

Schedule_Arr

TrainStation

StationName

StationAddress

StationPhoneNum

StationCode

ScheduleCode

StationCode

Actual_Arr

Actual_Dept

StationCodeB

Employee

EmpCode

EmpfName

EmplName

EmpPhoneNum

Cars

CarNumCode

NumSeats

CarStartDate

CarEndDate

SecurityGuard

SGAdress

SGCode

SGSalary

Conductor

CondAdress

CondCode

Engineer

EngAdress

EngCode

Assigned_To

Pulls

EnRoute_To

13

Phase II

3.1) E-R model and relational model

3.1.1) Description – The entity-relationship model is easy visual organization for a database design. Though, the
database must be converted into a relational model before the construction of a database begins. The relational model
was first exemplified by Ted Codd, an IBM researcher. He described the relational model as a set of relations with
constraints set on a given domain or domains. The definition of a relational database schema is a set of relation
schemas, each with a unique name. The purpose of this is to allow for a high degree of data to be manipulated which
offers faster and easier conversion into the actual database.

3.1.2) Comparison – The entity-relational model is a visual description of an intended database. Features of the entity-
relational model are entities, attributes, relations, and cardinality between entities. The relational model offers
descriptive relationships between entities as a table with columns and rows. The domain constraint of each column is
the name of the attribute. Each row of the table is a record in each table, also known as tuples.

3.1.3) Conversion – The conversion from the entity relational model to a relational model uses relations and column
attributes. A relation may created for each strong entity type, using a unique attribute at a primary key for the relation
and a combination of attributes. For weak entities, attributes of the weak entity are sent to the relation.

 For all 1:1 binary relationship types can be created by mapping the primary key of the first entity and the primary
key of the other, in which both attributes are candidate keys. Also, map the primary key of the first entity and use the
second entity’s primary key as an attribute.

 For a 1:Many, map the primary key of the first entity into the second the other entities. Or, make a relation with
the primary keys from each entity as attributes.

 For a Many:Many relationship, a separate relationship must be created with the primary keys from each entity.

3.1.4) Constraints – An entity constraint is where no primary key can be null. Only an unknown value or unknown value
at the time called may be null. Each primary key is unique which ensure the elements of each tuple to be unique. This
is useful for comparisons and representations between relations. The definition of a referential constraint states that a
foreign key must exist in a relation. The foreign key must match with a candidate key or must be altogether null. In
addition to integral constraints, general constrains are additional rules specified by the user or database administrator
which may constrain or restrict parts of the database.

3.2) Relational Database

3.2.1) Train Relation Attributes

TrainNumCode

Domain/Type: A positive integer: 1 - 99999 (cannot be null)

TrainStartDate

 Domain/Type: valid Date (cannot be null)

TrainEndDate

 Domain/Type: valid Date (can only be null if Train is still in use)

14

Constraints:

 Primary Key: TrainNumCode – must be unique and not null.

Rule: TrainStartDate and TrainEndDate must be valid Date, but TrainEndDate may be null if train is still in use.

Candidate Key:

 TrainNumCode

3.2.2) Cars Relation Attributes

CarNumCode

 Domain/Type: A positive integer: 1 - 9999 (cannot be null)

NumSeats

 Domain/Type: A positive integer: 1 – 9999, cannot be null

CarStartDate

 Domain/Type: valid Date (cannot be null)

CarEndDate

 Domain/Type: valid Date (can only be null if Car is still in use)

Constraints:

 Primary Key: CarNumCode – must be unique a not null.

 Rule: CarStartDate and CarEndDate must be valid Date, but CarEndDate may be null if train is still in use.

Candidate Key:

 CarNumCode

3.2.3) Schedule Relation Attributes

ScheduleCode

 Domain/Type: A positive integer: 1-99999 (cannot be null)

 Schedule_Arr

 Domain/Type: Varchar2(21) (cannot be null)

 Schedule_Dept

 Domain/Type: Varchar2(21) (cannot be null)

15

Constraints:

 Primary Key: SchdleCode – must be unique and not null

 Rule: All dates must be valid Date

Candidate Key:

 SchdleCode

3.2.4) Employee Relation Attributes

 EmpCode

 Domain/Type: Number(5) : 1 – 99999, cannot be null.

 EmpfName

 Domain/Type: A string that holds up to 15 chars, cannot be null.

 EmplName

 Domain/Type: A string that holds up to 15 chars, cannot be null.

 EmpPhoneNum

Domain/Type: A string that holds up to 12 chars, cannot be null.

Constraints:

 Primary Key: EmpCode must have unique value

 Foreign Key: EmpCode, EmpfName, EmplName, EmpPhoneNum are foreign keys from their respective relations

Candidate Key:

 EmpCode

3.2.5) SecurityGuard Relation Attributes

 SGCode

 Domain/Type: Number(5) : 1 – 99999, cannot be null.

SGAddress

Domain/Type: A string containing 45 characters, cannot be null

SGSalary

Domain/Type: Number(5) : 1 – 99999, cannot be null.

16

Constraints:

 Primary Key: SGCode must have unique value

 Foreign Key: SGCode is a foreign key from their respective relations

Candidate Key:

 SGCode

3.2.6) Conductor Relation Attributes

 CondCode

Domain/Type: Number(5) : 1 – 99999, cannot be null.

CondAddress

Domain/Type: A string that holds 45 characters and cannot be null.

Constraints:

 Primary Key: CondCode must have unique value

 Foreign Key: CondCode is a foreign key from their respective relations

Candidate Key:

 CondCode

3.2.7) Engineer Relation Attributes

 EngCode

Domain/Type: Number(5) : 1 – 99999, cannot be null.

EngAddress

Domain/Type: A string that holds 45 characters, cannot be null.

Constraints:

 Primary Key: EndCode must have unique value

 Foreign Key: EngCode is a foreign key from their respective relations

Candidate Key:

 EngCode

3.2.9) TrainStation Relation Attributes

 StationName

17

 Domain/Type: A string that holds up to 15 chars, cannot be null

 StationPhoneNum

Domain/Type: A string that holds up to 11 chars, cannot be null

StationAddress

Domain/Type: A string that holds up to 25 chars, cannot be null

 StationCode

Domain/Type: Number(5) : 1 - 99999, cannot be null

Constraints:

 Primary Key: StationCode must have unique value

Candidate Key:

 StationCode

3.2.10) Pulls Relation Attribute

TrainNumCode

Domain/Type: Number(5) : 1 - 99999 (cannot be null)

CarNumCode

 Domain/Type: Number(4) : 1 - 9999 (cannot be null)

StartDate

Domain/Type: valid Date (cannot be null)

EndDate

Domain/Type: valid Date

Constraints:

 Rule: The EndDate cannot be an entry less than the StartDate, and can also be null if the train is presently
pulling the car

 Foreign Key: TrainNumCode, CarNumCode and must both exist in their respective relations

Candidate Key:

 None

3.2.11) Assigned_To Relation Attribute

EmpCode

18

 Domain/Type: Number(5) : 1 – 99999 (cannot be null)

TrainNumCode

Domain/Type: Number(5) : 1 – 99999 (cannot be null)

ScheduleCode

Domain/Type: Number(5) : 1 – 99999 (cannot be null)

Constraints:

 Foreign Key: EmpCode, TrainNumCode, ScheduleCode and must all exist in their respective relations.

Candidate Key:

 None

3.2.12) EnRoute_To Relation Attribute

ScheduleCode

Domain/Type: Number(5) : 1 – 99999 (cannot be null)

 StationCode

 Domain/Type: Number(5) : 1 – 99999, cannot be null

 Actual_Dept

 Domain/Type: valid Date

Actual_Arr

 Domain/Type: valid Date

 StationCodeB

 Domain/Type: valid Date, cannot be null or equal to StationCode

Constraints:

 Foreign Key: ScheduleCode, StationCode, Actual_Arr, Actual_Dept , ScheduleCodeB must all exist in their
respective relations.

Rule: All dates must be valid Date

Candidate Key:

 None

19

3.3) Relation Instances

3.3.1) Train(TrainNumCode, TrainStartDate, TrainEndDate)

TrainNumCode TrainStartDate TrainEndDate

01 01/01/01 04/03/06

02 01/02/01 05/04/06

03 02/04/01 03/01/09

04 02/04/01

05 03/19/03

06 06/21/02 09/12/09

07 04/04/04

08 12/12/01

09 11/11/01 11/11/09

10 07/23/09

3.3.2) Cars(CarNumCode, NumSeats, CarStartDate, CarEndDate)

CarNumCode NumSeats CarStartDate CarEndDate

01 40 01/01/01

02 40 01/02/01

11 40 02/01/02

12 40 01/02/01 01/02/09

13 40 01/02/01 03/13/09

24 40 04/01/01 04/23/01

25 40 03/06/01 05/11/08

26 40 07/23/01

30 40 03/03/03 04/04/04

31 400 05/04/03 06/05/04

3.3.3) Schedule(ScheduleCode, Schedule_Dept, Schedule_Arr)

ScheduleCode Schedule_Dept Schedule_Arr

01 01/01/01 6:00 01/01/01 8:00

02 01/01/01 8:05 01/01/01 10:00

03 01/01/01 10:05 01/01/01 12:00

04 01/01/01 12:05 01/01/01 15:00

05 01/01/01 15:05 01/01/01 17:00

06 01/01/01 17:10 01/01/01 15:00

07 01/02/01 6:00 01/02/01 7:00

08 01/02/01 7:05 01/02/01 7:55

09 01/02/01 8:00 01/02/01 8:55

10 01/02/01 9:00 01/02/01 9:55

11 01/02/01 10:00 01/02/01 10:55

20

3.3.4) Employee(EmpCode, EmpfName, EmplName, EmpPhoneNum)

EmpCode EmpfName EmplName EmpPhoneNum

001 Ben Neb 6613432222

002 Paul Lap 7886564434

011 Ray Sun 3232225555

012 Sara Miller 2223334444

101 Taylor Miller 2223334444

102 Zach Ice 8886667878

111 Annie Gracie 9871234444

201 Megan Harris 8583950000

202 Derrick McKee 6618098888

233 John Doe 9990009999

3.3.5) SecurityGuard(SGCode, SGAddress)

SGCode SGAddress

001 343 B St. Bakersfield, CA 93311

002 4434 P St. Bakersfi8eld, CA 93311

011 5555 Radiation Ave Bakersfield, CA 93311

012 234 Couple St. Azusa, CA 92123

014 0101 Binary Ct. Bakersfield, CA 93311

022 222 S St. Bakersfield, CA 93312

055 5555 S St. Bakersfield, CA 93312

3.6) Conductor(CondCode, CondAddress)

CondCode CondAddress

101 234 Couple St. Azusa, Ca 92123

102 7878 Cold St. Bakersfield, CA 93312

111 303 Dog St. Bakersfield, CA 93312

112 911 Space Ct. Bakersfield, CA 93311

123 333 Shave St. Bakersfield, CA 93313

150 150 Money Ave Bakersfield, CA 93312

199 999 Even St. Bakersfield, CA 93312

21

3.3.7) Engineer(EngCode, EngAddress)

EngCode EngAddress

201 Girl Ct. Bakersfield, CA 93312

202 Boy Ct. Bakersfield, CA 9312

233 Template St. Bakersfield, CA 93311

234 Template St. Bakersfield, CA 93311

235 Template St. Bakersfield, CA 93311

288 Buzz St. Bakersfield, CA 93311

290 Washington St. Bakersfield, CA 93311

3.3.8) TrainStation(StationName, StationPhoneNum, StationAddress, StationCode)

StationName StationPhoneNum StationAddress StationCode

San Diego 8585558888 858 5th St. San Diego, CA 8

Oceano 8581114444 1144 1st St. Ocean, CA 14

Santa Anna 6667775656 56 5th St. Santa Anna,CA 5

Solana Beach 8582229999 2nd St. Solana Beach, CA 2

Anaheim 3434443333 3rd St. Anaheim, CA 3

Ventura 7771117777 7th St. Ventura, CA 7

Los Angeles 6669996666 6th St. Los Angeles 6

3.3.9) Pulls(TrianNumCode, CarNumCode, StartDate, EndDate)

TrainNumCode CarNumCode StartDate EndDate

01 01 01/01/01 01/01/02

01 22 01/01/01

01 02 01/02/01 01/01/05

03 01 01/04/02

03 03 03/13/03

02 13 01/02/01 05/01/05

02 12 01/02/01

22

3.3.10) Assigned_To(EmpCode, TrainNumCode, ScheduleCode)

EmpCode TrainNumCode ScheduleCode

01 01 01

01 01 02

02 01 03

101 01 01

101 01 02

101 01 03

101 01 04

101 01 05

201 01 01

201 01 02

201 01 03

201 01 04

201 01 05

02 02 01

02 02 02

102 02 01

102 02 02

202 02 02

3.3.11) EnRoute_To(ScheduleCode, StationCode, Actual_Dept, Actual_Arr, StationCodeB)

ScheduleCode StationCode Actual_Dept Actual_Arr StationCodeB

01 5 6:00AM 7:55AM 6

02 6 8:05AM 10:00AM 5

03 5 10:05AM 11:55AM 6

04 6 12:30PM 3:00PM 5

05 5 3:05PM 5:00PM 6

06 6 5:05PM 7:00PM 5

07 3 6:00AM 6:55AM 6

08 6 7:00AM 7:55AM 3

09 3 8:00AM 8:55AM 6

10 6 9:00AM 9:55AM 3

23

List of Relations

Train(TrainNumCode, TrainStartDate, TrainEndDate)

Cars(CarNumCode, NumSeats, CarStartDate, CarEndDate)

Schedule(ScheduleCode, Schedule_Dept, Schedule_Arr)

Employee(EmpCode, EmpfName, EmplName, EmpPhoneNum)

SecurityGuard(SGCod, SGAddress)

Conductor(CondCode, CondAddress)

Engineer(EngCode, EngAddress)

TrainStation(StationName, StationPhoneNum, StationAddress, StationCode)

Pulls(TrianNumCode, CarNumCode, StartDate, EndDate)

Assigned_To(EmpCode, TrainNumCode, ScheduleCode)

EnRoute_To(ScheduleCode, StationCode, Actual_Dept, Actual_Arr, StationCodeB)

4) Queries

1. List Engineers who live on Template St. Bakersfield, CA 93311
2. List employees who are assigned to TrainNum 1
3. List conductor en route to Anaheim
4. List Engineers who have worked on TrainNum 2
5. List all the Trains scheduled during 12:00PM-3:00PM
6. List all the cars pulled by TrainNum 1
7. List all working Trains
8. List all working Cars
9. List the cities that TrainNum 1 travel to
10. List the security guard that is assigned to TrainNum 2

24

5) Query Representation

1. List Engineers who live on Template St. Bakersfield, CA 93311

Relational algebra:

π Engineer(σ (EngAddress = ‘Template St. Bakersfield, CA 93311’) Engineer)

Tuple relational calculus:

{e | Engineer(e) ^ e.EngAddress = ‘Template St. Bakersfield, CA 93311’-

 Domain relational calculus:

 {<ec, ef, el>| Engineer(ec, ef, el,_, ‘Template St. Bakersfield, CA 93311)-

2. List Employees assigned to TrainNum 1

Relational algebra:

π Employee(σ (A.EmpCode = E.EmpCode) Assign_To A * Employee E)

 Tuple relational calculus:

 {e | Employe(e) ^ (∃a)(Assign_To(a) ^ a.EmpCode=e.EmpCode ^ a.TrainNum = 01)}

 Domain Relational Calculus:

 {<ec, ef, el, ep>| Employee(ec, ef, el, ep) ^ (∃a)(Assign_To(ec, ‘01’, _)-

3. List conductor en route to Anaheim

Relational algebra:
 πConductor (σ Assign_To a * Conductor c * TrainStation t * EnRoute_To e)
 (c.EmpCode = e.EmpCode ^ a.ScheduleCode = e.ScheduleCode ^ e.StationCode = t.StationCode ^ t.StationName = ‘Anaheim’)

Tuple relational calculus:

{c | Conductor(c) ^ (∃a)(∃t)(∃e)(Assign_To(a)^TrainStation(t)^EnRoute_To(e) ^ c.CondCode=a.EmpCode
^ a.ScheduleCode=e.ScheduleCode ^ e.StationCode=t.StationCode ^ t.StationName= ‘Anaheim’)-

 Domain relational calculus:

 {<cc, cf, cl>| Conductor(cc, cf, cl,_,_) ^ (∃s)(Assign_To(cc,_,s) ^ EnRoute_To(s,_,_,_,’Anaheim’))-

4. List Engineers that have worked on TrainNum2

Relational algebra:
 πEngineer(σ (e.EmpCode = a.EmpCode ^ a.TrainNumCode = 2) Engineer e * Assigned_To a)

Tuple relational calculus:
 {e | Engineer(e) ^ (∃a)(Assign_To(a) ^ a.EmpCode=e.EngCode ^ a.TrainNumCode = ’02’)-

Domain relational calculus:
 {<ec> | Engineer(ec,_,_,_) ^ Assign_To(ec, ‘02’, _)-

25

5. List all the trains scheduled during 12:00-3:00PM

 Relational algebra:

 πTrain (σ Train t * Schedule s * Assigned_To a)

 (s.ScheduleArr>’12:00’ ^ s.ScheduleDept<’15:00’ ^ s.ScheduleCode = a.ScheduleCode ^ t.TrainNumCode = a.TrainNumCode)

 Tuple relational calculus:

 {t | Train(t) ^ (∃a)(∃s)(Assign_To(a) ^ Schedule(s) ^ s.ScheduleArr > ’12:00’ ^ s.ScheduleDept
<’15:00’ ^ s.ScheduleCode = a.ScheduleCode)}

 Domain relational calculus:

 {<t> | Train(t,_,_) ^ (∃s)(Assign_To(_,t,s) ^ Schedule(s, >12:00, <15:00))}

6. List all cars pulled by TrainNum 1

Relational algebra:
 πCars(σ(p.TrainNumCode = 1) Cars c)

Tuple relational calculus:

 {c | Car(c) ^ (∃p)(Pulls(p) ^ p.TrainNumCode = 01)

Domain relation calculus:
 {<c> | Car(c,_,_,_) ^ Pulls(01, c, _, _)}

7. List all working trains

Relational algebra:

 πTrain(σ (t.EndDate = null) Train t)

Tuple relational calculus:

 {t | Train(t) ^ t.EndDate = null}

Domain relation calculus:

 {<t>| Train(t,_, null)}

8. List all working cars

Relational algebra:
 πCars(σ (t.EndDate = null) Cars c)

Tuple relational algebra:

 {c | Cars(c) ^ c.EndDate = null}

26

Domain relation calculus:
 {<c>| Cars(c,_, null)}

9. List the cities that TrainNum 1 has ever traveled to

Relational algebra:

πTrainStation(σ Trianstation st * Schedule s * EnRoute_To e)

 (s.TrainNumCode = 1 ^ s.ScheduleCode = e.ScheduleCode ^ e.StationCode = st.StationCode)

Tuple relational algebra:

 {st | TrainStation(st) ^ (∃s)(∃e) (Schedule(s)^ EnRoute_To(e) ^ s.TrainNumCode=’01’ ^
s.ScheduleCode=e.ScheduleCode ^ e.StationCode = st.StationCode) }

Domain relational algebra:

 {<c> | TrainStation(_,_,_, c) ^ (∃s)(EnRoute_To(s,c,_,_,_)) }

10. List the Security Guards assigned to TrainNum 2

Relational algebra:

 πSecurityGuard(σ (a.EmpCode = sg.SGCode ^ a.TrainNumCode = 2) SecurityGuard sg * Assigned_To a)

Tuple relational algebra:

 {sg | SecurityGuard(sg) ^ (∃a)(Assigned_To(a) ^ a.EmpCode = sg.SGCode ^ a.TrainNumCode =
 ‘02’) -
Domain relation algebra:

 ,<sgc>| SecurityGuard(sgc,_,_,_,_) ^ Assigned_To(sgc, ’02’, _) }

27

Phase III

1) Purpose of SQL and Functionality

 The Structured Query Language, or SQL, is a universal foundation database language used in many Database
Management Systems (DBMS). It allows the database programmer to understand the specifics of how data is physically
stored and provides a basis for updating, creating, and extracting data. SQL also provides the capability to perform
simple to complex queries. SQL uses two roles, the Data Definition Language (DDL) and the Data Manipulation Language
(DML). DDL allows the programmer to define the structure of the database, where as the DML is used to manipulate
(update, insert, delete) data inside the database.

2) Oracle DBMS Schema Objects

Schema - A schema is a collection of database objects owned by the database user. Each object is a logical
structure that directly references data from the database. Some structures are tables, views, and indexes.

Tables- Tables are the common unit of data storage in an Oracle database. Tables hold data from all users in a
row by column structure. Each column in a table is the different data types of information where rows contain all the
instances.

Syntax
 CREATE TABLE TableName

{(columnName dataType [NOT NULL] [UNIQUE]
 [DEFAULT defaultOption] [CHECK (searchCondition)+ *,…+-
 [PRIMARY KEY (listOfColumns),]
 {[UNIQUE (listOfColumns)+ *,…+-
 {[FOREIGN KEY (listOfForeignKeyColumns)
 REFERENCES ParentTableName [(listOfCandidateKeyColumns)]
 [MATCH {PARTIAL | FULL}
 [ON UPDATE referentialAction]
 [ON DELETE referentialAction++*,…+-
 {[CHECK (searchCondition)+ *,…+-);

Indexes- Indexes are structures associated with tables, and optional. In Oracle, an index provides an access path
to requested table data in the database efficiently. After an index is created it can be automatically maintained by
Oracle in which any change to table data is recorded.

Syntax
 CREATE [UNIQUE] INDEX IndexName
 ON TableName (columnName [ASC | DESC+ *,…+);

Views- A view in SQL terminology is a single table that is derived by other tables. A view doesn't necessarily
exist in physical form, rather it is considered a virtual table. A view acts like a table, but rather information is derived
from tables which can be referenced easily by the database user. The tables used by a view are called the defining
tables.

Syntax
 CREATE VIEW Viewname *(newColumnName*,…+)+
 AS subselect [WITH [CASCADED | LOCAL] CHECK OPTION]

28

3) Relational Schema Objects and Contents

 djm_Assigned_To Assigned_To relation

 djm_Cars Cars relation

 djm_Conductor Conductor relation

 djm_Employee Employee relation

 djm_EnRoute_To EnRoute_To relation

 djm_Engineer Engineer relation

 djm_Pulls Pulls relation

 djm_Schedule Schedule relation

 djm_SecurityGuard SecurityGuard relation

 djm_Train Train relation

 djm_TrainStation TrainStation relation

Schemas and Instances for each relation

djm_Assigned_To

CS342 SQL> desc djm_Assigned_To;

 Name Null? Type

 --- -------- ------------------------------------

 EMPCODE NOT NULL NUMBER(9)

 TRAINNUMCODE NOT NULL NUMBER(9)

 SCHEDULECODE NOT NULL NUMBER(9)

CS342 SQL> select * from djm_Assigned_To;

 EMPCODE TRAINNUMCODE SCHEDULECODE

---------- ------------ ------------

 1 1 1

 1 1 2

 2 1 3

 101 1 1

 101 1 2

 101 1 3

 101 1 4

 101 1 5

 201 1 1

 201 1 2

 201 1 3

29

 201 1 4

 201 1 5

 2 2 1

 2 2 2

 102 2 1

 102 2 2

 202 2 2

18 rows selected.

djm_Cars

CS342 SQL> desc djm_Cars;

 Name Null? Type

 --- -------- ------------------------------------

 CARNUMCODE NOT NULL NUMBER(4)

 NUMSEATS NOT NULL NUMBER(4)

 CARSTARTDATE NOT NULL DATE

 CARENDDATE DATE

CS342 SQL> select * from djm_Cars;

CARNUMCODE NUMSEATS CARSTARTD CARENDDAT

---------- ---------- --------- ---------

 1 40 01-JAN-01

 2 40 02-JAN-01

 11 40 02-JAN-02

 12 40 02-JAN-01 02-JAN-09

 13 40 02-JAN-01 13-MAR-09

 24 40 04-JAN-01 23-APR-01

 25 40 06-MAR-01 05-NOV-08

 26 40 23-JUL-01

 30 40 03-MAR-03 04-APR-04

 31 40 04-MAY-03 04-JUN-04

10 rows selected.

30

djm_Conductor

CS342 SQL> desc djm_Conductor;

 Name Null? Type

 --- -------- ------------------------------------

 CONDCODE NOT NULL NUMBER(5)

 CONDADDRESS NOT NULL VARCHAR2(45)

CS342 SQL> select * from djm_Conductor;

 CONDCODE CONDADDRESS

---------- ---

 101 234 Couple St. Azusa, CA 92123

 102 7878 Cold St. Bakersfield, CA 93312

 111 303 Dog St. Bakersfield, CA 93312

djm_Employee

CS342 SQL> desc djm_Employee;

 Name Null? Type

 --- -------- ------------------------------------

 EMPCODE NOT NULL NUMBER(5)

 EMPFNAME NOT NULL VARCHAR2(15)

 EMPLNAME NOT NULL VARCHAR2(15)

 EMPPHONENUM NOT NULL VARCHAR2(12)

CS342 SQL> select * from djm_Employee;

 EMPCODE EMPFNAME EMPLNAME EMPPHONENUM

---------- --------------- --------------- ------------

 1 Ben Neb 6613432222

 2 Paul Lap 7886564434

 11 Ray Sun 3232225555

 12 Sara Miller 2223334444

 101 Taylor Miller 2223334444

31

 102 Zach Ice 8886667878

 111 Annie Gracie 9871234444

 201 Megan Harris 8583950000

 202 Derrick McKee 6618098888

 233 John Doe 9990009999

10 rows selected.

djm_EnRoute_To

CS342 SQL> desc djm_EnRoute_To;

 Name Null? Type

 --- -------- ------------------------------------

 SCHEDULECODE NOT NULL NUMBER(5)

 STATIONCODE NOT NULL NUMBER(5)

 ACTUAL_DEPT VARCHAR2(21)

 ACTUAL_ARR VARCHAR2(21)

 STATIONCODEB NOT NULL NUMBER(5)

CS342 SQL> select * from djm_EnRoute_To;

SCHEDULECODE STATIONCODE ACTUAL_DEPT ACTUAL_ARR STATIONCODEB

------------ ----------- --------------------- --------------------- ------------

 1 5 6:00AM 7:55AM 6

 2 6 8:05AM 10:00AM 5

 3 5 10:05AM 11:55AM 6

 4 6 12:30PM 3:00PM 5

 5 5 3:05PM 5:00PM 6

 6 6 5:05PM 7:00PM 5

 7 3 6:00AM 6:55AM 6

 8 6 7:00AM 7:55AM 3

 9 5 8:00AM 8:55AM 6

 10 5 9:00AM 9:55AM 3

10 rows selected.

djm_Engineer

32

CS342 SQL> desc djm_Engineer

 Name Null? Type

 --- -------- ------------------------------------

 ENGCODE NOT NULL NUMBER(5)

 ENGADDRESS NOT NULL VARCHAR2(45)

CS342 SQL> select * from djm_Engineer;

 ENGCODE ENGADDRESS

---------- ---

 201 Girl Ct. Bakersfield, CA 93312

 202 Boy Ct. Bakersfield, CA 93312

 233 Template St. Bakersfield, CA 93311

djm_Pulls

CS342 SQL> desc djm_Pulls;

 Name Null? Type

 --- -------- ------------------------------------

 TRAINNUMCODE NOT NULL NUMBER(9)

 CARNUMCODE NOT NULL NUMBER(9)

 STARTDATE NOT NULL DATE

 ENDDATE DATE

CS342 SQL> select *from djm_Pulls;

TRAINNUMCODE CARNUMCODE STARTDATE ENDDATE

------------ ---------- --------- ---------

 1 1 01-JAN-01 01-JAN-02

 1 2 02-JAN-01 01-JAN-05

 3 1 04-JAN-02

 3 25 13-MAR-03

 2 13 02-JAN-01 01-MAY-05

 2 12 02-JAN-01

33

6 rows selected.

djm_Schedule

CS342 SQL> desc djm_Schedule;

 Name Null? Type

 --- -------- ------------------------------------

 SCHEDULECODE NOT NULL NUMBER(5)

 SCHEDULE_DEPT NOT NULL VARCHAR2(21)

 SCHEDULE_ARR NOT NULL VARCHAR2(21)

CS342 SQL> select * from djm_Schedule

 2 ;

SCHEDULECODE SCHEDULE_DEPT SCHEDULE_ARR

------------ --------------------- ---------------------

 1 01/01/01 6:00AM 01/01/01 8:00AM

 2 01/01/01 8:05AM 01/01/01 10:00AM

 3 01/01/01 10:05AM 01/01/01 12:00PM

 4 01/01/01 12:05PM 01/01/01 3:00PM

 5 01/01/01 3:05PM 01/01/01 5:00PM

 6 01/01/01 5:10AM 01/01/01 7:00PM

 7 01/01/01 6:00AM 01/02/01 7:00AM

 8 01/01/01 7:05AM 01/02/01 7:55AM

 9 01/01/01 8:00AM 01/02/01 8:55AM

 10 01/01/01 9:00AM 01/02/01 9:55AM

 11 01/02/01 10:00AM 01/02/01 10:55AM

11 rows selected.

djm_SecurityGuard

CS342 SQL> desc djm_SecurityGuard

 Name Null? Type

 --- -------- ------------------------------------

 SGCODE NOT NULL NUMBER(5)

 SGADDRESS NOT NULL VARCHAR2(45)

34

CS342 SQL> select * from djm_SecurityGuard;

 SGCODE SGADDRESS

---------- ---

 1 343 B St. Bakersfield, CA 93311

 2 4434 P St. Bakersfield, CA 93311

 11 5555 Radiation Ave Bakersfield, CA 93311

 12 234 Couple St. Asuza, CA 92123

djm_Train

CS342 SQL> desc djm_Train;

 Name Null? Type

 --- -------- ------------------------------------

 TRAINNUMCODE NOT NULL NUMBER(5)

 TRAINSTARTDATE NOT NULL DATE

 TRAINENDDATE DATE

CS342 SQL> select * from djm_Train;

TRAINNUMCODE TRAINSTAR TRAINENDD

------------ --------- ---------

 1 01-JAN-01 03-APR-06

 2 02-JAN-01 04-MAY-06

 3 02-FEB-01 01-MAR-09

 4 04-FEB-01

 5 19-MAR-03

 6 21-JUN-02 21-SEP-09

 7 04-APR-04

 8 12-DEC-01

 9 11-NOV-01 11-NOV-09

 10 23-JUL-09

10 rows selected.

35

djm_TrainStation

CS342 SQL> desc djm_TrainStation;

 Name Null? Type

 --- -------- ------------------------------------

 STATIONNAME NOT NULL VARCHAR2(15)

 STATIONPHONENUM NOT NULL VARCHAR2(11)

 STATIONADDRESS NOT NULL VARCHAR2(25)

 STATIONCODE NOT NULL NUMBER(5)

CS342 SQL> select * from djm_TrainStation;

STATIONNAME STATIONPHON STATIONADDRESS STATIONCODE

--------------- ----------- ------------------------- -----------

San Diego 8585558888 858 5th St. San Diego, CA 8

Oceano 8581114444 1144 1st St. Oceano, CA 14

Santa Anna 6667775656 56 5th St. Santa Anna, CA 5

Solana Beach 8582229999 2nd St. San Diego, CA 2

Anaheim 3434443333 3rd St. Anaheim, CA 3

Ventura 7771117777 7th St. Ventura, CA 7

Los Angeles 6669996666 6th St. Los Angeles, CA 6

7 rows selected.

36

4) SQL Queries

Query 1 – List Engineers who live on Template St. Bakersfield, CA 93311

CS342 SQL> @q1.sql

 ENGCODE ENGADDRESS

---------- ---

 233 Template St. Bakersfield, CA 93311

CS342 SQL> ;

 1 select unique e.* from djm_Engineer e

 2* where e.EngAddress = 'Template St. Bakersfield, CA 93311'

Query 2 – List Employees assigned to TrainNum 1

CS342 SQL> @q2.sql

 EMPCODE EMPFNAME EMPLNAME EMPPHONENUM

---------- --------------- --------------- ------------

 1 Ben Neb 6613432222

 101 Taylor Miller 2223334444

 2 Paul Lap 7886564434

 201 Megan Harris 8583950000

CS342 SQL> ;

 1 select unique e.*

 2 from djm_Employee e inner join djm_Assigned_To a on (e.EmpCode=a.EmpCode

 3* and a.TrainNumCode = 1)

37

Query 3 – List conductor en route to Los Angeles

CS342 SQL> @q3.sql

 EMPCODE EMPFNAME EMPLNAME EMPPHONENUM

---------- --------------- --------------- ------------

 101 Taylor Miller 2223334444

 102 Zach Ice 8886667878

CS342 SQL> ;

 1 select unique e.*

 2 from djm_Employee e inner join djm_Conductor c on (e.EmpCode = c.CondCode)

 3 inner join djm_Assigned_To a on (e.EmpCode = a.EmpCode)

 4 inner join djm_Enroute_To en on (a.ScheduleCode = en.ScheduleCode

 5* and en.StationCodeB = 6)

Query 4 – List Engineers who have worked on TrainNum 2

CS342 SQL> @q4.sql

 EMPCODE EMPFNAME EMPLNAME EMPPHONENUM

---------- --------------- --------------- ------------

 202 Derrick McKee 6618098888

CS342 SQL> ;

 1 select unique e.*

 2 from djm_Employee e inner join djm_Engineer eng on (e.EmpCode = eng.EngCode)

 3 inner join djm_Assigned_To a on (eng.EngCode=a.EmpCode

 4* and a.TrainNumCode = 02)

38

Query 5 – List all the Trains scheduled during 12:00PM-3:00PM

CS342 SQL> @q5.sql

TRAINNUMCODE SCHEDULECODE SCHEDULE_DEPT SCHEDULE_ARR

------------ ------------ --------------------- ---------------------

 1 4 01/01/01 12:05PM 01/01/01 3:00PM

CS342 SQL> ;

 1 select unique t.TrainNumCode, s.*

 2 from djm_Train t inner join djm_Assigned_To a on (t.TrainNumCode=a.TrainNumCode)

 3 inner join djm_Schedule s on (a.ScheduleCode=s.ScheduleCode

 4 and s.Schedule_Dept <='01/01/01 3:00PM'

 5* and s.Schedule_Arr >'01/01/01 12:00PM')

Query 6 – List all cars pulled by TrainNum 1

CS342 SQL> @q6.sql

CARNUMCODE TRAINNUMCODE CARSTARTD CARENDDAT

---------- ------------ --------- ---------

 1 1 01-JAN-01

 2 1 02-JAN-01

CS342 SQL> ;

 1 select unique c.CarNumCode, p.TrainNumCode, c.CarStartDate, c.CarEndDate

 2 from djm_Cars c inner join djm_Pulls p on (c.CarNumCode=p.CarNumCode

 3* and TrainNumCode = 1)

39

Query 7 – List all working Trains

CS342 SQL> @q7.sql

TRAINNUMCODE TRAINSTAR TRAINENDD

------------ --------- ---------

 4 04-FEB-01

 5 19-MAR-03

 7 04-APR-04

 8 12-DEC-01

 10 23-JUL-09

CS342 SQL> ;

 1 select t.* from djm_Train t

 2 MINUS

 3 select t2.* from djm_Train t2

 4* where t2.TrainEndDate <='01-January-9999'

Query 8 – List all working Cars

CS342 SQL> @q8.sql

CARNUMCODE NUMSEATS CARSTARTD CARENDDAT

---------- ---------- --------- ---------

 1 40 01-JAN-01

 2 40 02-JAN-01

 11 40 02-JAN-02

 26 40 23-JUL-01

CS342 SQL> ;

 1 select c.* from djm_Cars c

 2 MINUS

 3 select c2.* from djm_Cars c2

 4* where c2.CarEndDate <= '01-January-9999'

40

Query 9 – List the cities that TrainNum 1 travel to

CS342 SQL> @q9.sql

STATIONNAME STATIONPHON STATIONADDRESS STATIONCODE

--------------- ----------- ------------------------- -----------

Santa Anna 6667775656 56 5th St. Santa Anna, CA 5

Los Angeles 6669996666 6th St. Los Angeles, CA 6

CS342 SQL> ;

 1 select unique s.*

 2 from djm_TrainStation s inner join djm_EnRoute_To e

 3 on (s.StationCode=e.StationCode)

 4 inner join djm_Assigned_To a on (a.TrainNumCode = 1

 5* and a.ScheduleCode = e.ScheduleCode)

Query 10 – List the securityGuards assigned to TrainNum 2

CS342 SQL> @q10.sql

 EMPCODE EMPFNAME EMPLNAME EMPPHONENUM

---------- --------------- --------------- ------------

 2 Paul Lap 7886564434

CS342 SQL> ;

 1 select unique e.*

 2 from djm_Employee e inner join djm_SecurityGuard s on (e.EmpCode = s.SGCode)

 3 inner join djm_Assigned_To a on (s.SGCode = a.EmpCode

 4* and a.TrainNumCode = 2)

41

Phase IV

1) Common Features in Oracle PL/SQL and MS Trans-SQL

 Procedural Language/Structured Query Language, PL/SQL, developed by Oracle and Microsoft’s Transaction-
Structured Query Language, MS Trans-SQL, are similar despite their syntax. Both languages support transaction
processing for a database. These would be control statements, declaration of variables, error outputs, and functions
that call for date and time.

 The purpose of a stored subprogram is handiness and accessibility. A subprogram is a group of SQL statements
written and saved to be called upon later. Instead of repeatedly entering SQL statements, subprograms may be called
which promotes re-usability, maintainability, and performance. Internal details of a subprogram may be altered instead
of changing other subprograms that invoke it.

2) Oracle PL/SQL

 Procedural Language/Structured Query Language is structured by blocks. In each statement, there are three
blocks with the first block section being declaration. This begins with DECLARE in which variables, cursors, constants,
and exceptions are defined. The second block is the executable statement in between the words BEGIN and END.
Finally, the third block is used for exceptions and the outcome of the exceptions.

 Exception Handling- PL/SQL allows for users to use conditional control statements which include “if, then, else”
statements. The syntax for such is as follows.

 IF condition THEN

 statements;

 END IF;

 IF condition THEN

 statements;

 ELSE

 statements;

 END IF;

 IF condition THEN

 statements;

 ELSEIF condition THEN

 statements;

 ELSE

 statements;

 ENDIF;

42

Loops

 The next control statements is a loop control which behaves as a for loop, a while loop, or a goto statement.

 LOOP

 statements;

 EXIT WHEN condition;

 END LOOP;

 FOR variable IN lowerbound..upperbound LOOP

statements;

 END LOOP;

Cursors in SQL are statements that traverses the row of a table

 FOR cursor_variable IN cursor_name LOOP

statements;

 END LOOP;

 WHILE condition LOOP

statements;

 END LOOP;

 GOTO label_name

…

<<label_name>>

Stored Procedures

 Stored procedures are precompiled procedures that are saved in the database. Stored procedures also reduce
client/ server traffic and are efficient and reusable because SQL server did not have to compile an execution plan
completely. SQL server only had to finish optimizing the stored plan for the procedure. The syntax is as follows:

 CREATE PROCEDURE name *(parameter*, parameter,…+)+ IS

 [local declarations]

 BEGIN
 executable statements

 [EXCEPTION

43

 exception handlers]

 END [name];

Stored Functions

 Users can write user-defined functions in PL/SQL or JAVA to provide functionality that is not available in SQL.
User-defined functions can appear in a SQL statement anywhere SQL functions can appear, which is wherever an
expression can occur. The difference between a stored procedure and stored function is that a function returns a
variable. The syntax is as follows:

CREATE [OR REPLACE] FUNCTION function_name
[(variablename IN|OUT variabletype)]
RETURN datatype;
AS

(DECLARE variables go here)
BEGIN
 SQL statements;
 RETURN variable;
END;

PL/SQL Package

 A package is a group of stored procedures, subprograms, stored functions where multiple procedures may be
called upon.

CREATE PACKAGE package_name AS
 PROCEDURE names..;
 FUNCTION names…;

END package_name;

CREATE PACKAGE BODY package_name AS
 PROCEDURE name IS…
 BEGIN
 Statements
 END;

 FUNCTION name RETURN DATATYPE IS…
 BEGIN

 Statements

RETURN variable
 END;

END package_name;

44

Triggers
 Triggers provide a way of executing PL/SQL code automatically by a specific occurrence in the database, such as
update, insert, delete. When such procedures are called, a trigger may be set to execute code which may record such
events, like a log file.

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE|AFTER INSERT|DELETE|UPDATE OF COL [column_name] [OR DELETE|UPDATE|INSERT]

ON table_name

DECLARE

 variables

BEGIN

 FOR EACH ROW

 [WHEN CONDITION]

 Statements;

END;

3) Oracle PL/SQL Subprograms

djm_topNAvgSalary -This stored procedure returns the top n avg salary of security guards

--select djm_topNAvgSalary(3) from dual
CREATE OR REPLACE FUNCTION djm_topNAvgSalary(n IN NUMBER) RETURN NUMBER IS
 s NUMBER(9,2) := 0.0;
 p NUMBER(7,2) ;
 CURSOR c1 IS SELECT SGSalary FROM djm_SecurityGuard
 ORDER BY SGSalary DESC;
BEGIN
 open c1;
 FOR i IN 1..n LOOP
 fetch c1 into p;
 s := s+p;
 END LOOP;
 CLOSE c1;
 RETURN s/n;
EXCEPTION
 when others then
 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||
 '-ERROR-' || SQLERRM);
END djm_topNAvgSalary;
/

djm_insertEmployee – This procedure inserts an employee

CREATE OR REPLACE PROCEDURE djm_insertEmployee(

 EmpCode IN number,

45

 EmpfName IN varchar2,

 EmplName IN varchar2,

 EmpPhoneNum IN varchar2)

 AS

 BEGIN

 insert into djm_Employee values(

 EmpCode,

 EmpfName,

 EmplName,

 EmpPhoneNum);

 EXCEPTION

 when others then

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END djm_insertEmployee;

/

djm_deleteEmployee – This procedure deletes a record of employee

CREATE OR REPLACE PROCEDURE djm_deleteEmployee(Emp_Code IN number)

 AS

 BEGIN

 delete from djm_Employee

 where EmpCode = Emp_Code;

 EXCEPTION

 when others then

 raise_application_error(-40001, 'An error occurred in ' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END djm_deleteEmployee;

/

46

Trigger – This trigger is set off for the occurrence of update security guard

--update djm_SecurityGuard set SGSalary = 450 where SGCode = 1;

CREATE OR REPLACE TRIGGER djm_salary_afterUpdate

after update of SGSalary on djm_SecurityGuard

for each row

BEGIN

 insert into djm_SalaryLog

 values(salary_log_sequence.nextval, sysdate, :old.SGCode, :old.SGAddress, :old.SGSalary, :new.SGSalary);

END;

/

Salary Log Sequence

CREATE SEQUENCE salary_log_sequence

START WITH 1

INCREMENT BY 1

CACHE 3

/

Table for Salary Log

create table djm_SalaryLog(

 logNo number NOT NULL primary key,

 eventdate date NOT NULL,

 SGCode number(5) NOT NULL,

 SGAddress varchar2(45) NOT NULL,

 SGSalary number(5) NOT NULL,

 new_SGSalary number(5) NOT NULL

);

47

Phase V

1) Daily Activities

 Users of the database that do not necessarily need access to all the data would be employees. Employees

would use a generated schedule to see what train and time they are scheduled for. Once the employees have looked up

their schedule, they will report to their duties and carry on with their job and duties.

Other users of the database would be owners of the company or bosses of the employees in which database

management users could schedule employees, set up train schedules, assign employees and trains to schedules, rotate

cars or trains if maintenance or tune ups were required, etc. All of which for each record can be updated, inserted, or

deleted.

2) Relations, Views, and Subprograms

In order for the application to retrieve data, access was needed to the database, in which a TableAdapter for each table

was created. TableAdapter provide communication between the application and the database. Also, a TableAdapter

can execute queries or stored procedures, and either return existing data or send new updated data from the

application to the database. Each table had and individual TableAdapter: djm_Assigned_ToTableAdapter,

djm_CarsTableAdapter, djm_EmployeeTableAdapter, djm_EngineerTableAdapter, djm_Enroute_ToTableAdapter,

djm_PullsTableAdapter, djm_SalaryLogTableAdapter, djm_ScheduleTableAdapter, djm_SecurityGuardTableAdapter,

djm_TrainTableAdapter, djm_TrainStationTableAdapter. By acquiring the TableAdapter, a DataGridView was created to

see the existing data for each table used in the application.

3) Screenshots

This is the Main Interface when the application is started. There are several buttons in which the user can access tables.

48

The Train Button from the Menu will open up a new window form called Train. This window shows dataGridViews of

Train, Cars, and the relationship ‘Pulls’ between the two. Also, navigation buttons are located at the top along with

insert, delete, and save. In addition, any record may be edited simply by clicking on a cell and changing the data inside.

49

When the Schedule button is pressed in the Menu window, a new window form called Schedule is opened. This shows a

dataGridView of the table djm_Schedule. Also, navigation buttons are located at the top along with insert, delete, and

save. In addition, any record may be edited simply by clicking on a cell and changing the data inside.

50

When the Assigned To button is pressed from the Menu window, a new window form is opened called Assigned To. This

window shows dataGridViews for two tables, djm_Assigned_To, and djm_Schedule. Most employee users would use

this part of the application to look up their schedule and which train they are assigned to. Also, navigation buttons are

located at the top along with insert, delete, and save. In addition, any record may be edited simply by clicking on a cell

and changing the data inside.

51

When the Train Station button is pressed in the Menu Window, a new window form called Train Station is opened. In

this window, a dataGridView of existing data in djm_TrianStation is shown. Also, navigation buttons are located at the

top along with insert, delete, and save. In addition, any record may be edited simply by clicking on a cell and changing

the data inside.

When the EnRoute To button is pressed in the Menu Window, a new window form called EnrouteTo is opened. This

window displays a dataGridView of djm_EnRoute_To. Also, navigation buttons are located at the top along with insert,

delete, and save. In addition, any record may be edited simply by clicking on a cell and changing the data inside.

52

When the Employee button is pressed in the Menu Window, a new window form is open called Employee. This displays

a dataGridView of djm_Employee. Two more buttons are also included, Add and Delete, along with a top lined tool bar

wth drop down menu with, Add, Delete, and Exit. This window also confirms a deletion of a record with a yes or no

confirmation.

53

4) Description of GUI Code

Major steps of designing a user interface – The first initial step was to create a new project in Visual Studios 2008 using

Visual C# and an installed template called Windows Form Application. Also, the application used .NET Framework 3.5.

Once this was created, I inserted a Windows Form which is a template of a window that may hold a variety of objects.

This is the basis for each window in the application. Visual Studios has a “Toolbox” which contains common controls

such as a button, data containers such as dataGridViews, menu options, text boxes, labels, etc. All of which are as easy

as drag and drop and code is automatically written in the background.

 The next step was setting up the connection to the database helios.cs.csubak.edu. In Visual Studios 2008, a

feature called “add new data source” was essentially a wizard for setting up this connection. In order to use this feature

for Oracle, the Oracle client had to be installed. By using the net manager, a connection to helios was established in

which I was able to select which tables, views, subprograms, packages, etc. I wanted to add as a data source. Once the

database was added to Visual Studios, it was a drag and drop into a window form to display a dataGridView. By doing

this, TabaleAdapters, BindingSources, openConnection, and closeConnection were automatically coded.

Connecting to Helios

//DB IP address as well as Login, and Password

 string oradb = "Data Source=(DESCRIPTION=" +

"(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=helios.cs.csubak.edu)(PORT=1521)))" +

"(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=ORCL)));" + "User

Id=cs342;Password=c3m4p2s;";

//Make an Oracle Connection Object, and Assign the DB Login Info to it

 OracleConnection conn = new OracleConnection(oradb);

 conn.ConnectionString = oradb;

//Open the Oracle Connection

 conn.Open();

(Code examples from Employee will be shown because every window application used Employee like a template)

Fill Data – Established a connection and filled the data into a dataGridView

void FillData()

 {

 using (OracleConnection c = new

OracleConnection(Properties.Settings.Default.ConnectionString))

 {

 c.Open();

 using (OracleDataAdapter a = new OracleDataAdapter("SELECT * FROM

djm_Employee", c))

 {

 DataTable t = new DataTable();

 a.Fill(t);

 dJM_EMPLOYEEDataGridView.DataSource = t;

 }

 }}

54

Refresh Employee – Whenever an update, insert, delete command is made, the table must be refreshed

private void refreshEmployee()

 {

 dJM.DJM_EMPLOYEE.Clear();

 FillData();

 }

Add Employee – Inserts an employee into the table and refreshes the table

private void AddEmp_Click(object sender, EventArgs e)

 {

 OCommand cEntry = new OCommand();

 string ecode = this.txtecode.Text;

 string efname = this.txtefname.Text;

 string elname = this.txtelname.Text;

 string ephone = this.txtephone.Text;

 string command = "insert into djm_Employee values

("+ecode+",'"+efname+"','"+elname+"','"+ephone+"')";

 cEntry.Run(command);

 refreshEmployee();

 }

Delete Employee – Deletes an employee record, confirms action with a yes or no, and refreshes the table

private void DelEmp_Click(object sender, EventArgs e)

 {

 if (MessageBox.Show("Are you sure you want to delete this user?", "Confirm

Delete", MessageBoxButtons.YesNo)

 == DialogResult.Yes)

 {

 OCommand cEntry = new OCommand();

 string ecode = this.txtecode.Text;

 string command = "delete from djm_Employee where EmpCode=" + ecode;

 cEntry.Run(command);

 }

 refreshEmployee();

 }

Major Features of GUI - The major feature of this application is to look up important records from the database by using

a simple graphical user interface. Without the graphical user interface, a command prompt like window would be used

along with manually entering long and easily forgetful sql commands. By using the GUI, it allows for easy usability,

higher productivity, greater accessibility, lower cognitive lode, and higher productivity for the user or organization.

Development and Learning - The best way I learned about using Visual Studios, C#, Oracle, and any other type of

algorithms was the internet and forums. The internet has offered a social network between people and companies that

came about similar situations as I did during the creation of this application. I discovered many solutions to one

situation in which some solutions were simple and some were a degree of high complexity.

55

5) Designing and Implementing a Database Application

My design for this database application was quite simple. I liked the idea of a menu window and branching off to

different characteristics of the database. So, from the main menu, I could open the Employee part of the database by

clicking a button. From there, a new window would open up with every record in a data table along with a couple of

function buttons, insert and delete. In addition to buttons, I included a drop down menu with the same functions along

with exit, which closes the window. The basis for my database application is essentially to look up records, insert,

delete, and update records in the database. If I had more time, I would like to add more detailed attributes and records

into the database. Since the database only goes to a degree of scheduling employees and trains, I would like to add the

business side to the organization. This would include passengers, sales, luggage, and maybe even ticket packages which

may include bus services, car rentals, hotel stays, and dining. I have learned that a database can contain information to

a near endless degree and can be difficult to maintain. In order to maintain the database, the creator must design the

database in the most simplified form. This begins with data modeling. I actually went back to my original ER diagram

and made some alterations. One alteration was getting rid of unrelated entities to the database. Another alteration I

made was to keep the names and phone numbers in the Employee entity only, rather than both, the parent class

(Employee) and the subclasses (Security Guard, Conductor, Engineer).

6) Conclusion

Even though this project is small and simple, it is a great example to real-world application of a database. This

project is a great starting foundation in the field of managing a database. This class was a great experience and has

pushed me to strive for knowledge. Topics that I learned are as followed: what a database is, database modeling

(entities, attributes, constraints), relational algebra, relational calculus, sql commands, creating tables into the database,

stored procedures, implementing the database into visual studios with C#, and creating a graphical user interface

(which is something that I’ve never done before).

