
Giumarra & Associates Co.
Shipping Warehouse

ʻDatabase Projectʼ

Aris Turner
Computer Science 342: Database Systems

Prof. H. Wang
9.25.2010

Table of Contents

Phase I: Information Gathering and E-R Modeling#11
Fact Finding Techniques# 11

Techniques Used! 11

Introduction to Enterprise/Organization! 11

Structure of Enterprise! 12

Itemized Description of Major Objects! 12

Data Views and Operations for User Groups! 12

Conceptual Database Design# 13

Entity Set Description! 13

Pallet! 13

Drink Type! 13

Incoming Invoice! 14

Outgoing Invoice! 15

Location! 16

User! 16

Relationship Set Description! 17

Shipped In! 17

Shipped Out! 17

2

Checks In/Out! 18

LocatedIN! 18

Contains! 18

Related Entity Set! 18

E-R Diagram# 19

Phase II: Relational Model# 21
ER-Model vs. Relational Model# 21

Description! 21

Comparison! 21

Conversion from E-R model to relational model! 21

Constraints! 22

ER database to relational database# 23

Pallet Relation! 23

Attributes:! 23

Constraints:! 23

Drink Type Relation! 23

Attributes:! 23

Constraints:! 24

Incoming Invoice Relation! 24

Attributes:! 24

Constraints:! 24

Outgoing Invoice Relation! 24

Attributes:! 24

Constraints:! 24

3

Location Relation! 25

Attributes:! 25

Constraints:! 25

User Relation! 25

Attributes:! 25

Constraints:! 25

Shipped In Relation! 25

Attributes:! 25

Constraints:! 25

Shipped Out Relation! 26

Attributes:! 26

Constraints:! 26

Checks In Relation! 26

Attributes:! 26

Constraints:! 26

Checks Out Relation! 26

Attributes:! 26

Constraints:! 26

Located In Relation! 27

Attributes:! 27

Constraints:! 27

Contains Relation! 27

Attributes:! 27

Constraints:! 27

Relational Instances # 28

4

Pallet(palletID, createDate, expDate, containsDrink, loc)! 28

Drink_Type(prodName, prodSize)! 28

Incoming_Invoice(inID, inDate, checkedinBy)! 29

Outgoing_Invoice(outID, outDate, checkedoutBy)! 29

Location(rNum)! 30

User(userName, userDept)! 30

Shipped_In(palletID, inID, status)! 31

Shipped_Out(palletID, outID, status)! 31

Checks_In(inID, userName)! 32

Checked_Out(outID, userName)! 32

Located_In(palletID, rowNum)! 33

Contains(palletID, prodName)! 33

Queries# 34

1. Select all invoices checked by a ʻA. Turnerʼ! 34

2. Select all locations of ʻMon Khaos 16ʼ! 35

3. Select all Incoming invoices created on ʼ10/10/2010ʼ! 35

4. Select all pallets shipped out on ʼ12/17/2010ʼ! 35

5. Select all pallets with expiration date before ʼ10/14/2011ʼ! 35

6. Select all invoices with ʻRS Mango 24ʼ in them! 35

7. Select the user name who checked Incoming Invoices ʻ12345ʼ! 35

8. Select all users who checked incoming invoices on ʼ10/13/2010ʼ! 36

Phase III: Implementation of the relational database#38
SQL*PLUS! 38

Schema Objects in Oracle! 38

5

Tables! 38

Views! 38

Dimensions! 39

Sequences! 39

Synonyms! 39

Indexes! 39

Database Links! 39

Stored procedures and functions! 39

Packages! 39

Schema objects in this project! 40

at_checksin! 41

at_checksout! 41

at_contains! 42

at_drinktype! 42

at_ininvoice! 43

at_locatedin! 44

at_location! 44

at_outinvoice! 45

at_pallet! 45

at_shippedin! 46

at_shippedout! 47

at_user! 47

Queries# 48

Select all invoices checked by ʻA.Turnerʼ! 48

2. Select all locations of ʻMonKhaos16 !̓ 48

6

Select all incoming invoices create on ʼ10/10/2010 !̓ 49

Select all pallets shipped on ʼ12/17/2010 !̓ 49

Select all pallets with expiration date before ʼ10/14/2011 !̓ 49

select *! 49

Select all outgoing invoices with ʻRSMango24ʼ in them! 50

Select the User who checked incoming invoice ʻ12345ʼ! 50

Select all invoices who checked incoming invoices on ʼ10/13/2010ʼ! 51

Select the date with the most number of pallets shipped. (Not Finished)!51

Phase IV: Stored Procedures # 53

Common Features in Oracle PL/SQL and Microsoft Transact-SQL! 53

Oracle PL/SQL! 53

Layout:! 54

Variable types:! 54

Cursors:! 54

Control statements! 54

Exception Handling! 55

Stored procedures! 55

Stored functions! 55

Packages! 56

Triggers! 56

Oracle PL/SQL Subprograms! 57

Stored Procedures! 57

deleteuser! 57

insertuser! 57

NAvgpallets! 57

7

at_userafterupdate! 58

at_deleteuserupdate! 58

Phase V: GUI Design and Implementation# 60

Daily Activities! 60

Warehouse Managers! 60

Finance Officers! 60

Company Managers! 60

Relations, Views, Subprograms! 60

Application Screenshots! 61

8

9

10

Phase I: Information Gathering
and E-R Modeling

Fact Finding Techniques

The purpose of fact finding is to identify the necessary components required to
create a streamlined and efficient database for my company. This process will
identify daily processes, environment, potential users, and needs of the company
before a conceptual model is created. By going through this process, potential errors,
design flaws, and implementation problems can be eliminated before a database is
constructed. The following fact finding techniques were used in preparation for
constructing this database.

• On-Site Inspection. Being a former employee of GABCO (Giumarra & Associates
Bottliing Co.), I was allowed to directly inspect daily routines of the warehouse. I
was able to note processes and techniques the warehouse manager used in tracking
incoming and outgoing product movement, along with potential errors that the
database may alleviate.

• Interviews. I talked to the warehouse manager along with the billing supervisor to
identify personal routines and needs the database should provide. Through this
process I was able to identify who would be using the database along with the
different need each user would need.

Techniques Used

By simply following both potential users during the day I was given a first hand look
into the needs of the database. Then by interviews I was able to narrow down and
specify entities, environment needs, and specialized processes for each user.

Introduction to Enterprise/Organization

Giumarra & Associates (GABCO) was created as a division of Giumarra Wineries in
2002. The company produces and bottles various energy drinks and teas for national
drink companies such as Monster, Rockstar, and Arizona Tea. Due to a rapid
expansion in sales and client needs, GABCO decided it was better to split the
company into subdivisions consisting of production and warehousing.

11

Structure of Enterprise

Due the the fact that the production division of the company was required to use
preproduction databases created by its clients, I chose to focus on the warehousing
division which had no formal database system other than simple cell sheets. The
company was fully capable of running its various processes through an cell sheet, but
due to the manual nature of an excel sheet and the difficulty of controlling user
input, many errors arise because human error, i.e. accidental deletion of data,
potential harmful access to edit data by unqualified or unauthorized users.

The requirements of the warehouse was simply in many ways. First, there is only one
type of product style to control (pallets) meaning entity types and key identifiers
would be easy to choose. Second, only two people are needed to run and control the
database, meaning little need for numerous environments and a complicated access
infrastructure. The warehouse manger needs to keep track of incoming product from
the production facility along with shipments to various distribution warehouses for
the clients. The manager needs a streamlined interface that will minimize time on a
comp due to the speed of product arriving and leaving the warehouse. The billing
supervisor need a much more simplified view of the database. He has no need for
editing product data other than to mark shipping invoices appropriately throughout
the billing process. Restricted access is both a more efficient process, but also
eliminates potential number manipulation by unauthorized users.

Itemized Description of Major Objects

The Pallet will be the major entity involved with the processes used by GABCO. This
entity will identify each product in such a way as to meet both internal as well as
legal (shipment and product problems) reasons. Connected to this is the Incoming/
Outgoing Invoices entities which will be used to track the pallets entering and leaving
the warehouse.

Data Views and Operations for User Groups

The warehouse manager is capable of entering both incoming and outgoing invoices,
filling them with Pallet information such as Product Name, Size, and Dates. The
manager can create, edit, and delete invoices as necessary. The billing supervisor can
view incoming invoices for scheduling purposes, he cannot edit incoming data in any
way. The supervisor is allowed to view and add data pertaining to billing to outgoing
invoices such as Date Billed, Date Paid. He is, however, not allowed to edit data made
during the creation of the invoice. To edit data, he must consult the warehouse
manager. Other warehouse employees have no access to the database.

12

Conceptual Database Design

Entity Set Description

Pallet

• This entity type tracks the pallets that enter and leave the warehouse.
• Candidate Keys: palletID
• Primary Key: palletID
• Strong/Weak Entity: strong
• Fields to be indexed: palletID, prodName, prodSize, expDate
• Attributes:

Name palletID createDate expDate

Description Pallet ID
number

Creation
Date of
product

Expiration
Date of
product

Domain/
Type Integer Date Date

Range 0...2^31 Any Any

Default none none none

Null no no no

Unique yes no no

Single/
Multivalue single single single

Simple/
Composite simple composite composite

Drink Type

• This entity tracks the various types of drinks contained in the pallets.
• Candidate Keys: prodName
• Primary Key: prodName
• Strong/Weak Entity: strong
• Fields to be indexed: prodName, prodSize, expDate
• Attributes:

13

Name prodName prodSize

Description Drink Name Size of cans
in pallet

Domain/
Type String Integer

Range Any 16, 24

Default none none

Null no no

Unique yes no

Single/
Multivalue single single

Simple/
Composite composite simple

Incoming Invoice

• This entity type tracks incoming shipments from the production facility. This will
provide crucial data for proper and timely shipping of product.

• Candidate Keys: inID
• Primary Key: inID
• Strong/Weak Entity: strong
• Fields to be indexed: inID, inDate
• Attributes:

Name inID inDate checkedinBy

Description Invoice ID invoice Date
person who

checked
shipment

Domain/
Type Integer Date String

Range 0...2^31 Any 30 char

Default none none none

Null no no no

14

Name inID inDate checkedinBy

Unique yes no no

Single/
Multivalue single single single

Simple/
Composite simple composite composite

Outgoing Invoice

• This entity tracks shipments from the warehouse. Along with dates shipped, it
must also keep track of company shipped to.

• Candidate Keys: outID
• Primary Key: outID
• Strong/Weak Entity: strong
• Fields to be indexed: outID, outDate, shippedTo
• Attributes:

Name outID outDate shippedTo checkedou
tBy billDate paidDate

Descript
ion

Invoice
ID

invoice
Date

company
shipped to

person who
checked
shipment

billing
Date

date
shipment
is paid for

Domain/
Type Integer Date String String Date Date

Range 0...2^32 Any 40 char 30 char Any Any

Default none none none none none none

Null no no no no yes yes

Unique yes no no no no no

Single/
Multival

ue
single single single single single single

Simple/
Composi

te
simple composi

te single composite composite composite

15

Location

• This entity tracks the location of pallets for accurate and timely distibution
• Candidate Keys: rowNum
• Primary Key: rowNum
• Strong/Weak Entity: Strong
• Fields to be indexed: none
• Attributes:

Name rNum

Descriptio
n

row
number

Domain/
Type Integer

Range 0...450

Default none

Null no

Unique yes

Single/
Multivalue single

Simple/
Composite simple

User

• This entity tracks employees who have access to database
• Candidate Keys: userName, Dept
• Primary Key: userName
• Strong/Weak Entity: Strong
• Fields to be indexed: Name
• Attributes:

Name userName deptName

Descriptio
n

employee
name

employee
Dept

16

Name userName deptName

Domain/
Type String String

Range 40 char 25 char

Default none none

Null no no

Unique no yes

Single/
Multivalue single single

Simple/
Composite composite simple

Relationship Set Description

Shipped In

Each incoming shipment must contain product to be recorded. This is the
relationship between the pallets shipped to the warehouse and the invoice used to
track the shipment. The relationship has a ‘status’ attribute to keep track of pallets
that may have been damaged and are no longer in the warehouse.

Mapping Cardinality: 1...M

Descriptive Field: none

Participation Constraint: mandatory for all incoming shipments to the warehouse

Shipped Out

Each outgoing shipment must contain product to be recorded. This is the relationship
between the pallets shipped from the warehouse and the invoice used to track the
shipment. The relationship has a ‘status’ attribute to keep track of pallets that may
have been damaged and are no longer in the warehouse.

Mapping Cardinality: 1...M

Descriptive Field: none

Participation Constraint: mandatory for all outgoing shipment from the warehouse

17

Checks In/Out

Each shipment must be verified (checked) by an employee. This is the relationship
between the invoices and the users checking them.

Mapping Cardinality: 1...1

Descriptive Field: none

Participation Constraint: mandatory for all invoices both in and out of the warehouse

LocatedIN

Tracks the location of each pallet in the warehouse

Mapping Cardinality: M...1

Descriptive Field: none
Participation Constraint: Mandatory for each pallet in warehouse

Contains

Tracks the type of drink contained in the pallets

Mapping Cardinality: 1...M

Descriptive Field: none

Participation Constraint: Mandatory for each palled in warehouse

Related Entity Set

Due to the simplicity of the shipments involved in the warehouse, there is no need
for this. The warehouse manager and billing supervisor are fully capable of
maintaining these processes. This may change given a need to expand staff as
business grows.

18

E-R Diagram

Pallet

palletID (PK)

containsDrink (FK)
createDate

expDate
loc (FK)

Incoming Invoice

inID (PK)
inDate
checkedinBy (FK)

Outgoing Invoice

outID (PK)
outDate
shippedTo
checkedoutBy (FK)
billDate
paidDate

Location

rNum (PK)

User

userName (PK)
deptName

Checks
In

Shipped
Out

Shipped
In

Located
In

n
n

1

11

n n

m

Checks
Out

1

status

Drink Type

prodName (PK)

prodSize

Contains

1

n

status
n

20

Phase II: Relational Model
ER-Model vs. Relational Model

Description

The Entity-relationship model shown in Phase I is a valuable tool for visualizing the
data’s organization for the planned database. However, this conceptual form of the
database must be converted into a relational form before it can be implemented as an
actual, functioning database. The relational model was first described by IMB
Researcher Ted Codd in his 1970 paper, “A Relational Model of Data for Large Shared
Data Banks.” This model allows for all data to be described as a set of relations with
constraints set on given domains. Under these conditions, we can produce a valid,
finite description of the theoretical database, which allows for faster, easier conversion
into the actual database.

Comparison

The entity-relationship model represents a visual description of the proposed database
format, with implied attributes, relations, and cardinality. This serves as the
conceptual design for the database. This design omits any sort of implementation
details, so no focus is taken away from the design aspects needed for this phase.
Because of its visual layout, the entity-relationship model is best used with non-
technical potential users of the planned database.

The relational model lays out the previously-described entities and relationships
between entities as a table with its attributes as columns. Each row in the table is a
valid record, or tuple, in the database, and each table is referred to as a relation. This
representation allows the database designers to better understand the size and domain
constraints for the final product. The relational model lacks the visual advantages of
the entity-relationship model, but allows for better, more accurate descriptions of
domain constraints and tuple entries. It also more closely resembles the actual
structure of the tables in the implemented database.

Conversion from E-R model to relational model

Creation of a relational model is facilitated by first producing a conceptual model. A
conceptual provides basic structural integrity, from which the relational model’s
relations and column attributes can be mapped. An algorithm exists to expedite this
process. This algorithm takes into account the existence of an extended entity-
relationship model (one with specialization, generalization, and union types
represented), but the structure of this project’s E-R model does not call for these extra
steps.

21

First, a relation is created for each strong entity type in the E-R model. Each relation
has the same simple attributes as it did in the E-R model. An attribute is selected as
the primary key for the relation, using a combination of attributes if a composite key is
used. Secondary keys may also be allowed. Next, weak entities and their attributes
are mapped to relations. Their primary key can be denoted as a combination of any
partial keys the weak entity has with the primary key of its owner(s). Next, the two
participating entities in all 1:1 binary relationship types R from the E-R model are
mapped to separate relations S and T. The representation in the relational model can
be created using several methods:

• Include the primary key of one relation as a foreign key in the other. Best for
one total participation.

• Merge the two entity types into a single relation. Best for total participation in
both entities.

• Create another relation to hold the primary keys of each relation. This is
necessary for M:N relationships, but can be implemented for any cardinality.

These steps are considered and used for mapping 1:M and M:N relationships to the
relational model. The next step is to create a relation to represent multi-valued
attributes. This relation will have an attribute for each portion of the E-R model’s
multi-valued attribute. This relation can be assigned a primary key that can be
referenced from any other relation that uses the multi-valued attribute. Finally, these
steps are combined to create relations to represent N-ary relationship types from the
E-R model.

For conceptual models that involve specialization or generalization, additional steps
are taken for proper representation in the relational model. There are several
approaches for this step:

• Create one relation for the superclass with {k, a1, a2, …, an} attributes, and
create m relations for each subclass with its own attributes unioned with the
superclass’ attributes, and specify k as the subclass’ primary key. This works
for any arrangement of specialization: total, partial, disjoint, or overlapping

• Create a relation for each subclass, and union the subclass’ attributes with the
superclass’ attributes. This works for when every superclass object belongs to
at least one subclass.

• Create a single relation with all subclass and superclass attributes unioned.
This can create many NULL entries in the resulting tuples.

Following these steps will convert the conceptual model into a valid, complete,
relational model.

Constraints

A relation consists of an ordered set of unique tuples, with each tuple having the same
amount and type of attributes. Entities are represented as relations in the relational
model, and each row is a valid instance, record, or tuple for the entity. Entity

22

constraints ensure that for a relation, no primary key can be NULL. This ensures that
there is a unique element of each tuple in the relation, which is necessary for
comparisons and representations in queries and data integrity. Constraints for foreign
keys exist to enforce referential integrity: any references to other existing tuples in
other relations must be valid. A foreign key constraint states that for a given attribute
value in a relation r1, that attribute acts as a primary key for another relation r2, and
the value exists for some tuple in r2. Thus, any references made in one tuple actually
exist within the database. Check constraints and business rules exist to serve a
specific business need for the data. These constraints add further limitations to
entries in the database: the data must not only be of the right type, but must meet
certain requirements, such as falling within a given range, or making sure a telephone
number is from a specific area code.

ER database to relational database

Pallet Relation

Attributes:

• palletID
• Domain: integer from 1 to (2^32 -1). Not NULL

• createDate
• Domain: date. Not NULL

• expDate
• Domain: date. Not NULL

• containsDrink
• Domain: varchar2(25). Value corresponds to the Drink Name in the Drink

Type entity. Each pallet must contain a drink name so the relationship is
represented as an attribute in the Pallet relation.

• loc
• Domain: integer. Value corresponds to rowNum in the Location entity. Not

NULL.

Constraints:

• Primary Key: palletID. Must be unique and not NULL.
• Foreign Key: containsDrink. Must have a value that exist in Drink Type relation.
• Foreign Key: loc. Must have value that exist in Drink Type relation.

Drink Type Relation

Attributes:

23

• prodName
• Domain: string. Not NULL

• prodSize
• Domain: integer. 16, 24. Not NULL

Constraints:

• Primary Key: prodName. Must be unique. Not NULL.

Incoming Invoice Relation

Attributes:

• inID
• Domain: integer from 1 to (2^32 -1). Not NULL.

• inDate
• Domain: Date. Not NULL.

• checkedinBy
• Domain: integer. Corresponds to user ID in User entity.

Constraints:

• Primary Key: inID. Must be unique and not NULL.
• Foreign Key: checkedinBy. Related to userID in User entity. Must contain values

in the userName attribute.

Outgoing Invoice Relation

Attributes:

• outID
• Domain: unsigned integer from 1 to (2^32 -1). Not NULL.

• outDate
• Domain: date. not NULL.

• shippedTo
• Domain: string. Limit 40 char. Not NULL.

• billDate:
• Domain: date not NULL.

• paidDate:
• Domain: date. not NULL.

• checkedoutBy
• Domain: integer. Corresponds to userID in User entity.

Constraints:

• Primary Key: outID. Must be unique and not NULL.

24

• Foreign Key: checkedoutBy. Related to userID in User entity. Must contain values
in the userID attribute.

Location Relation

Attributes:

• rNum:
• Domain: integer. not NULL.

Constraints:

• Primary Key: rowNum. Must be unique and not NULL.

User Relation

Attributes:

• userName:
• Domain: varchar2(45). Limit 40 char. not NULL.

• deptName:
• Domain: varchar2(15). Limit 30 char. not NULL

• userID:
• Domain: integer. unique. not NULL

Constraints:

• Primary Key: userID. Must be not NULL.

Shipped In Relation

Attributes:

• palletID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• inID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• status
• Domain: string. Limit 200 char. NULL.

Constraints:

• Foreign Keys: palletID and inID must both exist from respective relations.

25

Shipped Out Relation

Attributes:

• palletID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• outID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• status
• Domain: string. Limit 200 char. NULL.

Constraints:

• Foreign Keys: palletID and outID must both exist in respective relations.

Checks In Relation

Attributes:

• inID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• userID:
• Domain: integer. unique. not NULL.

Constraints:

• Foreign keys: inID and userID must both exist in respective relations.

Checks Out Relation

Attributes:

• outID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• userID:
• Domain: integer. unique. not NULL.

Constraints:

• Foreign Keys: outID and userID must both exist in respective relations.

26

Located In Relation

Attributes:

• palletID
• Domain: integer from 1 to (2^31 -1). Not NULL.

• rNum:
• Domain: integer. not NULL.

Constraints:

• Foreign Keys: palletID and rowNum must both exist in respective relations.

Contains Relation

Attributes:

• palletID
• Domain: integer from 1 to (2^31 -1). Not NULL

• prodName
• Domain: string. Not NULL

Constraints:

• Foreign Keys: palletID and prodName must both exist in respective relations.

27

Relational Instances
Pallet(palletID, createDate, expDate, containsDrink, loc)

palletID createDate expDate containsDrink loc

1 10/10/2010 10/10/2011 MonKhaos16 1

2 10/10/2010 10/10/2011 MonKhaos16 1

3 10/12/2010 10/12/2011 RSMango24 2

4 10/13/2010 10/13/2011 RSMango24 3

5 10/13/2010 10/13/2011 RSGuava16 4

6 10/13/2010 10/13/2011 MonReg24 5

7 10/13/2010 10/13/2011 MonReg16 6

8 10/14/2010 10/14/2011 MonAss16 7

9 10/15/2010 10/15/2011 MonAss16 7

10 10/16/2010 10/16/2011 RSGuava24 8

Drink_Type(prodName, prodSize)

prodName prodSize

MonKhaos16 16

MonKhaos24 24

RSMango16 16

RSMango24 24

RSGuava16 16

RSGuava24 24

MonReg16 16

MonReg24 24

MonAss16 16

MonAss24 24

28

Incoming_Invoice(inID, inDate, checkedinBy)

inID inDate checkedinBy

12345 10/10/2010 1

12346 10/10/2010 1

12347 10/12/2010 3

12358 10/13/2010 1

12567 10/13/2010 3

12568 10/13/2010 2

12600 10/13/2010 2

12601 10/14/2010 3

12603 10/15/2010 3

12605 10/16/2010 1

Outgoing_Invoice(outID, outDate, checkedoutBy)

outID outDate shippedTo billDate paidDate checkedinBy

652 12/14/201
0 AMD 12/15/2

010
01/04/201

1 2

672 12/17/201
0 AMD 12/19/2

010
01/04/201

1 1

690 12/17/201
0 TA Dist 12/19/2

010 3

700 12/17/201
0 TA Dist 12/19/2

010 1

701 12/19/201
0

GA
Wholesale

12/23/2
010 3

703 12/20/201
0

Master
Storage

12/26/2
010 2

704 12/21/201
0

Master
Storage 2

752 12/21/201
0

GA
Wholesale 3

29

outID outDate shippedTo billDate paidDate checkedinBy

800 12/23/201
0 TA Dist 3

801 12/29/201
0 TA Dist 1

Location(rNum)

rNum

1

2

3

4

5

6

7

8

9

10

User(userName, userDept)

userID userName userDept

1 Aris Turner Inventory

2 M. Crazy Inventory

3 J. Doe Inventory

4 A. Man Finance

5 I. Johg Finance

6 O. Snapp Finance

30

userID userName userDept

7 R. Brown Inventory

8 M. Jackson Inventory

9 S. Rice Finance

10 H. Fukufugi Finance

Shipped_In(palletID, inID, status)

palletID inID status

1 12345 NULL

2 12345 NULL

3 12345 NULL

4 12358 NULL

5 12567 Bad wrap. Rewrapped.

6 12567 broken cans. Destroyed

7 12600 NULL

8 12600 NULL

9 12600 NULL

10 12605 wrong date on packaging. Sent back to production

Shipped_Out(palletID, outID, status)

palletID outID status

3 652 NULL

4 652 NULL

7 652 NULL

8 700 NULL

10 700 NULL

31

palletID outID status

1 703 NULL

2 704 NULL

5 752 torn wrap. rewrapped

9 800 NULL

6 801 NULL

Checks_In(inID, userName)

inID userID

12345 1

12346 1

12347 3

12358 1

12567 3

12568 2

12600 2

12601 3

12603 3

12605 1

Checked_Out(outID, userName)

outID userName

652 2

672 1

690 3

700 1

32

outID userName

701 3

703 2

704 2

752 3

800 3

801 1

Located_In(palletID, rowNum)

palletID rowNum

1 1

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 7

10 8

Contains(palletID, prodName)

palletID prodName

1 MonKhaos16

2 MonKhaos16

3 RSMango24

33

palletID prodName

4 RSMango24

5 RSGuava16

6 MonReg24

7 MonReg16

8 MonAss16

9 MonAss16

10 RSGuava24

Queries
1. Select all Outgoing Invoices checked by a ‘A. Turner’

2. Select all locations of ‘Mon Khaos 16’

3. Select all Incoming invoices created on ‘10/10/2010’

4. Select all pallets shipped out on ‘10/18/2010’

5. Select all pallets with expiration before ‘12/30/2010’

6. Select all invoices with ‘RS Mango 24’ in them

7. Select user name who checked Incoming Invoice ‘12345’

8. Select users who checked incoming invoices on ‘10/16/2010’

1. Select all invoices checked by a ʻA. Turnerʼ

Relational Algebra
 π (outID) (σ(checkedinBy = ‘A. Turner’)(Incoming_Invoice))

Tuple Calculus
 {o | Incoming_Invoice(o) AND o.checkedinBy = ‘A. Turner’}

Domain Relational Calculus

34

 {a | Incoming_Invoice(a, b, ‘A. Turner’) }

2. Select all locations of ʻMon Khaos 16ʼ

Relational Algebra
 Khaos <- π (palletID) (σ(prodName = ‘Mon Khaos 16’)(Drink_Type))
 π(rowNum) (σ(palletID = Khaos)(Located_In))

3. Select all Incoming invoices created on ʼ10/10/2010ʼ

Relational Algebra
 π(inID)(σ(inDate = ’10/10/2010’)(Incoming_Invoice)

Tuple Calculus
 {i | Incoming_Invoice(i) AND i.inDate = 10/10/2010 }

Domain Relational Calculus
 {a | Incoming_Invoice(a, 10/10/2010, c) }

4. Select all pallets shipped out on ʼ12/17/2010ʼ

Relational Algebra
 π(palletID) σ(Shipped_Out.outid = σ(shipDate = ’12/17/2010’)
(Outgoing_Invoice)

5. Select all pallets with expiration date before ʼ10/14/2011ʼ

Relational Algebra
 π(palletID) (σ(expDate < 10/14/2011)(Pallet)

Tuple Calculus
 { p | Pallet(p) AND p.expDate < 10/14/2011 }

Domain Relational Calculus
 {a | (∃a)(∃b)(∃c) (Pallet(abc) AND b < 10/14/2011) }

6. Select all invoices with ʻRS Mango 24ʼ in them

7. Select the user name who checked Incoming Invoices ʻ12345ʼ

35

Relational Algebra
 π(userName)

Tuple Calculus
 { u | User(u) AND (∃o)(Outgoing_Invoice(o)) AND o.outID=12345 AND
 u.userName=o.checkedoutBy }

Domain Relational Calculus
 { a | (∃m)(∃o)(∃a) (User(ab) AND Outgoing_Invoice(mnopqr) AND m=12345 AND
 a=o) }

8. Select all users who checked incoming invoices on ʼ10/13/2010ʼ

Relational Algebra
 Invoice <- π (inID) (σ(inDate = 10/16/2010)(Incoming_Invoice))
 Result <- π(userName)(σ(Invoice)(Checks_In))

Relational Calculus
 {u | Checks_In(u) AND (∃i)(Incoming_Invoice(i)) AND i.inDate = 10/16/2010
AND i.inID = u.inID }

36

37

Phase III: Implementation of the
relational database
SQL*PLUS
Now that the relational model has been completed, the description for each relation
can be used to actually create a database that meets its requirements regarding
attributes, constraints, and relationships. To do this, I will use the implementation of
SQL from the Oracle Relational Database Management System (hereafter referred to as
Oracle). Structured Query Language, or SQL, was first developed at IBM in the 1970s.
Since then, it has undergone rigorous optimization and standardization, and several
popular implementations are used for most databases. These include Microsoft’s
Transact-SQL, or T-SQL, MySQL, and Oracle. Oracle provides a tool called SQL*PLUS
that allows users to interactively run any SQL commands. It’s a command-line tool that
supports both user interaction and automated scripts. By using a hierarchy of scripts to
call appropriate commands, a database can be destroyed and re-created very quickly
using SQL*PLUS.

Schema Objects in Oracle
In oracle, a collection of schema objects forms a schema. A tablespace logically
organizes the structure of the database with respect to various schemas. It also
contains the locations used to physically store data on the database’s media. Schema
objects are logical data structures that are stored logically in a given tablespace within
the database. The physical data for each schema object is stored in the tablespace’s
data files. This structure allows any tablespace to logically contain many different types
of schema objects, but remain optimized for storage and access. Oracle supports
several schema objects. They are as follows:

Tables
Tables are used to represent relations from the relational model. They serve as the
basic storage unit for an Oracle database. A table’s columns represent the relation’s
attributes, and rows in the table represent existing records or tuples in the relation.
Each column has a unique name and data type. Tables store information about the
relation’s primary key, any foreign keys, and any other constraints it may possess
(including referential or null). After the table is created, rows can be inserted to
represent the existence of tuples.

Views
Views are essentially read-only query commands that will always return tuples from
tables that meet a certain requirement. These are used when the same
34commands will be used repeatedly. This allows for clearer organization, and
database optimization. The results of a view can be thought of as tables and, as such,
can be accessed and modified like a table. Views lose referential or integrity
constraints, but these can be implied by the underlying tables that the view accesses in
its execution. Views do not use storage space like a table – only the commands that

38

represent the view are saved. Its results are not, since they are implied from other
tables. Views can be used to obfuscate data, prevent direct access for certain users,
and simplify representation for users. Materialized views are special views that perform
a specific function on the data it retrieves, including aggregate functions, sorting,
summations, data transfer, and reorganization.

Dimensions
Dimensions are used to create hierarchical relationships between columns in a table.
This can be used between columns of the same table (denormalized) or of separate
tables (normalized).

Sequences
Sequence generators create a sequential set of numbers for use in a multi-user
environment. These sequence numbers can then be used to determine order for
queued operations or requests. They are not dependent on any table, but they can be
used to generate primary keys for a specific table. Sequence numbers can also be used
to keep track of roll-backs in transactions, ensuring that the right commands are
reversed without confliction between separate users.

Synonyms
Synonyms are alternate aliases for certain types of schema objects, such as tables,
procedures, functions, or views. They do not require any additional storage space
other than their entries in the database’s data dictionary. Synonyms can be used to
directly hide internal data for outside users or to simplify complex SQL commands.

Indexes
Databases attempt to optimize traversal of each table by caching the values of unique
attributes, such as primary keys. Additional attributes can be specified such that the
database more quickly accesses their values during comparisons for overall faster
results. Indexes can also be created for combinations of certain attributes.
Furthermore, an existing index can be used to create another dependent index. An
Oracle system will automatically maintain indexes once specified by a user.

Database Links
Put simply, database links are hard-coded, read-only links to another database. This
allows one database to perform queries and retrieve results using another database,
while simultaneously preventing both databases from risking the integrity of one
another.

Stored procedures and functions
These can be seen as scripts that are stored on the database. When executed, a stored
procedure or function always performs the same task as instructed upon
35
its creation. Functions in Oracle always return a single value to the user, while stored
procedures do not.

Packages
Packages are a specific collection of stored procedures, functions, and cursors.
Combined, they act as a single unit of instructions. This is critical for large- scale

39

operations performed by stored procedures. Packages organize and simplify design
requirements for databases that require persistent, complex tasks.

Schema objects in this project
In this project, the two most frequently used schema objects are the table
Most of the tables are created using syntax similar to this:
CREATE Table [TableName] (
attributesattribute types nullable?

Constraints:
pk_tablename PRIMARY KEY (AttributeName)
fk_ParentName_ChildName FOREIGN KEY (AttributeName) REFERENCES ParentName
(ParentAttributeName)
);

The scheme objects created using this syntax are as follows:

• at_checksin
• at_checksout
• at_contains
• at_drinktype
• at_ininvoice
• at_locatedin
• at_location
• at_outinvoice
• at_pallet
• at_shippedin
• at_shippedout
• at_user

40

at_checksin

CS342 SQL> desc at_checksin;
 Name Null? Type
 --------------- ------------- --------------
 INID NOT NULL NUMBER(38)
 USERID NOT NULL NUMBER(38)

CS342 SQL> select * from at_checksin;

 INID USERID
---------- ----------
 12345 1
 12346 1
 12347 3
 12358 1
 12567 3
 12568 2
 12600 2
 12601 3
 12603 3
 12605 1

10 rows selected.

CS342 SQL> spool off

at_checksout

CS342 SQL> desc at_checksout;
 Name Null? Type
 ------------------------ -------- -------------------
 OUTID NOT NULL NUMBER(38)
 USERID NOT NULL NUMBER(38)

CS342 SQL> select * from at_checksout;

 OUTID USERID
---------- ----------
 652 2
 672 1
 690 3
 700 1
 701 3
 703 2
 704 2
 752 3
 800 3
 801 1

41

10 rows selected.

CS342 SQL> spool off

at_contains

CS342 SQL> desc at_contains;
 Name Null? Type
 ------------------------ -------- ------------------
 PALLETID NOT NULL NUMBER(38)
 PRODNAME NOT NULL VARCHAR2(25)

CS342 SQL> select * from at_contains;

 PALLETID PRODNAME
---------- -------------------------
 1 MonKhaos16
 2 MonKhaos16
 3 RSMango24
 4 RSMango24
 5 RSGuava16
 6 MonReg24
 7 MonReg16
 8 MonAss16
 9 MonAss16
 10 RSGuava24

10 rows selected.

CS342 SQL> spool off

at_drinktype

CS342 SQL> desc at_drinktype;
 Name Null? Type
 ------------------ -------- -----------------------
 PRODNAME NOT NULL VARCHAR2(25)
 PRODSIZE NOT NULL NUMBER(4)

CS342 SQL> select * from at_drinktype;

PRODNAME PRODSIZE
------------------------- ----------
MonKhaos16 16

42

MonKhaos24 24
RSMango16 16
RSMango24 24
RSGuava16 16
RSGuava24 24
MonReg16 16
MonReg24 24
MonAss16 16
MonAss24 24

10 rows selected.

CS342 SQL> spool off

at_ininvoice

CS342 SQL> desc at_ininvoice;
 Name Null? Type
 ----------------------- -------- ---------------------
 INID NOT NULL NUMBER(38)
 INDATE NOT NULL DATE
 CHECKEDINBY NOT NULL NUMBER(38)

CS342 SQL> select * from at_ininvoice;

 INID INDATE CHECKEDINBY
---------- --------- -----------
 12345 10-OCT-10 1
 12346 10-OCT-10 1
 12347 12-OCT-10 3
 12358 13-OCT-10 1
 12567 13-OCT-10 3
 12568 13-OCT-10 2
 12600 13-OCT-10 2
 12601 14-OCT-10 3
 12603 15-OCT-10 3
 12605 15-OCT-10 1

10 rows selected.

CS342 SQL> spool off

43

at_locatedin

CS342 SQL> desc at_locatedin;
 Name Null? Type
 --------------------------- -------- ----------------
 PALLETID NOT NULL NUMBER(38)
 RNUM NOT NULL NUMBER(5)

CS342 SQL> select * from at_locatedin;

 PALLETID RNUM
---------- ----------
 1 1
 2 1
 3 2
 4 3
 5 4
 6 5
 7 6
 8 7
 9 7
 10 8

10 rows selected.

CS342 SQL> spool off

at_location

CS342 SQL> desc at_location;
 Name Null? Type
 -------------------------- -------- ------------------------
 RNUM NOT NULL NUMBER(5)

CS342 SQL> select * from at_location;

 RNUM

 1
 2
 3
 4
 5
 6
 7
 8

44

 9
 10

10 rows selected.

CS342 SQL> spool off

at_outinvoice

CS342 SQL> desc at_outinvoice;
 Name Null? Type
 ----------------------- -------- ---------------------
 OUTID NOT NULL NUMBER(38)
 OUTDATE NOT NULL DATE
 SHIPPEDTO NOT NULL VARCHAR2(40)
 BILLDATE DATE
 PAIDDATE DATE
 CHECKEDOUTBY NOT NULL NUMBER(38)

CS342 SQL> select * from at_outinvoice;

 OUTID OUTDATE SHIPPEDTO BILLDATE PAIDDATE CHECKEDOUTBY
---------- --------- --------- --------- --------- ------------
 652 14-DEC-10 AMD 15-DEC-10 04-JAN-11 2
 672 17-DEC-10 AMD 19-DEC-10 04-JAN-11 1
 690 17-DEC-10 TA Dist 19-DEC-10 3
 700 17-DEC-10 TA Dist 19-DEC-10 1
 701 19-DEC-10 GA Wholesale 23-DEC-10 3
 703 20-DEC-10 Master Storage 26-DEC-10 2
 704 21-DEC-10 Master Storage 2
 752 21-DEC-10 GA Wholesale 3
 800 23-DEC-10 TA Dist 3
 801 29-DEC-10 TA Dist 1

10 rows selected.

CS342 SQL> spool off

at_pallet

CS342 SQL> desc at_pallet;
 Name Null? Type
 ------------------------ -------- --------------------------
 PALLETID NOT NULL NUMBER(38)

45

 CREATEDATE NOT NULL DATE
 EXPDATE NOT NULL DATE
 CONTAINSDRINK NOT NULL VARCHAR2(25)
 LOC NOT NULL NUMBER(5)

CS342 SQL> select * from at_pallet;

 PALLETID CREATEDAT EXPDATE CONTAINSDRINK LOC
---------- --------- --------- ------------------ ----------
 1 10-OCT-10 10-OCT-11 MonKhaos16 1
 2 10-OCT-10 10-OCT-11 MonKhaos16 1
 3 12-OCT-10 12-OCT-11 RSMango24 2
 4 13-OCT-10 13-OCT-11 RSMango24 3
 5 13-OCT-10 13-OCT-11 RSGuava16 4
 6 13-OCT-10 13-OCT-11 MonReg24 5
 7 13-OCT-10 13-OCT-11 MonReg16 6
 8 14-OCT-10 14-OCT-11 MonAss16 7
 9 15-OCT-10 15-OCT-11 MonAss16 7
 10 16-OCT-10 16-OCT-11 RSGuava24 8

10 rows selected.

CS342 SQL> spool off

at_shippedin

CS342 SQL> desc at_shippedin;
 Name Null? Type
 ----------------------------- -------- ---------------------
 PALLETID NOT NULL NUMBER(38)
 INID NOT NULL NUMBER(38)
 STATUS VARCHAR2(200)

CS342 SQL> select * from at_shippedin;

 PALLETID INID STATUS
---------- ---------- --
 1 12345
 2 12345
 3 12345
 4 12358
 5 12567 Bad wrap. Rewrapped.
 6 12567
 7 12600
 8 12600

46

 9 12600 Wrong date on pallet. Retagged.
 10 12605

10 rows selected.

CS342 SQL> spool off

at_shippedout

CS342 SQL> desc at_shippedout;
 Name Null? Type
 -------------------------- -------- -------------------
 PALLETID NOT NULL NUMBER(38)
 OUTID NOT NULL NUMBER(38)
 STATUS VARCHAR2(200)

CS342 SQL> select * from at_shippedout;

 PALLETID OUTID STATUS
---------- ---------- --
 3 652
 4 652
 7 652
 8 700
 10 700
 1 703
 2 704
 5 752 Torn wrap. Rewrapped.
 9 800
 6 801

10 rows selected.

CS342 SQL> spool off

at_user

CS342 SQL> desc at_user;
 Name Null? Type
 ---------------------------- -------- -------------------------
 USERID NOT NULL NUMBER(38)
 USERNAME NOT NULL VARCHAR2(45)
 DEPTNAME NOT NULL VARCHAR2(30)

47

CS342 SQL> select * from at_user;

 USERID USERNAME DEPTNAME
---------- --------------------------- -----------------
 1 Aris Turner Inventory
 2 Mike Crazy Inventory
 3 John Doe Inventory
 4 Andrew Man Finance
 5 Isaiah Johg Finance
 6 Omar Snapp Finance
 7 Randy Brown Inventory
 8 Michael Jackson Inventory
 9 Sidney Rice Finance
 10 Hideki Fukufugi Finance

10 rows selected.

CS342 SQL> spool off

Queries

1. Select all invoices checked by ʻA.Turnerʼ

column userName format a15;
select inID, userName
from at_checksin natural join at_user
where at_user.userName = 'Aris Turner'
/

CS342 SQL> @q1

 INID USERNAME
---------- ---------------
 12345 Aris Turner
 12346 Aris Turner
 12358 Aris Turner
 12605 Aris Turner

2. Select all locations of ʻMonKhaos16ʼ

48

select rNum, prodName
from at_locatedin natural join at_contains
where at_contains.prodName = 'MonKhaos16'
/

CS342 SQL> @q2

 RNUM PRODNAME
---------- -------------------------
 1 MonKhaos16
 1 MonKhaos16

3. Select all incoming invoices create on ʼ10/10/2010ʼ

select *
from at_ininvoice
where inDate = to_date('10/10/2010', 'mm/dd/yyyy')
/

CS342 SQL> @q3

 INID INDATE CHECKEDINBY
---------- --------- -----------
 12345 10-OCT-10 1
 12346 10-OCT-10 1

4. Select all pallets shipped on ʼ12/17/2010ʼ

select palletId, outDate
from at_shippedout natural join at_outinvoice
where at_outinvoice.outDate = to_date('12/17/2010', 'mm/dd/yyyy')
/

CS342 SQL> @q4

 PALLETID OUTDATE
---------- ---------
 4 17-DEC-10
 7 17-DEC-10
 8 17-DEC-10

5. Select all pallets with expiration date before ʼ10/14/2011ʼ

select *
from at_pallet
where expDate < to_date('10/14/2011', 'mm/dd/yyyy')

49

/

CS342 SQL> @q5

 PALLETID CREATEDAT EXPDATE CONTAINSDRINK
LOC
---------- --------- --------- -------------------------

 1 10-OCT-10 10-OCT-11 MonKhaos16
1
 2 10-OCT-10 10-OCT-11 MonKhaos16
1
 3 12-OCT-10 12-OCT-11 RSMango24
2
 4 13-OCT-10 13-OCT-11 RSMango24
3
 5 13-OCT-10 13-OCT-11 RSGuava16
4
 6 13-OCT-10 13-OCT-11 MonReg24
5
 7 13-OCT-10 13-OCT-11 MonReg16
6

7 rows selected.

6. Select all outgoing invoices with ʻRSMango24ʼ in them

column status format a21;
column shippedto format a20;
column prodName format a15;
select outID, outDate, palletID, prodName
from at_outinvoice natural join (at_shippedout natural join at_contains)
where prodName = 'RSMango24'
/

CS342 SQL> @q6

 OUTID OUTDATE PALLETID PRODNAME
---------- --------- ---------- ---------------
 652 14-DEC-10 3 RSMango24
 672 17-DEC-10 4 RSMango24

7. Select the User who checked incoming invoice ʻ12345ʼ

column userName format a25;
select inID, userID, userName
from at_ininvoice natural join at_user

50

where at_ininvoice.checkedinBy = at_user.userID AND
inID = 12345
/

CS342 SQL> @q7

 INID USERID USERNAME
---------- ---------- -------------------------
 12345 1 Aris Turner

8. Select all invoices who checked incoming invoices on ʼ10/13/2010ʼ

column userName format a25;
select inID, inDate, userId, userName
from at_ininvoice natural join at_user
where at_ininvoice.checkedinBy = at_user.userId
and inDate = to_date('10/13/2010', 'mm/dd/yyyy')
/

CS342 SQL> @q8

 INID INDATE USERID USERNAME
---------- --------- ---------- -------------------------
 12358 13-OCT-10 1 Aris Turner
 12600 13-OCT-10 2 Mike Crazy
 12568 13-OCT-10 2 Mike Crazy
 12567 13-OCT-10 3 John Doe

9. Select the date with the most number of pallets shipped. (Not Finished)

select outDate, count(palletID) palletnum
from at_outinvoice natural join at_shippedout
group by outDate
/

CS342 SQL> @q9

OUTDATE PALLETNUM
--------- ----------
29-DEC-10 1
19-DEC-10 1
14-DEC-10 1
17-DEC-10 3
20-DEC-10 1
23-DEC-10 1
21-DEC-10 2

51

7 rows selected.

CS342 SQL> spool off

52

Phase IV: Stored Procedures
Common Features in Oracle PL/SQL and Microsoft Transact-SQL

Oracle and Microsoft’s implementations of SQL are not completely independent. Based
off of a common language, both Procedural Language/Structured Query Language and
Transaction-SQL share many common features, despite being developed separately by
Oracle and Microsoft, respectively. Both languages support commands to create
tables, constraints, functions, cursors, stored procedures, triggers, and packages.
Their biggest differences are in the syntax used to create and maintain these objects in
the database. Furthermore, both languages have supported functions to translate and
compare variables, look up dates and times, and manage user-defined variables.

Differences between the two forms of SQL often stem from the version being used. For
example, Oracle 8i does not have very much support for nested SELECT statements in
cursors, but allows this in later versions. It is difficult to perform mass updates on
records in early T-SQL, but Oracle provides this functionality. In a way, the necessities
of database users and designers have pushed both languages to converge to provide
similar functionality so that users who choose one implementation do not miss the
benefits of the other.

Depending on the structure and usage of a database, it might be advantageous to
define tasks that can be repeatedly and quickly run by specific users. Stored
subprograms, or stored procedures, are supported in both PL/SQL and T-SQL for this
purpose. Subprograms can be written to automate otherwise tedious processes, such
as inserting, deleting, or updating records in the database. Furthermore, the database
designer can obfuscate important, confidential information from its users by storing
these tasks in a subprogram. Since the user can only invoke the subprogram, not view
or edit it, any sensitive information is protected. Furthermore, having a stored
subprogram saves the programmer from designing an application that has to
repeatedly send dynamically-generated SQL strings to the database. This means the
programmer does not have to worry about SQL injection exploits, SQL string
sanitization, or any other possible caveats that appear when using dynamic SQL to
communicate with front-end database management systems.

Oracle PL/SQL

Most PL/SQL programs follow a similar structure regardless of their purpose. Code
statements are organized into blocks. There are three main sections of a block:

• Declaration: Declaration of variables, cursors, and user-defined exceptions are
made here.

• Execution: This portion consists of the SQL statements that perform the task’s
job.

53

• Exception: This section catches any exceptions, either system or user-defined,
raised during execution of the task.

Layout:

DECLARE
 variable_name variable_type := value | DEFAULT
BEGIN
 SELECT | INSERT | UPDATE | DELETE
END;

Variable types:

All variable types supported by the Oracle server should be supported in PL/SQL. This
includes numbers, floating points, character arrays, dates, unique IDs, and more.

Cursors:

Cursors are user-defined SQL statements that allow structured traversal of a table
using a loop structure. They are defined using the following syntax:

DECLARE
 CURSOR cursor_name [parameters]
 IS select_statement;

After creation, a cursor can be used in the following format:

BEGIN
 FOR t in cursor_name LOOP
 Perform tasks
 END LOOP;
END;

Control statements

Control statements manage the logical flow of a PL/SQL subprogram. Since PL/SQL is
a procedural language, the location and usage of these statements is extremely
important. The following are example control statements:

IF condition THEN statement;
ELSEIF condition THEN statement;
END IF;

LOOP
 EXIT WHEN can be used to quit this loop
END LOOP;

FOR I IN lowerbound .. upperbound LOOP
 statement
END LOOP;

54

FOR cursor_variable IN cursor_name LOOP
 statement

END LOOP;

Exception Handling

PL/SQL allows users to catch and raise exceptions under certain conditions. The
syntax to raise and handle exceptions is simple:

DECLARE
 User_defined_exception EXCEPTION;

BEGIN
 IF condition THEN RAISE User_defined_exception;
 END IF;

EXCEPTION
 WHEN Exception_name THEN statement;

END;

Stored procedures

Stored procedures can greatly facilitate performing complex jobs on the SQL server’s
data while maintaining abstraction for non-technical users. The structure of a stored
procedure depends largely on the type of work it will be performing, but the syntax is
the same for all of them:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(variablename IN|OUT variabletype)]
AS
(DECLARE variables go here)
BEGIN
 SQL statements
END;

Execution of a stored procedure from SQL*PLUS can be accomplished as follows:

SQL> exec sp_name(arguments go here);

Stored functions

Stored functions are created and run in a method very similar to the syntax for stored
procedures. However, they differ by explicitly declaring a variable type to return after
completion. These can be used to guarantee that a variable will be returned. The
syntax is as follows:

CREATE [OR REPLACE] FUNCTION function_name
[(variablename IN|OUT variabletype)]
RETURN datatype;
AS

55

(DECLARE variables go here)
BEGIN
 SQL statements;
 RETURN variable;
END;

Packages

Packages are a distinct collection of procedures and functions. Creating a package
requires a prototype for each included procedure and function:

CREATE PACKAGE package_name AS
 PROCEDURE names..;
 FUNCTION names…;

END package_name;

CREATE PACKAGE BODY package_name AS
 PROCEDURE name IS…
 BEGIN
 Statements
 END;

 FUNCTION name RETURN DATATYPE IS…
 BEGIN

 Statements
 RETURN variable
 END;

END package_name;

Triggers

Triggers make collecting records, logs, and audits extremely easy. Instead of
managing this task and forcing users to use pre-defined stored procedures and
packages that manually execute tasks, triggers are executed when a certain condition
is met, depending on the action (UPDATE, DELETE, INSERT, etc). Since these tasks are
automated after the trigger’s creation, the user does not have to worry about
maintaining or checking data before or after the operations.

CREATE [OR REPLACE] TRIGGER trigger_name
BEFORE|AFTER INSERT|DELETE|UPDATE OF COL [column_name] [OR
DELETE|UPDATE|INSERT]
ON table_name
DECLARE
 variables
BEGIN
 FOR EACH ROW
 [WHEN CONDITION]

56

 Statements;
END;

Oracle PL/SQL Subprograms

Stored Procedures

deleteuser

This procedure deletes a user by taking in the desired user ID as an identifier

CREATE OR REPLACE PROCEDURE deleteUser(userpk IN number)
 AS
 BEGIN
 delete from at_user
 where userID = userpk;

 END deleteUser;
/

insertuser

This procedure inserts a new user into the user table. I takes as arguments the user
ID, user name, and the department the user works for.

CREATE OR REPLACE PROCEDURE insertUser(
 userID IN number,
 name IN varchar2,
 dept IN varchar2
)
 AS
 BEGIN
 insert into at_user values(
 userID,
 name,
 dept);
 END insertUser;
/

NAvgpallets

This procedure find out the average number of pallets shipped each day by the
following syntax

57

CREATE OR REPLACE FUNCTION NAvgpallets (n IN NUMBER) RETURN NUMBER
IS
 s number(9,2) := 0.0;
 p number(7,2);
 CURSOR c IS
 SELECT count(palletID)
 FROM at_outinvoice natural join at_shippedout
 GROUP BY outDate;
BEGIN
 open c;
 FOR i IN 1..n LOOP
 fetch c into p;
 s := s + p;
 END LOOP;
 close c;
 RETURN s/n;

END;
/

at_userafterupdate

This trigger creates a log of users info whenever the user’s dept is changed

CREATE OR REPLACE TRIGGER at_userafterupdate
after update of deptName on at_user
for each row
begin
 insert into at_logtable
 values(userlogsequence.nextval,
sysdate, :old.userID, :old.userName, :old.deptName, :new.deptName);

END;
/

at_deleteuserupdate

This trigger creates a log of users info whenever they are deleted from the user table

CREATE OR REPLACE TRIGGER at_userdeleteupdate
BEFORE DELETE
 ON at_user
 FOR EACH ROW
BEGIN

 insert into at_deletetable
 values(userdeletesequence.nextval, sysdate,
:old.userID, :old.userName, :old.deptName);

58

END;
/

59

Phase V: GUI Design and
Implementation

Daily Activities

There are several user groups for this database.

Warehouse Managers

Warehouse managers will be the people entering invoices for incoming and outgoing
shipping, along with creating data for new pallets as shipments come in. They have a
lot of access to the database as they are the key data inputters for the company. They
will be allowed to create pallets for tracking, add invoices for shipments, and also
delete pallets due to damage.

Finance Officers

Finance officers will take the outgoing shipments and use the reports to bill clients
for the pallets. The will not have and edit access to the database other than marking
outgoing invoices with bill dates and pay dates.

Company Managers

Lastly, a company manager will have no editing ability on the database. They will be
only allowed to view reports on the warehouse activity.

Relations, Views, Subprograms

For each of the groups to have proper access to the database. Every relation in the
database will be used. As I was unable to build a fully functional application I have
not created the necessary views or subprograms that might be needed to make the
application runs smoothly.

60

Application Screenshots

The application I was able to create was very simple in both it’s layout and it’s
functionality. The main screen (shown above) listed all incoming invoices in the
warehouse. It utilized the at_shipping table to list the Invoice ID, pallets in the
invoice, the drink name, invoice date, and who checked the shipment in. The main
screen also contains a [new] button, which launched the ‘new invoice’ screen, and a
[save] button which takes all changes made to the tables and pushes them onto the
database.

61

The New Invoice screen is where a warehouse manager would enter the incoming
invoices for input into the database. This is not a full design, it should have include a
‘create pallet’ command and allow for multiple pallets to be added all at once. Also
the ‘checked by’ option would ideally be handled by a authentication login which
would then launch the appropriate views. The ‘drink name’ option is bound by the
at_drinktype table which contains all the drinks manufactured by the production
facility.

Code Description and GUI Design

I had originally had high ambitions for the style of the application, but due to my
extreme difficulties in getting my computer to connect to the database, I was limited
as to how much I could do. I was hoping to have a more detailed account into which
the user would put in the new invoices. I would have liked the program to take user
input out of the scenario so as to minimize mistakes.

Once I was able to get my computer connected, I used the very powerful and
convenient tools for creating a dataset in visual studio. This allowed me to focus on
building a GUI that would be more functional without having to spend a lot of time
making sure my connections were correct. What I have learned through the process
of building my simple application is that connecting to a database and manipulating

62

the data can be very simple once the proper knowledge of the coding is acquired.
Where the success of an application is built is in the laying out of tasks and functions
that a user might need in order to get things done quickly and efficiently. Had I spent
more time on this last phase I should have begun by describing the application in a
practical sense before any coding had begun.

Conclusion

This project was my first real experience at a full application and all that is entailed
in creating even a simple one. This experience has given my great skills, maybe not
particularly coding in c# or building a database, but as to the steps to attack a
project and make leaps towards building my own skill set for the real world. I plan on
spending the next few months continuing the program so that i know that my
knowledge is set in my head for future use and so i can build in the foundations I
have learned in the class.

63

