
	
1	

	

Charity	General	Hospital	Database	
CS342	Winter	2016	
Alex	Rinaldi	&	JoAnn	Tuazon	
	
	 	

	
2	

	

Table	of	Contents	
1.	Fact	Finding,	Information	Gathering,	and	Conceptual	Database	Design.	..	4	

1.1	Fact-Finding	Techniques	and	Information	Gathering	...	4	

1.1.1	Introduction	to	Organization	...	4	

1.1.2	Description	of	Fact-Finding	Techniques	..	4	

1.1.3	Scope	of	the	Conceptual	Database	...	5	

1.1.4		Entity	and	Relationship	Sets	Description	..	6	

1.2	Conceptual	Database	Design	..	9	

1.2.1	Entity	Set	Description	..	9	

1.2.2	Relationship	Set	Description	...	26	

1.2.3	Related	Entity	Set	..	31	

1.2.4	ER	Diagram	..	31	

2.	Conceptual	Database	and	Logical	Database	...	33	

2.1	E-R	Model	and	Relational	Model	..	33	

2.1.1	Description	of	E-R	Model	and	Relational	Model	...	33	

2.1.2	Comparison	of	Two	Different	Models	...	34	

2.2	Conversion	of	Conceptual	Database	Model	to	Logical	Database	Model	...	35	

2.2.1	Converting	Entity	Types	to	Relations	..	35	

2.2.2	Converting	Relationship	Types	to	Relations	..	37	

2.2.3	Database	Constraints	..	41	

2.3	Convert	Entity	Relationship	Model	to	Relational	Model	..	43	

2.3.1	Relational	Schema	for	Logical	Database	..	43	

2.3.2	Sample	Data	of	Relation	..	59	

2.4	Sample	Queries	..	71	

2.4.1	Design	of	Queries	..	71	

2.4.2	Relational	Algebra	Expressions	for	Queries	..	71	

2.4.3	Tuple	Relational	Calculus	Expressions	for	Queries	..	74	

2.4.4	Domain	Relational	Calculus	Expressions	for	Queries	..	77	

3.	Oracle	Database	Management	System	..	79	

3.1	Normalization	of	Relations	...	79	

3.1.1	Normalization	and	Normal	Forms	...	79	

	
3	

	

3.1.2	Normal	Forms	for	This	Database	...	82	

3.2	SQL*PLUS:	Main	Purpose	and	Functionality	..	90	

3.3	Schema	Objects	for	Oracle	DBMS	..	90	

3.4	List	Relations	With	SQL	Commands	..	94	

3.5	Example	Queries	in	SQL	..	115	

3.6	Data	Loader	..	129	

4.	Oracle	Database	Management	System	PL/SQL	Components	..	130	

4.1	Oracle	PL/SQL	...	130	

4.1.1	Program	Structure	and	Control	Statements	..	131	

4.1.2	Stored	Procedures	...	132	

4.1.3	Stored	Functions	...	132	

4.1.4	Packages	..	133	

4.1.5	Triggers	..	133	

4.2	Oracle	PL/SQL	Subprogram	Examples	..	134	

4.3	PL/SQL	Like	Tools	(Oracle,	Microsoft	SQL	Server,	and	MySQL)	..	144	

5.1	Daily	User	Activities	..	147	

5.1.1	Registered	Nurse	Users	...	147	

5.1.2	Charged/Manager	Nurse	Users	...	147	

5.1.3	Doctor	Users	..	148	

5.1.4	Executive/Administrative	Users	..	148	

5.2.	Relations,	views,	and	subprograms	...	148	

5.3	Menus	and	Displays	..	150	

5.4	Description	of	Code	..	156	

5.4.1	Database	Connection	and	Interaction	...	157	

5.4.2	Reports	and	Report	Generator	..	158	

5.4.3	Major	Features	..	159	

5.4.4	Learning	New	Tools	...	159	

5.5	Design	and	Implementation	Process	..	160	

5.6	Embedded	Questions	...	161	

	
	 	

	
4	

	

1.	Fact	Finding,	Information	Gathering,	and	Conceptual	
Database	Design.	
	
To	build	a	database	for	Charity	General	Hospital,	we	need	to	design	a	concept	for	the	structure	of	the	
database	based	on	the	needs	and	requirements	of	the	organization.	In	this	section,	we	will	create	a	
conceptual	database	design	for	Charity	General	Hospital.	We	will	describe	methods	for	gathering	data,	
and	then	present	our	conceptual	database	design	in	detail.	

1.1	Fact-Finding	Techniques	and	Information	Gathering	
	
In	order	to	build	a	conceptual	database	for	an	organization,	designers	must	understand	the	
organization.	This	section	gives	a	brief	description	of	the	organization,	an	explanation	of	the	research	
process	for	designing	a	conceptual	database	and	how	we	applied	it	to	our	organization,	a	description	of	
the	specific	problem	our	database	is	trying	to	solve	for	our	organization,	and	itemized	descriptions	of	
the	entities	and	relationships	that	form	our	design.	
	
1.1.1	Introduction	to	Organization	
	
Charity	General	Hospital	is	a	fictitious	general	hospital	designed	to	combine	similar	aspects	from	two	
general	hospitals	in	Bakersfield	–	Mercy	Hospital	and	San	Joaquin	Community	Hospital.	Charity	offers	
medical	care	and	temporary	residence	for	patients	with	a	large	variety	of	health	needs	including	post-
surgery	care,	heart	health,	and	stroke	care.	Groups	of	nurses	at	Charity	continuously	visit	the	rooms	of	
all	patients	to	assess	health	and	provide	services	based	on	each	individual	patient’s	needs,	such	as	
administering	medication	or	cleaning	wounds.	Nurses	are	required	to	keep	track	of	all	of	the	different	
services	required	by	patients	during	their	shift,	as	well	as	document	each	service	offered.	
	
1.1.2	Description	of	Fact-Finding	Techniques	
	
Forming	a	conceptual	database	requires	detailed	information	on	the	kind	of	data	that	will	be	stored	and	
how	it	will	be	used	by	members	of	the	organization	–	this	process	is	called	requirements	collection	and	
analysis.		To	gather	information,	designers	should	interview	and	survey	potential	users	of	the	database	
to	find	out	the	underlying	structure	of	the	organization,	as	well	as	what	information	they	would	like	to	
regularly	access	and	manipulate.	Researching	the	organization’s	documents	and	existing	database	
systems,	as	well	as	observing	regular	processes	that	occur	in	the	organization	is	also	useful.	
To	gather	information	about	our	organization,	we	interviewed	nurses	from	both	Mercy	Southwest	and	
San	Joaquin	Community	hospitals	and	studied	their	paper	documentation	process.	This	helped	us	form	
data	requirements	–	requirements	detailing	what	data	needs	to	be	stored	and	its	structure.	At	general	
hospitals,	historical	data	is	kept	about	every	order	issued	by	doctors	for	patients,	as	well	as	every	action	
carried	out	by	nurses	for	patients.	
	

	
5	

	

Interviewing	the	nurses	helped	us	also	form	functional	requirements	–	what	kind	of	operations	is	
performed	on	the	data.	Doctors	add	historical	records	about	every	prescription	and	order	they	make.	
Nurses	access	doctors’	orders	to	determine	what	actions	they	need	to	take	with	patients.	The	nurses	
whom	we	interviewed	also	commented	that	they	must	document	every	single	action	they	perform	with	
patients	for	legal	reasons.	
	
1.1.3	Scope	of	the	Conceptual	Database	
	
When	designing	a	conceptual	database,	it	is	important	to	have	a	clear	idea	of	the	part	of	the	
organization	that	the	database	represents.	Sometimes,	this	is	called	the	“miniworld.”	
General	hospitals	record	all	information	about	the	services	patients	require	(prescriptions	and	special	
needs	ordered	by	doctors)	and	all	actions	performed	by	nurses	through	a	paper	documentation	process.	
While	this	largely	can’t	be	changed	for	legal	reasons,	our	goal	with	the	database	is	to	create	a	more	
efficient	system	for	storing	historical	records	and	accessing	all	the	doctor-ordered	patient	needs	at	once.	
Our	database	is	meant	to	generalize	the	recording	process	across	all	units,	so	special	equipment	
required	for	each	unit	(like	the	ICU)	is	not	part	of	the	conceptual	design.	Also,	to	ensure	that	only	
information	relevant	to	nurses	working	on	site	with	patients	is	stored,	our	database	excludes	
information	about	“out	patients”	(patients	who	are	not	in	residence	at	the	hospital).	Also,	operating	
rooms	are	excluded	from	the	scope	of	the	database.	
	 	

	
6	

	

1.1.4		Entity	and	Relationship	Sets	Description	
	
Once	we	gather	all	of	the	information	about	how	the	hospital	data	is	structured,	we	can	represent	the	
data	as	entity	sets	and	relationship	sets	using	the	Entity-Relationship	(ER)	model.	Section	1.2	will	explain	
the	purpose	of	entity	sets	and	relationship	sets	in	greater	detail,	but	this	section	will	provide	a	basic	
description	of	each	of	the	“objects”	that	make	up	a	general	hospital	(entity	type	definitions),	as	well	as	
how	they	are	related	to	each	other	(relationship	type	definitions).	
	
	
Entity	type	definitions	
Employee:	EmployeeID,	SSN,	Name,	Address,	Phone	Number	
An	employee	works	for	the	hospital,	and	has	basic	identifying	and	contract	information.	
	
Doctor:	License	number	
A	doctor	is	a	specialization	of	an	employee.	They	issue	orders	about	how	nurses	should	treat	patients.	
	
Nurse:	License	number	
A	nurse	is	a	specialization	of	an	employee.	They	perform	the	actions	ordered	by	doctors	and	assess	how	
patients	respond.		
	
Prescription:	Prescription	ID,	Dosage,	Frequency,	Start	date,	End	date	
A	prescription	is	contains	a	medication	ordered	by	a	doctor	for	a	single	patient,	including	administration	
instructions.	
	
Medication:	Medication	ID,	Medication	Name,	Medication	Purpose,	Dosage,	Frequency	
A	single	medication	belongs	to	a	Prescription.		
	
Room:	Room	ID,	Room	Number	
A	room	houses	a	patient	in	the	hospital	and	has	a	unique	number.	
	
Unit:	Unit	ID,	Unit	Name,	Unit	Abbreviation	
A	unit	has	a	specific	location	in	a	general	hospital	and	contains	many	rooms.		
	
Assessment:	Assessment	ID,	Blood	pressure,	Respiration	rate,	Heart	rate	
An	assessment	is	taken	by	a	nurse	for	a	single	patient,	and	describes	basic	information	about	their	
current	condition.	
	
Special	Need:	Special	Need	ID,	Frequency,	Start	date,	End	date	
A	special	need	is	an	activity	that	needs	to	be	performed	by	a	nurse	on	a	single	patent	a	certain	number	
of	times	over	a	time	period.	
	

	
7	

	

	
Activity:	Activity	ID,	Activity	Name,	Description	
A	single	activity	belongs	to	a	special	need	order.	It	describes	the	content	of	the	special	need	order.	
	
Patient:	Patient	ID,	SSN,	Name,	Address,	Phone	number,	Birth	date,	Gender,	Insurance	number,	
Admitted	date,	Discharged	date,	Language	spoken	
A	patient	is	admitted	to	the	hospital,	and	contains	basic	identifying	and	contact	information,	as	well	as	
language	spoken	in	case	a	translator	is	needed.	
	 	

	
8	

	

Relationship	type	definitions	
Doctor	prescribes	Prescription;	Cardinality:	1..N;	Participation:	Partial,	Total	(respectively)	
	
Prescription	prescribed	for	Patient;	Cardinality:	N..1;	Participation:	Total,	Partial	
	
Prescription	hasMedication	Medication;	Cardinality:	N..1;	Participation:	Total,	Partial	
	
Nurse	administers	Prescription;	Cardinality:	M..N;	Participation:	Partial,	Partial	
	
Nurse	takes	Assessment;	Cardinality:	1..N;	Participation:	Partial,	Total	
	
Patient	undergoes	Assessment;	Cardinality:	1..N;	Participation:	Partial,	Total	
	
Doctor	orders	Special	Need;	Cardinality:	1..N;	Participation:	Partial,	Total	
	
Nurse	performs	Special	Need;	Cardinality:	M..N;	Participation:	Partial,	Partial	
	
Patient	receives	Special	Need;	Cardinality:	1..N;	Participation:	Partial,	Total	
	
SpecialNeed	has	Activity	Activity;	Cardinality:	N..1;	Participation:	Total,	Partial	
	
Nurse	assigned	to	Patient;	Cardinality:	M..N;	Participation:	Partial,	Partial	
	
Nurse	works	in	Unit;	Cardinality:	M..N;	Participation:	Total,	Total	
	
Patient	placed	Room;	Cardinality:	M..N;	Participation:	Total,	Partial	
	
Room	belongs	to	Unit;	Cardinality:	N..1;	Participation:	Total,	Total	
	
	
	
	
	
	 	

	
9	

	

1.2	Conceptual	Database	Design	
	
Before	designing	a	physical	system	to	store	the	data	we	gathered	in	the	previous	section,	we	have	to	
understand	how	this	data	will	be	stored.	One	way	to	represent	the	structure	of	data	is	using	the	Entity-
Relationship	(ER)	model.		Using	this	method,	we	try	to	represent	the	structure	of	the	hospital	data	using	
two	concepts:	entity	sets,	which	define	real-world	“objects”	(like	people,	places,	and	things);	and	
relationship	sets,	which	define	how	entities	of	two	or	more	entity	types	are	related.		
	
We	create	entity	types	to	unite	entity	sets	that	represent	the	same	object	-	like	a	“Nurse”	-	by	naming	
and	defining	each	of	the	attributes	that	“Nurse”	contains.	We	also	create	relationship	types	to	define	
how	entity	types	are	related	to	each	other,	as	well	as	any	other	attributes	describing	how	they	are	
related.	
	
In	this	section,	we	will	define	each	entity	type	in	detail,	including	each	attribute	and	its	domain.	Then	we	
will	define	each	relationship:	the	entity	types	each	relates,	the	cardinality,	and	participation.	Finally,	we	
will	present	a	diagram	that	visually	represents	the	conceptual	design.	
	
1.2.1	Entity	Set	Description	
	
Entities	describe	real	world-objects,	and	are	defined	by	their	name	and	the	attributes	they	contain.	In	
our	model,	the	most	important	entities	are	doctors,	nurses,	and	patients.	Also	important	are	the	orders	
given	by	doctors	(prescriptions	or	special	needs)	and	individual	assessments	of	patients.	
We	now	list	each	entity	type	and	its	name,	the	attributes	it	defines,	the	domain	constraints	of	each	
attribute,	fields	to	be	indexed	for	fast	access,	and	keys,	or	fields	that	uniquely	identify	individual	entities	
in	the	set.	
	
	 	

	
10	

	

Entity	Name:	Employee	
	
Description:	An	employee	is	paid	by	the	hospital	to	work	on-site	during	shifts.	Since	the	scope	of	our	
database	includes	only	positions	related	to	patient	care,	employees	can	either	be	doctors	or	nurses	(a	
total,	disjoint	specialization).	The	database	stores	basic	identifying	and	contact	information	about	
Employees,	as	well	as	the	periods	of	their	employment.	Employees	will	be	infrequently	inserted	and	
updated	by	HR	workers	at	the	hospital.	
	
Candidate	Keys:	Employee	ID,	SSN	
Primary	Key:	Employee	ID	
Entity	Type:	Strong	
Fields	to	be	Indexed:	Employee	ID,	Name,	SSN	
	
Attributes:	

Attribute	Name	 Employee	ID	 SSN	 Name	

Description	 Number	assigned	by	the	
hospital	to	each	
Employee	that	uniquely	
identifies	them.	Can	be	
implemented	as	an	
auto-increment	integer.	

Social	Security	Number;	
can	be	used	to	uniquely	
identify	Employees.	

Name	of	Employee	
(First,	Middle,	Last)	

Domain	/	Type	 Integer	 Integer	 String,	String,	String	

Value	/	Range	 0	-	MaxID	 000000000	-	999999999	
(any	9-digit	Integer)	

Any,	Any,	Any	

Default	Value	 MaxID	+	1	 None	 None	

Null	Value	Allowed	 No	 No	 No	

Unique	 Yes	 Yes	 No	

Single	or	Multi-value	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Composite	

	

	
11	

	

Employee	Attributes	Continued:	

Attribute	Name	 Address	 Phone	Number	 Start	Date	 End	Date	

Description	 Street	Address,	
City,	State,	Zip	
Code	

Primary	contact	
number	

Starting	date	of	
employment	
period(s)	(hence	
multi-value)	

Ending	date	
employment	
period(s).	

Domain	/	Type	 String,	String,	
String,	Integer	

Integer	 Date	 Date	

Value	/	Range	 Any,	Any,	Any,	
00000-99999	

0000000000	-	
9999999999	

Any	 Any	

Default	Value	 None	 None	 None	 None	

Null	Value	Allowed	 No	 No	 No	 Yes	

Unique	 No	 No	 No	 No	

Single	or	Multi-value	 Single	 Single	 Multi-value	 Multi-value	

Simple	or	Composite	 Composite	 Simple	 Simple	 Simple	

	
	 	

	
12	

	

Entity	Name:	Doctor	
	
Description:	Doctors	work	on	site	at	the	hospital,	but	they	are	less	directly	involved	with	patients	than	
nurses.	They	decide	which	actions	Nurses	need	to	perform	on	each	Patient	(including	when,	for	how	
long,	and	how	often)	through	two	types	of	orders:	Prescriptions	(for	medication)	and	Special	Needs	(for	
required	activities	like	assisted	showers,	bed	turning	for	bedridden	patients,	or	wound	cleaning	for	
patients	with	wounds).		
	
Candidate	Keys:	License	Number	
Primary	Key:	License	Number	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	License	Number	
	
Attributes:	

Name	 License	Number	

Description	 All	California	doctors	are	given	an	“MD”	(Medical	Doctor)	license	number	that	
uniquely	identifies	them	from	all	other	doctors	in	California.	The	number	has	
two	parts:	the	letters	“MD”	and	a	unique	6-digit	number	

Domain	/	Type	 String,	Integer	

Value	/	Range		 All	6-digit	Integers	preceded	by	the	string	“MD”	

Default	Value	 None	

Null	Value	Allowed	 No	

Unique	 Yes	

Single	or	Multi-value	 Single	

Simple	or	Composite	 Composite		

	 	

	
13	

	

Entity	Name:	Nurse	
	
Description:	Nurses	work	on	sites	at	the	hospital.	During	one	shift,	each	nurse	is	assigned	to	a	single	
room	and	takes	care	of	the	patient	who	inhabits	it	(in	our	model,	a	nurse	is	directly	assigned	to	a	patient	
for	simplicity).	A	nurse’s	main	responsibility	is	to	carry	out	the	activities	and	administer	the	medication	
for	their	assigned	patient	as	ordered	by	a	doctor.	Nurses	also	periodically	record	vital	signs	information	
about	their	patient	as	part	of	a	Nursing	Assessment	(at	Mercy,	this	happens	every	four	hours).	Nurses	
must	record	every	single	action	they	take	with	their	patient	during	a	shift.	
	
Candidate	Keys:	License	Number	
Primary	Key:	License	Number	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	License	Number	
	
Attributes:	

Name	 License	Number	

Description	 All	California	nurses	are	given	an	“RN”	(Registered	Nurse)	license	number	that	
uniquely	identifies	them	from	all	other	nurses	in	California.	The	number	has	two	
parts:	the	letters	“RN”	and	a	unique	6-digit	number	

Domain	/	Type	 String,	Integer	

Value	/	Range		 All	6-digit	Integers	preceded	by	the	string	“RN”	

Default	Value	 None	

Null	Value	Allowed	 No	

Unique	 Yes	

Single	or	Multi-value	 Single	

Simple	or	Composite	 Composite		

	 	

	
14	

	

Entity	Name:	Prescription		
	
Description:	Prescription	represents	a	single	drug	assigned	to	a	single	patient.	It	is	related	to	a	
medication	through	the	“has	medication”	relationship.	Doctors	prescribe	medication	to	patients	based	
on	their	needs,	and	Nurses	make	sure	that	patients	receive	the	medication	prescribed	by	Doctors.	
Nurses	administer	each	medication	multiple	times	throughout	the	patient’s	stay	in	the	hospital	based	on	
the	“Frequency”	and	“Start/End	Date”	fields.	Prescriptions	are	inserted	as	the	doctor	orders	them	and	
are	never	updated	or	deleted	(only	replaced	by	new	prescriptions).	
	
Candidate	Keys:	Prescription	ID	
Primary	Key:	Prescription	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:		Prescription	ID	
	
Attributes:	

Attribute	Name	 Prescription	ID	 Dosage	 Frequency	

Description	 An	auto-increment	
unique	identifier	for	
prescriptions.	

Describes	the	amount	
that	should	be	
administered	in	a	dose.	

How	often	the	dose	
should	be	administered.	

Domain	/	Type	 Integer	 String	 String	

Value	/	Range	 0	-	MaxID	 Any	 Any	

Default	Value	 MaxID	+	1	 None	 None	

Null	Value	Allowed	 No	 No	 No	

Unique	 Yes	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	

	
	 	

	
15	

	

Prescription	Continued:	

Attribute	Name	 Start	Date	/	Time	 End	Date	/	Time	

Description	 The	date	the	medication	should	first	
be	administered.	

The	date	when	the	medication	should	
no	longer	be	administered.	

Domain	/	Type	 Date	/	Time	 Date	/	Time	

Value	/	Range	 Any	 Any	

Default	Value	 None	 None	

Null	Value	Allowed	 No	 No	

Unique	 No	 No	

Single	or	Multi-value	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	

	 	

	
16	

	

Entity	Name:	Medication		
	
Description:		A	single	medication	is	tied	to	each	prescription	when	a	Doctor	prescribes	it.	The	same	
medication	can	appear	in	multiple	prescriptions.	Each	medication	has	a	descriptive	name	that	indicates	
its	contents,	and	a	summary	of	its	purpose	(for	example,	“painkiller”).	
	
Candidate	Keys:	Medication	ID,	Medication	Name	
Primary	Key:	Medication	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Medication	ID,	Medication	Name,	Medication	Purpose	
	
Attributes:	

Attribute	Name	 Medication	ID	 Medication	Name	 Medication	Purpose	

Description	 An	auto-increment	
unique	identifier	for	
Medication.	

Describes	the	chemical	
contents	of	the	
medication.	

Brief	description	of	the	
function	of	the	
medication.	

Domain	/	Type	 Integer	 String	 String	

Value	/	Range	 0	-	MaxID	 Any	 Any	

Default	Value	 MaxID	+	1	 None	 None	

Null	Value	Allowed	 No	 No	 No	

Unique	 Yes	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	

	 	

	
17	

	

Entity	Name:	Assessment	
	
Description:	A	nurse	conducts	a	basic	assessment	of	a	patient’s	health	periodically.	In	the	
Medical/Surgical	unit,	this	happens	once	every	four	hours.	The	information	included	in	the	assessment	is	
generally	the	same	for	all	units	-	blood	pressure,	respiration	rate,	and	heart	rate.	Assessments	are	never	
updated,	but	are	inserted	frequently	throughout	the	day	as	they	are	performed.	
	
Candidate	Keys:	Assessment	ID	
Primary	Key:	Assessment	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Assessment	ID	
	
Attributes:	

Attribute	Name	 Assessment	ID	 Blood	Pressure	 Respiration	Rate	 Heart	Rate	

Description	 An	auto-
increment	
integer	to	
uniquely	identify	
assessments	

Systolic	and	
diastolic	blood	
pressure	
readings	in	
millimeters	of	
mercury	

Rate	at	which	the	
patient	is	
breathing	

Patient’s	current	
heart	rate	in	bpm	

Domain	/	Type	 Integer	 Integer,	Integer	 Integer	 Integer	

Value	/	Range	 0	–	MaxID	 0	–	300,	0-300	 0	–	300	 0	–	300	

Default	Value	 MaxID	+	1	 None	 None	 None	

Null	Value	Allowed	 No	 No	 No	 No	

Unique	 Yes	 No	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Composite	 Simple	 Simple	

	 	

	
18	

	

Entity	Name:	Special	Need	
	
Description:	A	special	need	describes	an	activity	for	which	a	specific	patient	requires	assistance	from	a	
nurse.	They	include	the	name	and	description	of	the	activity	(e.g.	bed	turn,	wound	cleaning,	assisted	
shower)	along	with	how	often	the	activity	should	be	performed.		Each	special	needs	activity	is	specific	to	
a	single	patient.	A	nurse	usually	performs	Special	needs	several	times	a	day.	The	doctor’s	orders	
determine	which	special	needs	a	patient	requires,	including	how	often	the	special	need	should	be	
addressed.	Special	needs	are	inserted,	never	updated	or	deleted.	
	
Candidate	Keys:	Special	Need	ID	
Primary	Key:	Special	Need	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Special	Need	ID	
	
Attributes:	

Attribute	Name	 Special	Need	ID	 Frequency	 Start	Date	/		
Time	

End	Date	/	Time	

Description	 An	auto-
increment	
unique	identifier	
for	Special	Needs	

Describes	how	
often	a	patient	
requires	an	
activity	(“once	a	
day,”	“once	a	
week”)	

The	date	the	
special	need	
activity	should	
first	be	
performed.	

The	date	when	
the	special	need	
activity	should	
no	longer	be	
performed.	

Domain	/	Type	 Integer	 String	 Date	/	Time	 Date	/	Time	

Value	/	Range	 0	–	MaxID	 Any	 Any	 Any	

Default	Value	 MaxID	+	1	 Null	 None	 None	

Null	Value	Allowed	 No	 Yes	 No	 No	

Unique	 Yes	 No	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	 Simple	

	 	

	
19	

	

	
Entity	Name:	Activity	
	
Description:	An	activity	is	specified	by	a	Special	Need	order	from	a	doctor.	It	contains	a	name	that	
describes	the	activity,	along	with	a	more	detailed	activity.	The	same	activity	can	appear	in	multiple	
special	need	orders.	
	
Candidate	Keys:	Activity	ID,	Activity	Name	
Primary	Key:	Activity	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Activity	ID,	Activity	Name	
	
Attributes:	

Attribute	Name	 Activity	ID	 Activity	Name	 Activity	Description	

Description	 An	auto-increment	
unique	identifier	for	
Activity	

Wound	care,	bed	
turning,	catheter	car,	
etc.		

Specific	information	
about	the	activity	the	
nurse	must	know	for	
certain	patients.	

Domain	/	Type	 Integer	 String	 String	

Value	/	Range	 0	–	MaxID	 Any	 Any	

Default	Value	 MaxID	+	1	 None	 Null	

Null	Value	Allowed	 No	 No	 Yes	

Unique	 Yes	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	

	 	

	
20	

	

Entity	Name:	Room	
	
Description:	A	room	temporarily	houses	a	single	patient.	For	the	most	part,	rooms	in	general	hospitals	
are	all	designed	to	provide	all	necessary	services	to	all	patients	in	a	unit.	All	rooms	have	a	number	and	
are	located	in	a	unit.	Nurses	repeatedly	visit	a	patient	in	a	room	to	administer	medication	and	fulfill	
special	needs	–	it	is	important	to	know	a	patient’s	room	so	they	can	be	located.	Unless	the	hospital	
building	expands,	rooms	generally	do	not	have	to	be	updated	or	deleted.	
	
Candidate	Keys:	Room	ID,	Room	Number	
Primary	Key:	Room	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Room	ID,	Room	Number	
	
Attributes:	

Attribute	Name	 Room	ID	 Room	Number	

Description	 Auto-increment	integer	that	uniquely	
identifies	a	room.	

Uniquely	identifies	a	room.	Usually	
contains	information	about	the	unit	it	
belongs	to	and	the	floor	it	is	on.	

Domain	/	Type	 Integer	 Integer	

Value	/	Range	 0	–	MaxID	 0	–	999	

Default	Value	 MaxID	+	1	 None	

Null	Value	Allowed	 No	 No	

Unique	 Yes	 Yes	

Single	or	Multi-value	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	

	 	

	
21	

	

Entity	Name:	Unit	
	
Description:	A	unit	describes	a	set	of	rooms	that	offer	the	same	level	of	service	to	patients.	Units	have	
abbreviated	names	so	they	can	easily	be	identified.	Examples	are	the	Intensive	Care	Unit	(ICU),	which	
offers	health	care	to	critically	ill	patients,	or	the	Medical/Surgical	Unit,	which	offers	less	intense	care	to	
patients	who	are	recovering	from	surgery.	The	condition	of	the	patient	determines	which	unit	they	are	
sent	to.	(In	our	model,	the	same,	generalized	framework	is	used	to	describe	services	offered	to	patients	
belonging	to	all	units).	Units	generally	have	a	fixed	location	in	the	hospital,	such	as	a	floor	or	an	area	of	a	
floor	(in	this	way,	units	can	be	used	to	locate	rooms).	New	units	will	need	to	be	inserted	if	a	hospital	
expands,	but	by	no	means	regularly.	
	
Candidate	Keys:	Unit	ID,	Unit	Name,	Unit	Abbreviation	
Primary	Key:	Unit	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Unit	ID,	Unit	Name,	Unit	Abbreviation	
	
Attributes:	

Attribute	Name	 Unit	ID	 Unit	Name	 Unit	Abbreviation	

Description	 Auto-increment	integer	
that	uniquely	identifies	
a	room.	

Identifies	and	describes	
the	purpose	of	the	unit	
(Intensive	Care,	
Medical/Surgical)	

Short	name	for	the	unit	
(ICU,	Med/Surg,	NICU)	

Domain	/	Type	 Integer	 String	 String	

Value	/	Range	 0	–	MaxID	 Any	 String	length	10	

Default	Value	 MaxID	+	1	 None	 None	

Null	Value	Allowed	 No	 No	 No	

Unique	 Yes	 Yes	 Yes	

Single	or	Multi-value	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	

	 	

	
22	

	

Entity	Name:	Patient	
	
Description:	A	patient	is	sent	to	a	Unit	depending	on	the	severity	of	their	medical	situation.	A	Doctor	will	
prescribe	medication	and/or	order	any	Special	need	required.	Periodically,	a	Nurse	will	assess	them	
(take	their	heart	rate,	respiration	rate	and	blood	pressure)	and	document	the	results	each	time.	Like	
employees,	patients	are	stored	with	basic	contact	and	identifying	information,	along	with	their	language	
(in	case	a	translator	is	needed).	
	
Candidate	Keys:	Patient	ID,	SSN	
Primary	Key:	Patient	ID	
Strong	/	Weak	Entity:	Strong	
Fields	to	be	indexed:	Patient	ID,	Name,	SSN,	Phone	Number,	Insurance	Plan	
	
	 	

	
23	

	

Attributes:	

Attribute	Name	 Patient	ID	 SSN	 Name	 Address	

Description	 Number	assigned	
by	the	hospital	to	
each	patient	that	
uniquely	
identifies	them.	
Can	be	
implemented	as	
an	auto-
increment	
integer.	

Social	Security	
Number;	can	be	
used	to	uniquely	
identify	
Employees.	

Name	of	
Employee	(First,	
Middle,	Last)	

Street	Address,	
City,	State,	Zip	
Code	

Domain	/	Type	 Integer	 Integer	 String	(3	Strings)	 String,	String,	
String,	Integer	

Value	/	Range	 0	-	MaxID	 000000000	-	
999999999	(any	
9-digit	Integer)	

Any	 Any,	Any,	Any,	
00000-99999	

Default	Value	 MaxID	+	1	 None	 None	 None	

Null	Value	Allowed	 No	 No	 No	 No	

Unique	 Yes	 Yes	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Composite	 Simple	

	 	

	
24	

	

Patient	Attributes	Continued:	

Attribute	Name	 Phone	Number	 Birth	Date	 Gender	 Insurance	Plan	

Description	 Primary	contact	
number	
represented	as	
an	Integer	

Date	the	patient	
was	born.	

Single	letter	that	
identifies	the	
gender	of	the	
patient	

Medicare,	
uninsured,	etc.	

Domain	/	Type	 Integer	 Date	/	time	 Character	 String	

Value	/	Range	 0000000000	-	
9999999999	

Any	 F	/	M	 Any	

Default	Value	 None	 None	 None	 None	

Null	Value	Allowed	 No	 No	 No	 No	

Unique	 No	 No	 No	 No	

Single	or	Multi-value	 Single	 Single	 Single	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	 Simple	

	
	 	

	
25	

	

Patient	Attributes	Continued:	

Attribute	Name	 Admitted	Date	 Discharged	Date	 Language	Spoken	

Description	 The	start	date	of	a	
period	of	stay	for	the	
patient	(a	patient	can	
stay	multiple	times)	

The	end	date	of	a	
period	of	stay	of	a	
patient.	

Identifies	the	primary	
language	of	the	patient	
(indicating	whether	
they	need	a	translator)	

Domain	/	Type	 Date	 Date	 String	

Value	/	Range	 Any	 Any	 Any	

Default	Value	 None	 None	 None	

Null	Value	Allowed	 No	 Yes	 No	

Unique	 No	 No	 No	

Single	or	Multi-value	 Multi-value	 Multi-value	 Single	

Simple	or	Composite	 Simple	 Simple	 Simple	

	
	 	

	
26	

	

1.2.2	Relationship	Set	Description	
	
Relationships	associate	two	or	more	entities	of	the	same	type.	They	are	defined	by	which	entities	they	
relate,	as	well	as	additional	attributes	describing	how	entities	are	related.	They	also	specify	constraints	
that	control	how	many	entities	are	related	to	each	other.	Individual	entities	from	different	types	are	
related	to	each	other	by	participating	in	relationship	instances.	
We	now	define	each	relationship	type:	the	entity	types	it	relates,	the	constraints	on	cardinality	and	
participation,	and	any	additional	attributes	describing	how	entities	in	participating	in	the	relationship	set	
are	related.	
	
Relationship:	prescribes	
Description:	Doctors	at	the	hospital	order	patients	to	take	medications	with	specific	instructions	
(prescriptions)	by	prescribing.	Prescriptions	must	be	prescribed	by	a	single,	licensed	doctor,	and	doctors	
order	many	prescriptions	on	different	dates	as	they	work	at	the	hospital.	When	doctors	prescribe	
medication,	they	detail	instructions	about	how	to	administer	the	medication	as	well	as	the	time	over	
which	the	medication	should	be	administered.	However,	most	of	this	information	is	stored	in	the	
Prescription	entity;	in	the	ER	model,	relationship	attributes	can	be	shifted	to	the	entity	type	on	the	“N”	
side	of	a	1..N	relationship.	
Entity	Sets	Involved:	Doctor,	Prescription	
Mapping	Cardinality:		1..N	
Descriptive	Field:		None	
Participation	Constraint:	Partial	participation	for	Doctor.	Total	participation	for	Prescription.	
All	prescriptions	must	be	ordered	by	a	single	doctor;	a	prescription	is	not	valid	unless	a	licensed	doctor	
issues	it.	However,	doctors	can	still	exist	without	having	yet	prescribed	medication.	
	
Relationship:	prescribed	for	
Description:	Prescriptions	are	prescribed	for	patients.	Each	patient	can	receive	many	new	prescriptions	
as	their	condition	changes	and	doctors	order	new	treatment.	Each	prescription	is	for	a	single	patient,	
since	each	patient	may	need	to	receive	medication	with	different	amounts	or	administration	methods	
(Multiple	patients	cannot	share	prescriptions).	
Entity	Sets	Involved:	Prescription,	Patient	
Mapping	Cardinality:	N..1	
Descriptive	Field:	None	
Participation	Constraint:		Total	participation	for	Prescription.	Partial	participation	for	Patient.	
Prescriptions	are	made	for	individual,	specific	patients;	therefore,	a	prescription	cannot	exist	without	
being	related	to	a	patient.	Patients	can	be	housed	by	the	hospital	without	receiving	prescriptions,	so	
participation	of	prescription	is	partial.	
	
	 	

	
27	

	

	
Relationship:	administers	
Description:	Nurses	administer	the	medication	described	in	a	prescription.	Many	different	nurses	may	
share	the	responsibility	of	administering	medicine	on	different	days,	so	the	relationship	has	cardinality	
“many	to	many.”	Nurses	are	implicitly	required	to	administer	medications	at	the	right	times	based	on	
the	“Frequency”	field	contained	in	the	prescription.	The	administers	relationship,	however,	forces	
Nurses	to	record	specifically	when	they	give	medication	to	ensure	that	they	are	following	the	doctor’s	
orders	correctly	and	not	missing	any	times.	Recording	this	data	is	legally	required.	
Entity	Sets	Involved:	Nurse,	Prescription	
Mapping	Cardinality:	M..N	
Descriptive	Field:	Date/time	
Participation	Constraint:	Partial	participation	for	both	Nurse	and	Prescription.	
When	prescriptions	are	first	prescribed	by	doctors,	they	have	not	been	administered	by	nurses.	Nurses	
can	be	employed	at	the	hospital	even	if	they	have	not	yet	administered	a	prescription.	
	
Relationship:	takes	
Description:	A	single	nurse	will	periodically	perform	a	basic	assessment	of	the	patient’s	health	(usually	
every	four	hours).	One	nurse	performs	the	assessment,	but	nurses	take	many	assessments	throughout	
the	day.	It	is	important	to	record	the	date/time	of	each	assessment	to	understand	how	the	patient’s	
condition	is	progressing	over	time.	
Entity	Sets	Involved:	Nurse,	Assessment	
Mapping	Cardinality:	1..N	
Descriptive	Field:	Date/time	
Participation	Constraint:	Partial	participation	for	Nurse.	Total	participation	for	Assessment.	
An	assessment	is	not	valid	unless	it	has	the	signature	of	a	Nurse.	Nurses	can	be	employed	at	the	hospital	
even	if	they	have	not	made	an	assessment.	
	
Relationship:	undergoes	
Description:	A	patient	undergoes	an	assessment.	A	patient	can	undergo	many	assessments,	but	each	
assessment	provides	health	information	about	only	one	patient.	There	are	no	descriptive	fields,	since	
the	date/time	of	the	assessment	is	included	in	another	relationship.	
Entity	Sets	Involved:	Patient,	Assessment	
Mapping	Cardinality:	1..N	
Descriptive	Field:	None	
Participation	Constraint:	Partial	participation	for	Patient.	Total	participation	for	Assessment.		
Newly	admitted	patients	have	not	yet	received	assessments.	However,	an	assessment	(basic	health	
information	about	a	patient)	is	meaningless	without	the	patient	it	describes;	thus	assessment	
participation	is	total.	
	
	 	

	
28	

	

Relationship:	orders	
Description:	Each	special	need	is	ordered	by	a	single	doctor,	and	a	doctor	can	order	many	special	needs.	
The	doctor	orders	a	special	need	on	a	specific	date.	
Entity	Sets	Involved:	Doctor,	Special	Need	
Mapping	Cardinality:	1..N	
Descriptive	Field:	Date/time	
Participation	Constraint:	Partial	participation	for	Doctor.	Total	participation	for	Special	Need.	
Doctors	can	be	employed	without	having	ordered	a	special	need	(partial	participation	for	doctor).	
However,	each	special	need	must	be	ordered	by	a	(single)	doctor,	and	the	participation	of	special	need	is	
total.	
	
Relationship:	hasActivity	
Description:	Each	Special	Need	has	a	single	activity.	The	same	activity	can	appear	in	multiple	Special	
Need	orders.	
Entity	Sets	Involved:	Special	Need,	Activity	
Mapping	Cardinality:	N..1	
Descriptive	Field:	None	
Participation	Constraint:	Total	participation	for	Special	Need.	Partial	participation	for	Activity.		
Special	Needs	each	must	be	tied	to	an	activity.	An	activity	can	exist	if	it	isn’t	being	used	in	a	Special	Need	
order.	
	
	
Relationship:	performs	
Description:	Nurses	perform	each	of	the	special	needs	assigned	to	a	patient	at	specific	times	throughout	
the	day.	Nurses	are	required	to	perform	activities	such	that	they	are	in	compliance	with	the	“Frequency”	
attribute	of	the	special	need	as	ordered	by	the	doctor.	This	relationship	forces	nurses	to	record	their	
activities	and	ensure	they	are	not	missing	times.	Many	nurses	can	share	responsibility	for	the	same	
special	need	order	over	time,	and	individual	nurses	can	perform	many	different	special	needs	orders.	
Thus,	the	relationship	is	M..N.	
Entity	Sets	Involved:	Nurse,	Special	Need	
Mapping	Cardinality:		M..N	
Descriptive	Field:	Date/time	
Participation	Constraint:	Partial	participation	for	both	Nurse	and	Special	Need.	
Nurses	can	be	employed	at	the	hospital	without	having	performed	a	special	need.	Also,	special	needs	
have	not	yet	been	performed	by	nurses	when	they	are	initially	ordered	by	doctors.	Thus	participation	is	
partial	for	both	nurses	and	special	needs.	
	
	 	

	
29	

	

Relationship:		receives	
Description:	A	patient	receives	a	special	need	order	from	a	doctor.	There	are	no	descriptive	fields	since	
the	date	the	patient	receives	the	order	is	part	of	the	orders	relationship.	Each	special	need	order	is	
specific	to	a	single	patient,	but	each	patient	can	receive	many	individual	special	need	orders.	
Entity	Sets	Involved:	Patient,	Special	Need	
Mapping	Cardinality:		1..N	
Descriptive	Field:	None	
Participation	Constraint:	Partial	participation	for	Patient.	Total	participation	for	Special	Need.		
Newly	admitted	patients	have	not	yet	been	given	a	special	nee	order.	However,	a	special	need	order	
describes	actions	to	be	taken	with	a	specific	patient;	thus	special	needs	cannot	exist	without	being	
related	to	patients.	
	
Relationship:	assigned	to	
Description:	Nurses	are	assigned	to	a	patient	for	the	duration	of	their	shift.	This	relationship	allows	
hospital	staff	to	keep	track	of	which	nurses	should	have	performed	activities	and	administered	
medication	for	a	patient	during	a	shift’s	time	period.	One	nurse	is	assigned	to	one	patient	during	a	shift,	
but	since	our	database	stores	historical	data,	the	relationship	is	M..N;	over	the	course	of	time,	many	
patients	may	be	assigned	to	the	same	nurse,	and	vice	versa.	
Entity	Sets	Involved:	Nurse,	Patient	
Mapping	Cardinality:	M..N	
Descriptive	Field:	Start	Date/time,	End	Date/time	
Participation	Constraint:	Partial	participation	for	both	Nurse	and	Patient.	
Nurses	can	be	employed	at	a	hospital	without	being	currently	assigned	to	a	patient.	Nurse	assignments	
exist	only	for	the	duration	of	a	working	shift,	so	patients	can	reside	in	the	hospital	without	being	yet	
assigned	to	a	nurse.	
	
Relationship:	works	in	
Description:	A	nurse	is	contracted	to	work	in	a	single	unit	for	the	duration	of	the	contract.	Since	our	
model	records	historical	data,	the	relationship	is	M..N.	Over	the	course	of	time,	a	nurse	might	work	for	
many	units,	and	a	unit	may	have	several	nurses	employed.	
Entity	Sets	Involved:	Nurse,	Unit	
Mapping	Cardinality:	M..N	
Descriptive	Field:	Start	Date/time,	End	Date/time	
Participation	Constraint:	Total	participation	for	both	Nurse	and	Unit.	
Nurses’	work	contracts	specify	the	units	that	nurses	work	for.	Therefore,	nurses	cannot	exist	without	
being	related	to	a	unit.	Also,	all	units	have	employed	nurses.	
	
	 	

	
30	

	

Relationship:	placed	
Description:	A	patient	is	placed	in	(or	in	habits)	a	room.	Nurses	visit	the	room	that	a	patient	inhabits	to	
administer	treatment.	At	a	specific	point	in	time,	one	patient	is	placed	in	one	room.	However,	patients	
can	move	from	room	to	room,	and	a	room	may	house	many	patients	over	time	as	patients	come	and	
leave.	Thus,	the	relationship	is	M..N.		
Entity	Sets	Involved:	Patient,	Room	
Mapping	Cardinality:	M..N	
Descriptive	Field:	Start	Date/time,	End	Date/time	
Participation	Constraint:	Total	participation	for	Patient.	Partial	participation	for	Room.	
Since	the	scope	of	our	database	only	encompasses	patients	who	are	living	in	the	hospital,	patients	
cannot	exist	without	being	related	to	a	room.	Since	new	rooms	can	be	empty	with	no	patient	history,	
rooms	can	exist	without	being	related	to	a	patient.	
	
Relationship:	belongs	to	
Description:	A	room	is	located	inside	of	a	unit.	Unless	the	hospital	changes	its	physical	structure,	rooms	
do	not	move	between	units.	Thus	a	room	has	a	single	unit,	and	a	unit	contains	many	rooms.		
Entity	Sets	Involved:	Room,	Unit	
Mapping	Cardinality:	N..1	
Descriptive	Field:	None	
Participation	Constraint:	Total	participation	for	both	Room	and	Unit.	
All	rooms	belong	to	a	unit,	and	a	unit	must	contain	rooms.	Thus	both	participations	are	total.	
	 	

	
31	

	

1.2.3	Related	Entity	Set	
	
Specialization	describes	the	process	of	forming	subclasses	of	an	entity	type.	Subclasses	inherit	all	of	the	
attributes	of	the	entity	type	they	are	derived	from	(also	called	their	“superclass”),	while	adding	
attributes	that	are	specific	to	subclasses.	In	our	database,	Nurse	and	Doctor	are	subclasses	of	the	
Employee	entity	type.	
	
Generalization	is	the	opposite	of	specialization;	it	involves	uniting	multiple	related	subclass	entity	types	
under	a	superclass.	We	formed	the	employee	superclass	in	our	conceptual	database	through	
generalization	–	we	discovered	that	both	doctors	and	nurses	share	much	of	the	same	information,	and	
united	them	under	the	Employee	superclass.	
	
Specializations	and	generalizations	have	constraints	on	“completeness”	and	“disjointedness.”	The	
specialization	of	employee	into	nurse	and	doctor	is	disjoint	because	employees	can	never	be	both	
nurses	and	doctor	at	the	same	time.	This	is	also	called	an	“Is_A”	specialization.	The	completeness	
constraint	is	total.	This	means	that	employees	have	to	be	either	doctors	or	nurses.	This	constraint	exists	
because	the	scope	of	our	conceptual	database	excludes	employees	who	aren’t	involved	in	patient	care.	
	
1.2.4	ER	Diagram		
	
To	visualize	how	relationships	associate	different	entities	in	an	ER	Model,	it	is	useful	to	use	an	ER	
Diagram.	In	an	ER	diagram,	relationships	are	represented	as	lines	that	connect	participating	entity	types.	
Double	lines	are	used	to	represent	total	participation,	while	single	lines	represent	partial.	“1”	and	“N”	
symbols	indicate	the	cardinality	of	relationships.	Entity	types	are	represented	as	boxes	which	listings	of	
their	contained	attributes.	
	
The	ER	diagram	for	Charity	General	Hospital	follows:	 	

	
32	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

	
33	

	

	

2.	Conceptual	Database	and	Logical	Database	
	
A	conceptual	database	is	used	to	easily	visualize	a	database,	while	a	logical	database	is	used	to	
represent	how	a	database	will	be	stored	in	a	software	implementation.	Before	we	implement	our	
database,	we	need	to	convert	to	a	logical	design.	To	move	from	our	conceptual	database	design	to	a	
logical	database	design,	we	will	convert	the	E-R	model	from	the	previous	section	to	a	relational	model.	
	
This	section	first	describes	the	E-R	model	and	the	relational	model,	including	their	histories,	purposes,	
and	similarities	and	differences.	Then,	we	will	describe	in	detail	the	method	for	converting	between	the	
E-R	model	and	the	relational	model.	After	we	describe	the	process,	we	will	implement	it	on	our	E-R	
model,	and	present	the	relational	model	for	our	database.	
	
After	creating	the	relational	model,	we	will	present	sample	data	for	our	relational	database.	Then,	we	
will	create	queries	for	the	data	using	three	formal	querying	languages:	relational	algebra,	tuple	
relational	calculus,	and	domain	relational	calculus.	
	
2.1	E-R	Model	and	Relational	Model	
	 	
The	E-R	model	describes	a	conceptual	database	design,	while	a	relational	model	describes	a	logical	
design.	Here,	we	will	describe	both	models	and	compare	them.	
	
2.1.1	Description	of	E-R	Model	and	Relational	Model	
	
The	E-R	and	relational	database	model	each	have	a	different	histories,	purpose,	and	set	of	defining	
features.	The	E-R	model	was	developed	by	Peter	Chen;	he	first	introduced	it	in	a	1976	publication.	The	E-
R	model	is	a	method	for	creating	conceptual	database	designs.	It	allows	designers	to	represent	the	
objects	that	make	up	a	business	or	organization	along	with	how	they	are	related,	and	is	best	conveyed	
using	a	simple,	easy-to-read	diagram.	The	E-R	model	is	high-level	-	it	represents	the	structure	of	the	
database	with	a	simple	model	that	basic	users,	business	owners,	and	technical	designers	can	all	
understand.		
	
The	relational	model	was	first	introduced	by	E.F.	Codd	of	IBM	in	1970.	The	relational	model	is	a	method	
for	creating	logical	database	designs	-	it	reflects	how	the	database	will	be	implemented	in	software.	The	
relational	model	is	rooted	in	discrete	mathematics	and	set	theory,	and	allows	designers	to	represent	the	
structure	of	a	database	using	one	basic	building	block	-	the	“relation.”	The	relational	model	has	been	
implemented	by	several	commercial	database	management	systems	(DBMS),	including	Oracle,	MySQL,	
and	TSQL.	The	relational	model	is	frequently	grouped	with	formal	querying	languages:	relational	
algebra,	tuple	relational	calculus,	and	domain	relational	calculus.		
	

	
34	

	

The	E-R	model	and	relational	model	have	different	defining	features.	The	E-R	model	uses	two	basic	
concepts:	“entities”	-	which	represent	the	objects	that	make	up	an	organization	-	and	“relationships”	-	
which	describe	how	different	entities	are	associated	with	each	other.	Both	are	best	represented	using	a	
diagram,	where	entities	are	boxes	and	relationships	are	lines	that	connect	the	boxes.	Entities	and	
relationships	both	have	attributes	that	describe	the	information	contained	within,	and	relationships	
have	constraints	that	explain	how	many	times	entities	can	be	related	to	each	other.	Attributes	can	be	
grouped	together	so	they	are	easier	to	understand.	
	
The	relational	model	is	defined	by	only	one	concept	-	the	“relation.”	The	relational	model	consists	of	
tuples	-	single,	flat	lists	of	related	values.	Relational	schema	are	lists	of	attributes	that	describe	the	
purpose	of	each	value	in	a	tuple	(and	its	domain),	and	all	the	tuples	that	belong	to	the	same	relational	
schema	are	grouped	into	a	relation	instance	-	essentially	a	table	where	attributes	are	columns	and	
individual	tuples	are	rows.	
	
The	main	difference	between	the	E-R	model	and	the	Relational	model	lies	in	their	purpose.	The	purpose	
of	E-R	model	is	to	visualize	the	structure	of	a	database	in	an	easy-to-understand	way,	so	that	business	
owners	and	technical	designers	can	communicate	and	participate	in	the	design	of	the	database.	It	is	too	
abstract	and	complicated	to	be	implemented	in	software	practically.	The	relational	model,	on	the	other	
hand,	is	designed	to	represent	the	database	as	it	will	be	implemented	in	software.	It	is	more	
fundamentally	simple,	but	it	is	harder	to	understand	the	purpose	or	structure	of	a	database	by	looking	
at	the	relational	database	schema	(unlike	with	the	ER-diagram).	The	relational	model	is	rooted	in	
mathematical	theory,	and	is	used	with	mathematical	querying	languages.	
	
2.1.2	Comparison	of	Two	Different	Models	
	
The	E-R	model	has	many	advantages	over	the	relational	model.	The	E-R	model	is	easier	to	understand	
and	visually	represents	the	database,	so	it	is	better	for	communicating	ideas	between	software	
designers	and	less	technologically	savvy	business	users.	The	E-R	model	excludes	the	details	of	
implementing	the	design	in	software,	so	it	is	easier	to	make	large	changes	and	is	thus	better	for	drafting	
ideas.	The	E-R	model	also	has	disadvantages.	It	is	not	based	in	mathematical	theory,	so	it	cannot	be	used	
with	any	formal	mathematical	querying	languages.	It	is	too	complex	and	abstract,	so	no	commercial	
DBMS	use	the	E-R	model.	The	E-R	model	is	also	not	standardized	-	because	it	is	so	flexible,	one	can	
represent	the	same	database	design	with	many	different	ER-diagrams.	This	can	create	confusion	
between	designers.	
	
The	relational	model	also	has	advantages	and	disadvantages.	The	relational	model	is	formal	and	
standardized	-	it	is	rooted	in	discrete	mathematics,	and	formal,	mathematical	querying	languages	have	
been	designed	for	it.	The	relational	model	is	much	more	feasible	for	implementing	software	since	it	is	
more	fundamentally	simple;	relation	instances	can	be	represented	as	tables,	which	are	perfect	for	
computer	storage.	The	main	disadvantage	of	the	relational	model	is	that	it	is	much	more	difficult	to	
understand	-	entities	and	relationships	are	blurred	into	the	same	building	block,	so	it	is	difficult	to	

	
35	

	

understand	the	purpose	of	each	relation	schema.	Attributes	cannot	be	grouped,	so	all	simple	
components	are	listed	fully,	making	for	a	dense	read.	The	relational	model	should	not	be	used	to	
communicate	with	business	users.	
	
The	E-R	model	and	relational	model	have	some	similarities.	Both	models	can	be	used	to	represent	how	
data	is	structured.	Like	relation	schema	from	the	relational	model,	entity	and	relationship	types	from	
the	E-R	model	include	a	name	and	a	list	of	attributes.	Both	models	have	the	concept	of	a	“type”	(or	
schema	in	the	relational	model)	and	“instance”	(or	tuple	in	the	relational	model)	-	the	type	describes	
what	kind	of	data	is	included	and	its	purpose,	while	the	instance	actually	contains	the	data.	Both	models	
use	some	sort	of	constraints,	or	sets	of	rules,	to	describe	how	data	is	related.		
	
The	main	difference	between	the	E-R	model	and	the	relational	model	is	that	the	E-R	model	uses	two	
concepts	-	“entities”	and	“relationships”	instead	of	one	(the	relational	model	only	uses	the	“relation”).	
Also,	entities	and	relationships	in	the	E-R	model	can	have	complex,	multi-value	attributes,	while	
attributes	in	the	relational	model	must	be	atomic.	The	E-R	model	has	different	kinds	of	constraints	than	
the	relational	model.	The	E-R	model	has	cardinality	and	participation	constraints	on	relationships	that	
determine	how	many	of	each	entity	type	in	the	relationship	can	be	related	to	each	other.	The	relational	
model	has	no	cardinality	or	participation	constraints,	but	has	integrity	constraints	to	enforce	coherency	
between	relations	that	reference	each	other.	

2.2	Conversion	of	Conceptual	Database	Model	to	Logical	Database	Model	
	
Now	that	both	the	E-R	model	and	the	relational	model	have	been	described,	we	will	dive	into	a	detailed	
explanation	of	the	process	for	converting	between	the	two.	First,	we	will	describe	how	to	convert	entity	
types,	then	relation	types.	Then,	we	will	describe	the	process	of	building	constraints	to	ensure	the	data	
in	the	relational	model	has	integrity.	
	
2.2.1	Converting	Entity	Types	to	Relations	
	
When	converting	from	an	ER	Model	to	a	Relational	Model,	all	entity	types	must	be	represented	as	a	set	
of	relation	schemas.	Each	relation	schema	contains	a	list	of	attributes	with	single-value	domains;	ER	
Model	Entity	Types,	however,	are	more	complex,	with	composite	and	multi-value	attributes,	as	well	as	
weak	entity	types	that	have	no	key.	
	
In	this	section,	we	will	explain	how	to	represent	both	weak	and	strong	entity	types	as	relations.	Then,	
we	explain	how	to	represent	both	simple	and	composite	entity	attributes	as	relation	attributes	with	
atomic	domains.	Finally,	we	explain	how	to	represent	single	and	multiple-value	entity	attributes	through	
relation	attributes.		
	
	
	

	
36	

	

	
Converting	Strong	Entities	into	Relations	
	
Each	strong	entity	type	E		is	converted	into	one	relation	schema	R.	The	relation	schema	has	the	same	
name	as	the	strong	entity	type.	The	attributes	of	the	relation	schema	are	the	simple,	single-value	
attributes	of	the	entity	type	along	with	the	simple	components	of	the	entity	type’s	composite	attributes	
(see	Mapping	of	Simple	and	Composite	Attributes	and	Mapping	of	Single	and	Multi-Value	Attributes	
for	more	information	on	converting	complex	attributes).	One	of	the	key	attributes	of	the	entity	type	is	
made	into	the	primary	key	attribute	of	the	relation	schema,	while	additional	key	attributes	of	the	entity	
type	become	candidate	keys	of	the	relation	schema	(candidate	keys	are	unique,	but	not	used	to	identify	
tuples	in	a	relation	state).	
	
Converting	Weak	Entities	into	Relations	
	
Each	weak	entity	is	converted	into	a	relation	R	that	represents	a	strong	entity.	R	has	the	same	name	as	
the	weak	entity.	R	contains	the	primary	key	of	the	relation	for	the	weak	entity’s	owner	as	a	foreign	key	
attribute	(if	the	weak	entity’s	owner	is	also	weak	entity	type,	the	owner	must	first	be	converted	into	a	
strong	entity	so	that	its	corresponding	relation	schema	can	have	a	primary	key	attribute).	R	also	contains	
the	weak	entity	type’s	partial	key	attribute(s)	and	other	attributes.	Together,	the	partial	key	attribute(s)	
and	the	foreign	key	attribute	become	a	primary	key	of	R.	Since	R	can	be	viewed	as	a	representation	of	a	
strong	entity,	all	of	the	methods	used	to	represent	attributes	of	strong	entity	types	can	also	now	be	
used	here.	
	
Assuming	that	all	relations	represent	strong	entities,	we	can	now	represent	the	entities’	attributes	as	
relation	attributes.	
	
Mapping	of	Simple	and	Composite	Attributes	
	
There	are	separate	processes	for	mapping	the	simple	and	composite	attributes	of	an	entity	type.	The	
simple	attributes	of	an	entity	type	become	attributes	of	the	corresponding	relation	schema.	The	simple	
components	of	the	entity	type’s	composite	attributes	each	become	separate	attributes	in	the	
corresponding	relation	schema.	
	
Mapping	of	Single	and	Multi-Value	Attributes	
	
There	are	separate	processes	for	mapping	the	single	and	multi-value	attributes	of	an	entity	type.	The	
single-value	attributes	of	an	entity	type	simply	become	attributes	of	the	relation	schema	R	that	
corresponds	to	the	entity	type.	The	process	for	representing	multi-valued	attributes	is	more	complex,	
however.	Each	multi-value	attribute	of	an	entity	type	is	represented	with	a	new,	separate	relation	RA.	
The	attributes	of	RA	are	the	multi-value	attribute	itself,	as	well	as	the	primary	key	of	R	as	a	foreign	key	
attribute.	The	primary	key	of	RA	is	made	up	of	the	multi-value	attribute	and	the	foreign	key	attribute	

	
37	

	

combined.	If	the	multi-value	attribute	is	also	composite,	only	the	unique	simple	components	of	the	
attribute	are	part	of	the	primary	key	of	RA.	
	
2.2.2	Converting	Relationship	Types	to	Relations	
	
In	an	ER	Model,	there	are	two	main	concepts	-	entities	and	relationships.	However,	the	relational	model	
only	has	one	concept	-	the	relation	-	so	relationship	types	must	be	represented	through	relation	
schemas	(either	through	separate	relation	schemas	or	attributes	in	relation	schemas	derived	from	entity	
types).	In	this	section,	we	will	explain	how	to	represent	relationship	types	which...	

• ...have	different	cardinality	constraints	(1:1,	1:N,	M:N)	
• ...represent	the	“IsA”	and	“HasA”	concepts	of	superclasses	and	subclasses	have	
• ...relationships	to	other	relationship	types	
• ...are	recursive	(only	involve	one	entity	type)	
• ...involve	more	than	2	entity	types	
• ...are	category	or	union	types	

	
Mapping	of	Relationship	Types	with	a	1:1	Cardinality	Constraint	
	
If	a	relationship	type	relates	entity	types	A	and	B	with	a	1:1	cardinality	constraint	and	A	and	B	are	
converted	into	relations	RA		and	RB,	then	each	instance	of	RA	should	be	related	to	exactly	one	instance	of	
RB.	There	are	three	methods	used	to	represent	this	constraint	using	relations:	

1. Foreign	Key	Approach:	In	this	approach,	the	primary	key	of	RA	is	made	into	a	foreign	key	
attribute	of	RB	(or	vice	versa).	All	simple	(and	simple	components	of	composite)	attributes	that	
belong	to	the	relationship	type	also	become	attributes	of	the	relation	with	the	foreign	key.	

2. Merged	Relation	Approach:	In	this	approach,	the	attributes	of	RA	and	RB	are	combined	into	a	
single	relation.	

3. Cross	Reference	Approach:	In	this	approach,	a	new	relation	R	is	created	to	represent	the	
relationship	type.	R	is	referred	to	as	a	“relationship	relation.”	R	will	contain	the	primary	keys	of	
RA	and	RB	as	foreign	key	attributes,	as	well	as	the	simple	(and	simple	components	of	composite)	
attributes	of	the	relationship	type.	The	primary	key	of	R	is	one	of	the	foreign	keys.	

	
Each	approach	has	advantages	and	disadvantages.		
The	Merged	Relation	Approach	is	almost	useless,	because	if	two	relations	can	be	combined	into	one,	
then	their	corresponding	entity	types	should	have	been	combined	when	designing	the	conceptual	
database.		
The	Foreign	Key	Approach	is	useful	because	it	decreases	the	number	of	join	operations	when	querying,	
but	should	be	used	only	if	one	of	the	entity	types	has	total	participation	in	the	relationship	-	otherwise,	
the	foreign	key	attribute	will	be	NULL	for	relations	that	do	not	participate,	and	storage	space	will	be	
wasted.		
The	Cross	Reference	Approach	is	useful	if	neither	of	the	participating	entity	types	have	total	
participation,	but	increases	the	number	of	joins	in	queries.		

	
38	

	

Mapping	of	1:N	Relationship	Types	
	
If	a	relationship	type	relates	entity	types	A	and	B	with	a	1:N	cardinality	constraint	and	A	and	B	are	
converted	into	relations	RA		and	RB,	then	each	instance	of	RA	can	be	related	to	multiple	instances	of	RB,	
and	each	instance	of	RB	can	be	related	to	only	one	instance	of	RA.	There	are	two	methods	used	to	
represent	this	constraint	using	relations:	
	

1. Foreign	Key	Approach:	The	approach	is	the	same	for	converting	1:1	relationship	types,	except	
the	foreign	key	and	relationship	type	attributes	must	belong	to	the	relation	derived	from	the	
entity	on	the	“N”	side	of	the	relationship	(in	this	case,	RB).	This	is	because	entities	on	the	“N”	
side	can	only	be	related	to	the	other	entity	type	“1”	time,	so	their	participation	in	the	
relationship	is	unique.	

2. Cross	Reference	Approach:	The	approach	is	the	same	for	converting	1:1	relationship	types,	
except	the	primary	key	of	the	relationship	relation	R	must	be	the	foreign	key	for	the	relation	
that	represents	the	entity	on	the	“N”	side	of	the	relationship.	

	
The	foreign	key	and	cross	reference	approaches	have	the	same	advantages	and	disadvantages	as	as	for	
1:1	and	1:N	relationship	type	mappings.	
	
Mapping	of	M:N	Relationship	Types	
	
If	a	relationship	type	S	relates	entity	types	A	and	B	with	a	M:N	cardinality	constraint	and	A	and	B	are	
converted	into	relations	RA		and	RB,	then	each	instance	of	RA	can	be	related	to	multiple	instances	of	RB,	
and	each	instance	of	RB	can	also	be	related	to	multiple	instances	of	RA.	
	
The	only	possible	method	for	converting	an	M:N	Relationship	Type	is	through	the	Cross	Reference	
Approach.	A	relationship	relation	R	is	created	to	represent	the	relationship	type,	and	it	contains	the	
primary	keys	of	RA	and	RB	as	foreign	keys	(as	well	as	all	of	the	simple	and	simple-component	relationship	
type	attributes).	Both	the	foreign	keys	combined	form	the	primary	key	for	R.	
	
Mapping	of	Superclasses	and	Subclasses	for	the	“IsA”	Relationship	
	
The	“IsA”	Relationship	occurs	when	entity	types	are	disjoint	subclasses	of	a	superclass	entity	type.	In	
other	words,	an	entity	belongs	to	no	more	than	one	subclass.	There	are	three	methods	for	representing	
this	relationship	with	relations.		
	

1. Multiple	relations	-	superclass	and	subclass:	In	this	approach,	a	superclass	entity	is	given	a	
relation	Rsuper,	and	subclass	entities	are	each	given	a	relation	Rsub.	The	superclass	relation	
contains	the	attributes	of	the	superclass	entity.	The	subclass	relation	contains	the	attributes	of	
the	subclass	entity,	along	with	the	primary	key	of	the	superclass	relation	as	a	foreign	key	
attribute.	The	foreign	key	serves	as	the	subclass	relation’s	primary	key.	

	
39	

	

2. Multiple	relations	-	subclass	only:	In	this	approach,	only	subclass	entities	are	given	their	own	
relations.	The	subclass	relation	contains	the	union	of	the	attributes	of	the	superclass	entity	type	
and	the	subclass	entity	type.	If	an	entity	belongs	to	multiple	subclasses	(overlapping),	all	
corresponding	subclass	relations	must	share	the	same	primary	key	values	(this	is	why	this	
approach	works	best	for	the	“IsA”	relationship,	where	there	are	no	overlapping	subclasses).	

3. Single	relation	with	one	type	attribute:	In	this	approach,	one	relation	R	is	created	that	contains	
the	union	of	the	attributes	from	the	superclass	and	the	attributes	from	all	of	the	subclasses	
combined.	R	also	contains	a	“type”	attribute,	which	indicates	which	of	the	subclasses	R	belongs	
to.	

	
Each	approach	has	advantages	and	disadvantages.	Multiple	relations	-	superclass	and	subclass	is	useful	
because	it	works	for	every	type	of	superclass/subclass	relationship	(disjoint	“IsA”	and	overlapping	
“HasA”,	total	and	partial).	However,	because	it	creates	a	separate	superclass	relation,	queries	require	
more	join	operations.		
Multiple	relations	-	subclass	only	requires	fewer	join	operations,	but	only	works	for	relationships	where	
the	participation	is	total	(an	entity	must	belong	to	one	of	the	subclasses).	
Single	relation	with	one	type	attribute	requires	the	least	join	operations,	but	combining	all	the	
attributes	creates	a	very	large	relation.	Also,	the	attributes	for	the	subclasses	to	which	an	entity	does	
not		belong	will	always	be	NULL.	Therefore,	the	approach	should	only	be	used	if	the	subclasses	have	very	
similar	attributes.	
	
Mapping	of	Superclasses	and	Subclasses	for	the	“HasA”	Relationship	
	
The	“HasA”	Relationship	occurs	when	entity	types	are	overlapping	subclasses	of	a	superclass	entity	type.	
In	other	words,	an	entity	can	belong	to	multiple	subclasses.	There	are	two	methods	for	representing	this	
relationship	with	relations.	
	

1. Multiple	relations	-	superclass	and	subclass:	The	approach	is	the	same	as	for	the	“IsA”	
superclass/subclass	relationship.	

2. Single	relation	with	multiple	type	attributes:	In	this	approach,	one	relation	R	is	created	that	
contains	the	union	of	the	attributes	from	the	superclass	and	the	attributes	from	all	of	the	
subclasses	combined.	It	also	contains	one	boolean	attribute	for	each	of	the	possible	subclasses.	
If	the	value	for	the	subclass	attribute	is	“true”,	then	a	relation	instance	tuple	belongs	to	that	
subclass.	

	
Each	approach	has	advantages	and	disadvantages.	Multiple	relations	-	superclass	and	subclass	has	the	
same	pros	and	cons	as	in	the	“IsA”	superclass/subclass	relationship	type.	Single	relation	with	multiple	
type	attributes	requires	the	fewest	number	of	joins,	but	the	attributes	for	the	subclasses	to	which	an	
entity	does	not	belong	to	will	always	be	NULL,	and	storage	space	is	thus	wasted.	
	
	

	
40	

	

Mapping	of	Relationships	to	other	Relationship	Types	
	
When	mapping	a	relationship	type	that	associates	an	entity	(or	a	relationship	type)	with	another	
relationship	type,	it	is	best	to	create	a	single	primary	key	attribute	for	the	relationship	type.	Then,	the	
relationship	between	the	relationship	types	can	be	mapped	using	the	Foreign	Key	Approach	or	the	
Cross	Reference	approach	depending	on	the	cardinality	of	the	relationship.	The	primary	key	of	the	
relationship	type	will	be	used	as	a	foreign	key	in	either	method.	
	
Mapping	of	Recursive	Relationships	
	
Recursive	relationships	occur	when	one	entity	type	(represented	by	relation	R)	is	related	to	itself.	There	
are	two	ways	to	represent	this	relationship:	
	

1. Foreign	Key	Approach:	In	this	approach,	the	R	contains	a	foreign	key	attribute	that	references	
the	primary	key	of	the	same	relation	R.		

2. Cross	Reference	Approach:	In	this	approach,	a	new	relation	Rrecursive	is	created	to	represent	the	
recursive	relationship.	It	contains	two	foreign	keys	that	both	reference	the	primary	key	of	of	R.	
The	combination	of	the	foreign	keys	forms	the	primary	key	of	Rrecursive.	

	
Both	approaches	have	advantages	and	disadvantages.		
The	Foreign	Key	Approach	requires	less	join	operations,	but	relation	tuples	corresponding	to	entity	
instances	that	do	not	participate	in	the	relationship	will	have	NULL	values	for	the	foreign	key	attribute.		
The	Cross	Reference	Approach	eliminates	this	problem	but	requires	more	join	operations	in	queries.	
	
Mapping	of	Relationships	Between	More	than	Two	Entity	Types	
	
If	a	relationship	type	associates	more	than	two	entity	types,	the	relationship	type	is	represented	as	its	
own	relationship	relation	R.	Each	entity	type	associated	by	the	relationship	type	have	already	been	
converted	into	relations,	and	R	contains	the	primary	keys	of	these	relations	as	foreign	keys.	The	
combination	of	the	foreign	keys	forms	the	primary	key	of	R	(although	some	foreign	keys	may	be	
excluded	from	the	primary	key	if	their	corresponding	relations	represent	entities	on	the	“1”	side	of	a	1:N	
cardinality	constraint).	
	
Mapping	of	Union	Types	(Categories)	
	
A	category	or	union	type	occurs	when	a	relation	for	a	subclass	entity	belongs	to	multiple	superclass	
entities.	Also,	the	relations	corresponding	to	the	different	superclass	entities	have	different	primary	
keys.	In	this	case,	the	superclass	entities	are	each	given	a	“surrogate	key”	attribute.	If	multiple	entities	
are	superclasses	of	the	same	subclass	entity,	the	relation	tuples	corresponding	to	the	superclass	entities	
share	the	same	value	for	the	surrogate	key.	
	

	
41	

	

2.2.3	Database	Constraints	
	
Database	constraints	ensure	that	all	of	the	stored	data	is	meaningful	and	coherent.	The	relational	
database	model	cannot	accurately	represent	the	ER	model	unless	the	tuples	in	the	relation	state	satisfy	
certain	rules	and	conditions.	In	any	rule	is	violated,	the	relational	database	state	is	invalid,	and	the	data	
is	meaningless.	In	this	section,	we	will	detail	each	type	of	constraint,	along	with	how	they	are	enforced	
in	a	database	management	system	(DBMS):	

• Domain	Constraints	
• The	Entity	Constraint	
• Primary	Key	and	Unique	Key	Constraints	
• Referential	Constraints	
• Check	Constraints	and	Business	Rules	

	
Domain	Constraints	
	
Domain	constraints	ensure	that	the	values	for	tuples	in	a	relation	state	are	within	the	domains	of	their	
corresponding	attributes	in	the	relation	schema.	Domain	constraints	include	restricting	the	value	for	a	
given	attribute	to	a	specific	data	type,	and	to	a	subset	of	values	within	that	data	type.	The	DBMS	can	
enforce	domain	constraints	by	rejecting	any	INSERT	or	UPDATE	operations	causing	tuples	to	have	invalid	
values,	or	by	setting	those	values	to	NULL	or	“default.”	
	
The	Entity	Constraint	
	
The	entity	constraint	ensures	that	all	tuples	belonging	to	a	relation	state	have	a	primary	key	value	that	is	
not	NULL.	It	is	important	that	the	primary	key	value	is	not	NULL	so	that	each	tuple	can	be	uniquely	
identified.	The	DBMS	enforces	this	constraint	by	rejecting	(responding	to	with	an	error)	INSERT	and	
UPDATE	operations	where	the	primary	key	attribute	is	set	to	NULL.	
	
Primary	Key	and	Unique	Key	Constraints	
	
All	tuples	belonging	to	a	relation	state	must	be	uniquely	identifiable.	In	other	words,	there	is	a	minimal	
set	of	attributes	-	a	“key”	-	whose	values	are	never	the	same	for	any	two	tuples	in	the	relation	state.	The	
Primary	Key	constraint	ensures	that	no	two	tuples	have	the	same	values	for	primary	key	attributes.	
Some	attributes	in	a	relation	schema	can	have	a	uniqueness	constraint	even	if	they	are	not	the	primary	
key.	
	
In	both	cases,	the	DBMS	enforces	the	constraints	by	rejecting	INSERT	and	UPDATE	operations	where	the	
primary	key	(or	unique	key)	attribute	value(s)	of	a	tuple	match	those	of	any	other	existing	tuple	in	the	
relation	state.	The	DBMS	can	help	enforce	this	constraint	by	auto-incrementing	the	primary	key	value	of	
each	new	tuple	during	the	INSERT	operation	if	the	attribute	has	an	integer	domain.	
	

	
42	

	

Referential	Constraints	
	
Some	attributes	of	a	relation	schema	are	foreign	key	attributes;	if	a	tuple	in	one	relation	state	
references	a	tuple	in	another	using	the	foreign	key,	the	referenced	tuple	must	exist.	The	referential	
integrity	constraint	ensures	that	if	relation	R1	contains	a	foreign	key	that	references	relation	R2	and	t1	is	a	
tuple	in	relation	state	r1(R1)	then	the	foreign	key	value	for	t1	matches	the	primary	key	value	for	some	
tuple	t2	in	r2(R2).	
	
Referential	constraints	need	to	be	enforced	by	the	DBMS	for	INSERT,	UPDATE,	and	DELETE	operations.	
For	the	INSERT	operation,	any	new	tuple	that	has	an	invalid	foreign	key	value	is	rejected	or	the	foreign	
key	value	is	set	to	NULL	or	“default”	(only	if	possible).		For	the	DELETE	operation,	there	are	three	
options:	

1. Restrict:	When	deleting	a	tuple	or	referenced	by	the	foreign	key	value	of	another	tuple,	reject	
the	operation.	

2. Cascade:	When	deleting	a	tuple,	delete	all	tuples	that	reference	the	deleted	tuple	through	a	
foreign	key.	

3. Set	Default:	When	deleting	a	tuple,	set	the	foreign	key	values	for	all	other	tuples	which	
reference	it	to	NULL	or	“default.”		

	
For	the	UPDATE	operation,	if	the	foreign	key	value	becomes	invalid,	the	operation	is	rejected	or	the	
foreign	key	value	is	set	to	NULL	or	“default.”	The	three	options	for	DELETE	also	apply	to	UPDATE	when	
changing	the	primary	key	value	of	a	tuple	referenced	by	other	tuples.	The	UPDATE	operation	can	either	
be	rejected	(restrict),	the	foreign	key	values	in	all	tuples	referencing	the	primary	key	can	be	cascade-
updated	to	the	new	primary	key,	or	all	foreign	key	values	referencing	the	primary	key	can	be	set	to	
NULL	or	“default.”	
	
Check	Constraints	and	Business	Rules	
	
The	above	constraints	ensure	that	all	of	the	tuples	in	all	relation	states	together	form	a	valid	relational	
database	state	-	they	ensure	that	the	rules	that	define	the	relational	model	are	satisfied.	Some	rules	are	
specific	to	each	business,	however	-	these	check	constraints	and	business	rules	ensure	that	data	fits	
users’	expectations	of	how	the	business	should	run.	These	constraints	must	be	custom-written	by	the	
database	designer	-	they	can	either	be	enforced	by	code	in	applications	that	use	the	database,	or	
through	a	constraint	specification	language	provided	by	the	DBMS,	where	“triggers”	and	“assertions”	
ensure	no	invalid	data	is	being	stored.	
	
	

	 	

	
43	

	

2.3	Convert	Entity	Relationship	Model	to	Relational	Model	
	
Now	that	we	have	detailed	the	process	for	converting	between	a	conceptual	and	logical	database,	we	
will	apply	the	process	to	the	conceptual	design	for	Charity	General	Hospital.	All	of	the	entity	types	and	
relationship	types	must	be	converted	into	relational	schema,	and	constraints	must	be	created	to	
preserve	a	valid	relational	database	that	fits	the	needs	of	the	organization.	We	will	also	create	sample	
tuples	for	each	relation	to	how	illustrate	our	logical	database	model	will	function	in	the	real	world.	
	
2.3.1	Relational	Schema	for	Logical	Database	
	
Each	relation	schema	in	the	logical	design	will	now	be	listed,	along	with	its	attributes,	the	entities	and	
relationships	it	represents	from	the	ER	model,	and	all	associated	relational	database	constraints.	
	
Relation	Schema:	employee	
employee(empID,	SSN,	fName,	mName,	lName,	street,	city,	state,	zip,	phone,	licType,	licNo)		
	
Attributes:	

*empID	 integer,	0	–	MaxID,	primary	key	

SSN	 integer,	000000000	–	999999999	

fName	 varchar2(255)	

mName	 varchar2(255)	

lName	 varchar2(255)	

street	 varchar2(255)	

city	 varchar2(255)	

state	 varchar2(2)	

zip	 integer,	00000	–	99999	

	 	

	
44	

	

employee	Attributes	Continued:	

phone	 integer,	0000000000	-	9999999999	

licType	 varchar(2),	“MD”	or	“RN”	

licNo	 integer,	000000	-	999999	

	
Candidate	Keys:	empID	(primary),	SSN	
	
Primary	Key/Entity	Integrity	Constraint:	“empID”	must	be	unique	and	cannot	be	NULL	
	
Uniqueness	Constraint:	“SSN”	must	be	unique	
	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Employee,	Doctor,	Nurse	
	
Derived	from	the	Employee	entity	type.	Represents	the	Nurse	and	Doctor	“is_a”	specialization	using	the	
single	relation	with	one	type	attribute	method;	“licType”	is	the	type	attribute	for	discerning	between	
Nurse	and	Doctor.	The	composite	“Name”	and	“Address”	attributes	of	the	Employee	Entity	Type	are	
broken	into	their	simple	components.	 	

	
45	

	

Relation	Schema:	prescription	
prescription(rxID,	empID,	patientID,	medID,	dosage,	freq,	sDate,	eDate,		rxDate)	
	
Attributes:	

*rxID	 integer,	0	–	MaxID,	primary	key	

*empID	 integer,	0	–	MaxID,	foreign	key	

*patientID	 integer,	0	–	MaxID,	foreign	key	

*medID	 integer,	0	–	MaxID,	foreign	key	

dosage	 varchar2(255)	

freq	 varchar2(255)	

sDate	 date	

eDate	 date	

rxDate	 date	

	
Candidate	Keys:	rxID	(primary)	
	
Primary	Key/Entity	Integrity	Constraint:	“rxID”	is	unique	and	cannot	be	NULL	
	
Referential	Integrity	Constraint:	“empID”	is	a	foreign	key	for	employee,	“patientID”	is	a	foreign	key	for	
patient,	“medID”	is	a	foreign	key	for	medication	
	
Business	Constraint:	“sDate”	is	never	greater	than	“eDate”	
The	employee	tuple	referenced	by	“empID”	must	be	for	a	doctor	(“licType”	=	“MD”)	
	
Derivation	From	Entity	and	Relationship	Types:	Prescription,	Prescription	has	medication	Medication,	
Doctor	prescribes	Prescription,	Prescription	prescribed	for	Patient	
	
Derived	from	the	Prescription	entity	type.	Represents	the	N:1	relationships	to	Doctor,	Patient,	and	
Medication	using	the	foreign	key	approach,	since	the	participation	of	Prescription	is	total	for	all	of	these	
relationships.

	
46	

	

Relation	Schema:	medication	
medication(medID,	medName,	medPurpose)	
	
Attributes:	

*medID	 integer,	0	–	MaxID,	primary	key	

medName	 varchar2(255)	

medPurpose	 varchar2(255)	

	
Candidate	Keys:	medID,	medName	
	
Primary	Key/Entity	Integrity	Constraint:	“medID”	is	unique	and	cannot	be	NULL	
	
Uniqueness	Constraint:	“medName”	must	be	unique	
	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Medication	
	
Derived	from	the	Medication	entity	type.	All	attributes	are	simple	and	single-value.	
	
	 	

	
47	

	

Relation	Schema:	room	
room(roomID,	unitID,	roomNo)	
	
Attributes:	

*roomID	 integer,	0	–	MaxID,	primary	key	

*unitID	 integer,	0	–	MaxID,	foreign	key	

roomNo	 integer,	0	-	999	

	
Candidate	Keys:	roomID	(primary),	[unitID,	roomNo]		
*[<key1>,<key2>]	denotes	a	compound	key	
	
Primary	Key/Entity	Integrity	Constraint:	“roomID”	is	unique	and	cannot	be	NULL	
	
Uniqueness	Constraint:	The	combination	of	“unitID,	roomNo”	is	unique	(no	two	rooms	in	the	same	unit	
have	the	same	number)	
	
Referential	Integrity	Constraint:	“unitID”	is	a	foreign	key	for	unit	
	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Room,	Room	belongs	to	Unit	
	
Derived	from	the	Room	entity	type.	Represents	the	N:1	relationship	with	Unit	using	the	foreign	key	
approach	since	the	participation	of	Room	is	total.	 	

	
48	

	

Relation	Schema:	unit	
unit(unitID,	unitName,	unitAbbrv)		
	
Attributes:	

*unitID	 integer,	0	–	MaxID,	primary	key	

unitName	 varchar2(255)	

unitAbbrv	 varchar2(10)	

	
Candidate	Keys:	unitID	(primary),	unitName,	unitAbbrv	
	
Primary	Key/Entity	Integrity	Constraint:	“unitID”	is	unique	and	cannot	be	NULL	
	
Uniqueness	Constraint:	“unitName”	is	unique,	“unitAbbrv”	is	unique	
	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Unit	
	
Derived	from	the	unit	entity	type.	All	attributes	are	simple	and	single-value.

	
49	

	

Relation	Schema:	patient	
patient(patientID,	SSN,	fName,	mName,	lName,	street,	city,	state,	zip,	phone,	dob,	gender,		
insuranceStatus,	language)		
	
Attributes:	

*patientID	 integer,	0	–	MaxID,	primary	key	

SSN	 integer,	000000000	–	999999999	

fName	 varchar2(255)	

mName	 varchar2(255)	

lName	 varchar2(255)	

street	 varchar2(255	

city	 vharchar2(255)	

state	 varchar2(255)	

zip	 integer,	00000	–	99999	

phone	 integer,	0000000000	–	9999999999	

dob	 date	

gender	 character,	F	or	M	

insuranceStatus	 varchar2(255)	

language	 varchar2(255)	

	
Candidate	Keys:	patientID,	SSN	
	
Primary	Key/Entity	Integrity	Constraint:	“patientID”	is	unique	and	cannot	be	NULL	
	
Uniqueness	Constraint:	“SSN”	is	unique	
	

	
50	

	

	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Patient	
	
Derived	from	the	Patient	entity	type.	The	composite	“Name”	and	“Address”	attributes	are	broken	into	
simple	component	attributes.	
	
	
	
	
	
	
Relation	Schema:	patientAdmitted	
patientAdmitted(patientID,	admittedDate,	dischargedDate)		
	
Attributes:	

*patientID	 integer,	0	–	MaxID,	foreign	key	

admittedDate	 date	

dischargedDate	 date	

	
Candidate	Keys:	[patientID,	admittedDate]		
	
Primary	Key/Entity	Integrity	Constraint:	The	combination	of	“patientID,	admittedDate”	is	unique	and	
no	fields	can	be	NULL	
	
Referential	Integrity	Constraint:	“patientID”	is	a	foreign	key	for	patient	
	
Business	Constraint:	“admittedDate”	cannot	be	greater	than	“dischargedDate”	
	
Derivation	From	Entity	and	Relationship	Types:	Patient		
Derived	from	the	multi-value	attributes	“Date	Admitted”	and	“Date	Discharged”	in	the	Patient	entity	
type.

	
51	

	

Relation	Schema:	placed	
placed(patientID,	roomID,	sDate,	eDate)		
	
Attributes:	

*patientID	 integer,	0	–	MaxID,	foreign	key	

*roomID	 integer,	0	–	MaxID,	foreign	key	

sDate	 date	

eDate	 date	

	
Candidate	Keys:	[patientID,	roomID,	sDate]	
	
Primary	Key/Entity	Integrity	Constraint:	The	combination	of	“patientID,	roomID,	sDate”	is	unique	and	
cannot	be	NULL	
	
Referential	Integrity	Constraint:	“roomID”	is	a	foreign	key	for	room	
	
Business	Constraint:		
“sDate”	cannot	be	greater	than	“eDate”	
	
Derivation	From	Entity	and	Relationship	Types:	Patient	placed	Room	
	
Derived	from	the	M:N	Patient	placed	Room	relationship	type	using	the	cross-reference	approach;	
placed	is	a	“relationship	relation”	with	foreign	keys	for	Patient	and	Room.

	
52	

	

Relation	Schema:	assessment	
assessment(asmtID,	empID,	patientID,		bpSystolic,	bpDiastolic,	respRate,	heartRate,	date)		
	
Attributes:	

*asmtID	 integer,	0	–	MaxID,	primary	key	

*empID	 integer,	0	–	MaxID,	foreign	key	

*patientID	 integer,	0	–	MaxID,	foreign	key	

bpSystolic	 integer,	0	–	300	

bpDiastolic	 integer,	0	–	300	

respRate	 integer,	0	–	300	

heartRate	 integer,	0	–	300	

date	 timestamp	

	
Candidate	Keys:	asmtID,	[empID,	date],	[patientID,	date]	
	
Primary	Key/Entity	Integrity	Constraint:	“asmtID”	is	unique	and	cannot	be	NULL	
	
Referential	Integrity	Constraint:	“empID”	is	a	foreign	key	for	employee,	“patientID”	is	a	foreign	key	for	
patient	
	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Assessment,	Nurse	takes	Assessment,	Patient	
undergoes	Assessment	
	
Derived	the	Assessment	entity	type.	The	composite	attribute	“Blood	Pressure”	is	broken	down	into	
simple	component	attributes.	Represents	the	N:1	relationships	to	Nurse	and	Patient	using	the	foreign	
key	approach,	since	the	participation	of	Assessment	in	both	relationships	is	total.	 	

	
53	

	

Relation	Schema:	specialNeed	
specialNeed(snID,	empID,	patientID,	activityID,	freq,	sDate,	eDate,	date)	
	
Attributes:	

*snID	 integer,	0	–	MaxID,	primary	key	

*empID	 integer,	0	–	MaxID,	foreign	key	

*patientID	 integer,	0	–	MaxID,	foreign	key	

*activityID	 integer,	0	–	MaxID,	foreign	key	

freq	 varchar2(255)	

sDate	 date	

eDate	 date	

date	 date	

	
Candidate	Keys:	snID	
	
Primary	Key/Entity	Integrity	Constraint:	“snID”	is	unique	and	cannot	be	NULL	
	
Referential	Integrity	Constraints:	“empID”	is	a	foreign	key	for	employee,	“patientID”	is	a	foreign	key	for	
patient,	“activityID”	is	a	foreign	key	for	activity	
	
Business	Constraints:	
“sDate”	cannot	be	greater	than	“eDate”	
The	employee	tuple	referenced	by	“empID”	must	be	a	doctor	(“licType”	=	“MD”)	
	
Derivation	From	Entity	and	Relationship	Types:	Special	Need,	Special	Need	has	activity	Activity,	Doctor	
orders	Special	Need	
	
Derived	from	the	Special	Need	entity	type.	All	attributes	are	simple	and	single-value.	Represents	the	N:1	
relationships	with	Doctor	and	Activity	using	the	foreign	key	approach,	since	the	participation	of	Special	
Need	in	both	relationships	is	total.

	
54	

	

Relation	Schema:	activity	
activity(activityID,	activityName,	desc)	
	
Attributes:	

*activityID	 integer,	0	–	MaxID,	primary	key	

activityName	 varchar2(255)	

desc	 varchar2(255)	

	
Candidate	Keys:	activityID	
	
Primary	Key/Entity	Integrity	Constraint:	“activityID”	is	unique	and	cannot	be	NULL	
	
Uniqueness	Constraint:	“activityName”	is	unique	
	
Business	Constraint:	None	
	
Derivation	From	Entity	and	Relationship	Types:	Activity		
	
Derived	from	the	Activity	entity	type.	All	attributes	are	simple	and	single-value.	 	

	
55	

	

Relation	Schema:	administers	
administers(empID,	rxID,	date)		
	
Attributes:	

*empID	 integer,	0	–	MaxID,	foreign	key	

*rxID	 integer,	0	–	MaxID,	foreign	key	

date	 timestamp	

	
Candidate	Keys:	[empID,	date],	[rxID,	date]	
	
Primary	Key/Entity	Integrity	Constraint:	The	combination	of		“empID,	date”	must	be	unique	and	cannot	
be	NULL		
	
Business	Constraint:	The	employee	tuple	referenced	by	“empID”	is	a	nurse	(“licType”	=	“RN”)	
	
Referential	Integrity	Constraints:	“empID”	is	a	foreign	key	for	employee,	“rxID”	is	a	foreign	key	for	
prescription	
	
Derivation	From	Entity	and	Relationship	Types:	Nurse	administers	Prescription		
	
Derived	from	the	M:N	relationship	between	Nurse	and	Prescription	using	the	cross-reference	approach;	
administers	is	a	“relationship	relation.”		 	

	
56	

	

Relation	Schema:	assignedTo	
assignedTo(empID,		patientID,	sDate,	eDate)		
	
Attributes:	

*empID	 integer,	0	–	MaxID,	foreign	key	

*patientID	 integer,	0	–	MaxID,	foreign	key	

sDate	 timestamp	

eDate	 timestamp	

	
Candidate	Keys:	[empID,	patientID,	sDate]	
	
Primary	Key/Entity	Integrity	Constraint:	The	combination	of		“empID,		patientID,	sDate”	must	be	unique	
and	cannot	be	NULL		
	
Referential	Integrity	Constraints:	“empID”	is	a	foreign	key	for	employee,	“patientID”	is	a	foreign	key	for	
patient	
	
Business	Constraint:	“sDate”	cannot	be	greater	than	“eDate”	
The	employee	tuple	referenced	by	“empID”	is	a	nurse	(“licType”	=	“RN”)	
	
Derivation	From	Entity	and	Relationship	Types:	Nurse	assigned	to	Patient	
	
Derived	from	the	M:N	relationship	between	Nurse	and	Patient	using	the	cross-reference	approach;	
assignedTo	is	a	“relationship	relation.”		 	

	
57	

	

Relation	Schema:	performs	
performs(empID,		snID,	date)		
	
Attributes:	

*empID	 integer,	0	–	MaxID,	foreign	key	

*snID	 integer,	0	–	MaxID,	foreign	key	

date	 timestamp	

	
Candidate	Keys:	[empID,	date],	[snID,	date]	
	
Primary	Key/Entity	Integrity	Constraint:	The	combination	of		“empID,	date”	must	be	unique	and	cannot	
be	NULL		
	
Referential	Integrity	Constraints:	“empID”	is	a	foreign	key	for	employee,	“snID”	is	a	foreign	key	for	
specialNeed	
	
Business	Constraint:	“sDate”	cannot	be	greater	than	“eDate”	
The	employee	tuple	referenced	by	“empID”	is	a	nurse	(“licType”	=	“RN”)	
	
	
Derivation	From	Entity	and	Relationship	Types:	Nurse	performs	Special	Need	
	
Derived	from	the	M:N	relationship	between	Nurse	and	Special	Need	using	the	cross-reference	
approach;	performs	is	a	“relationship	relation.”		 	

	
58	

	

Relation	Schema:	worksIn	
worksIn(empID,	unitID,	sDate,	eDate)	
	
Attributes:	

*empID	 integer,	0	–	MaxID,	foreign	key	

*unitID	 integer,	0	–	MaxID,	foreign	key	

sDate	 date	

eDate	 date	

	
Candidate	Keys:	[empID,	unitID,	sDate]	
	
Primary	Key/Entity	Integrity	Constraint:	The	combination	of		“empID,	unitID,	sDate”	must	be	unique	
and	cannot	be	NULL		
	
Referential	Integrity	Constraints:	“empID”	is	a	foreign	key	for	employee,	“unitID”	is	a	foreign	key	for	
unit	
	
Business	Constraints:	“sDate”	cannot	be	greater	than	“eDate”	
The	employee	tuple	referenced	by	“empID”	is	a	nurse	(“licType”	=	“RN”)	
	
Derivation	From	Entity	and	Relationship	Types:	Nurse	works	in	Unit	
	
Derived	from	the	M:N	relationship	between	Nurse	and	Unit	using	the	cross-reference	approach;	
worksIn	is	a	“relationship	relation.”	 	

	
59	

	

2.3.2	Sample	Data	of	Relation	
	
We	will	now	list	tuples	that	belong	to	sample	relation	states	for	each	relational	schema	in	the	relational	
database	schema;	the	tuples	will	form	a	valid	relational	database	state.	The	tuples	will	be	listed	in	a	
table	format,	were	relational	schema	attributes	are	columns	and	individual	tuples	are	rows.	Each	
relation	derived	from	an	entity	will	be	given	between	10	and	20	sample	tuples,	while	all	other	relations	
will	be	given	between	60	and	100.	
	

	
60	

	

	

	
61	

	

	
	 	

	
62	

	

	

	 	

	
63	

	

	 	

	
64	

	

	 	

	
65	

	

	 	

	
66	

	

	 	

	
67	

	

	 	

	
68	

	

	 	

	
69	

	

	 	

	
70	

	

	 	

	
71	

	

2.4	Sample	Queries	
	
Now	that	we	have	specified	data	for	our	relational	database,	it	is	important	to	specify	useful	methods	to	
retrieve	that	data.	To	illustrate	how	data	is	retrieved,	we	will	present	sample	queries	for	retrieving	data	
that	is	useful	in	very	specific	scenarios.	Each	of	the	queries	will	be	expressed	in	mathematical	
expressions	for	querying	relational	databases.	
	
2.4.1	Design	of	Queries	
	
In	the	following	sections,	we	will	describe	the	three	main	formal	querying	languages:	relational	algebra,	
tuple	relational	calculus,	and	domain	relational	calculus.	Then,	we	will	express	our	sample	queries	using	
the	three	languages.	
	
2.4.2	Relational	Algebra	Expressions	for	Queries	
	
Relational	algebra	is	a	set	of	operations	for	retrieving	tuples	from	a	relational	database	state.	Relational	
algebra	expressions	combine	the	operations	to	return	sets	of	tuples.	Relational	algebra	expressions	
describe	the	process	for	retrieving	tuples	from	a	relational	database	–	in	other	words,	they	are	
procedural,	so	it	is	important	to	order	and	nest	expressions	appropriately.	
	
1.	List	all	patients	who	have	been	assessed	by	each	of	all	nurses	who	are	currently	hired.		
	

	
	
2.	List	all	nurses	who	have	been	assigned	to	least	2	patients	in	the	same	time	period.	
	

	
	
3.	List	the	medications	that	all	currently	admitted	patients	have	in	common.	
	

	
	
4.	List	all	patients	who	have	been	admitted	to	the	hospital	exactly	once.	

	
72	

	

	

	
	
5.	List	all	patients	who	have	received	special	need	orders	for	all	of	the	same	activities	as	John	Doe	
ordered	for	Chelsea	Doe.	
	

	
	
6.	List	all	of	the	patients	who	have	been	assessed	today	by	at	least	one	of	the	nurses	who	assessed	
John	Doe	on	1/27/15.	
	

	
	
7.	List	the	nurses	who	most	recently	administered	one	of	Chelsea	Doe’s	prescriptions.	
	

	
	
8.	List	nurses	who	have	performed	each	of	all	activities	in	the	database.	
	 	

	
	
	
	 	

	
73	

	

9.	List	all	discharged	patients	who	stayed	in	the	same	room	as	John	Doe.	
	

	
	
10.	List	all	currently-admitted	patients	who	don't	have	any	currently	active	prescriptions.	
	

	

	 	

	
74	

	

2.4.3	Tuple	Relational	Calculus	Expressions	for	Queries	
	
Relational	calculus	is	a	querying	language	that	uses	declarative,	nonprocedural	expressions;	relational	
calculus	expressions	describe	the	set	of	tuples	that	will	be	retrieved,	without	specifying	the	order	of	
operations	needed	to	retrieve	it.	Relational	calculus	uses	free	variables	(the	variables	that	describe	what	
the	query	will	retrieve),	bound	variables	(variables	bounded	by	the	existential	or	universal	quantifiers),	
and	logical	expressions	with	truth	value.	There	are	two	variations	of	relational	calculus	–	tuple	and	
domain.	In	tuple	relational	calculus,	each	variable	represents	a	tuple	–	a	list	of	values	that	satisfy	the	
attribute	domains	of	a	relational	schema.	
	
1.	List	all	patients	who	have	been	assessed	by	each	of	all	nurses	who	are	currently	hired.		
	
{	p	|	patient(p)	^		(∀e)	(Employee(e)	^	(∃w)(works_in(w)	^	w.eDate	!=	NULL	^	w.empID	=	e.empID)	
	 →	∃a	(Assessment(a)	^	a.empID	=	e.	empID	^	a.patientID	=	p.patientID))	
}	
	
2.	List	all	nurses	who	have	been	assigned	to	least	2	patients	in	the	same	time	period.	
	
{	e	|	Employee(e)	^	(∃a1)	(∃a2)	(Assigned(a1)	^	Assigned(a2)		
	 ^	a1.empID	=	e.empID	^	a2.empID	=	e.empID	
	 ^	a1.patientID	!=	a2.patientID	
	 ^	a1.sDate	>=	a2.sDate		

^	a1.sDate	<=a2.eDate)	
}	
	
3.	List	the	medications	that	all	currently	admitted	patients	have	in	common.	
	
{	m	|	Medication(m)	^	(∀p)	(Patient(p)	^	∃pa	(PatientAdmitted(pa)	^	pa.patient	=	p.patientID	
	 ^	pa.dischargedDate	=	NULL)	

→	∃rx	(Prescription(rx)	
^	rx.sDate	≤	today	^	rx.eDate	≥	today	^	rx.medID	=	m.medID	
^	rx.patientID	=	p.patientID))	

}	
	
4.	List	all	patients	who	have	been	admitted	to	the	hospital	exactly	once.	
	
{	p	|	Patient(p)	^	(∃pa)	(PatientAdmitted(pa)	^	pa.patientID	=	p.patientID)		

^	¬∃pa2(PatientAdmitted(pa2)	
^	pa.patientID	=	pa2.patientID	^	pa.admittedDate	!=	pa2.admittedDate)	

}	 	

	
75	

	

5.	List	all	patients	who	have	received	special	need	orders	for	all	of	the	same	activities	as	John	Doe	
ordered	for	Chelsea	Doe.	
	
{	p	|	Patient(p)	^	(∀p2)	(∀s)	(∀e)	(Patient(p2)	^	SpecialNeed(s)	^	Employee(e)		

^	s.patientID	=	p2.patientID	
	 ^	s.empID	=	e.empID	^	p2.fName	=	“Chelsea”	^	p2.lName	=	“Doe”	

^	e.fName	=	“John”	^	e.lName=	“Doe”		
→	∃s2	(SpecialNeed(s2)	^	s2.activityID	=	s.activityID	^	p.patientID	=	s2.patientID))	

}	
	
6.	List	all	of	the	patients	who	have	been	assessed	today	by	at	least	one	of	the	nurses	who	assessed	
John	Doe	on	1/27/15.	
	
{	p	|	Patient(p)	^	(∃e)	(∃a1)	(∃p1)	(Employee(e)	^	Assessment(a1)	^	Patient(p1)	^	a1.empID	=	e.empID	
	 ^	a1.patientID	=	p1.pateintID	^	p1.fName	=	“John”	^	p1.lName	=	“Doe”	

^	a1.date	=	“1/27/16”	^	∃a2	(Assessment(a2)	
^	a2.empID	=	e.empID	^	a2.patientID	=	p.patientID	
^	a2.date	=	today))	

}	
	
7.	List	the	nurses	who	most	recently	administered	one	of	Chelsea	Doe’s	prescriptions.	
	
{	e	|	Employee(e)	^	(∃p)	(∃rx)	(∃a)	(Patient(p)	^	Prescription(rx)	^	Administers(a)	
	 ^	rx.patientID	=	p.patientID	^	a.rxID	=	rx.rxID	
	 ^	p.fName	=	“Chelsea”	^	p.lName	=	“Doe”	^	a.empID	=	e.empID	
	 ^	¬	∃p2	∃rx2	∃a2(Patient(p2)	^	Prescription(rx2)	^	Administers(a2)	
	 ^	rx2.patientID	=	p2.patientID	^	a2.rxID	=	rx2.rxID	
	 ^	p.fName	=	“Chelsae”	^	p.lName	=	“Doe”	^	a2.Date	>	a.Date))	
}	
	
8.	List	nurses	who	have	performed	each	of	all	activities	in	the	database.	

	
{	e	|	Employee(e)	^	(∀a)	(Activity(a)	
	 →	∃s	∃p	(SpecialNeed(s)	^	Performs(p)		

^	s.activityID	=	a.activity	ID			
^	p.snID	=	s.snID		
^	p.empID	=	e.empID))	

}	 	

	
76	

	

9.	List	all	discharged	patients	who	stayed	in	the	same	room	as	John	Doe.	
	
{	p	|	Patient(p)	^	(∃p1)	(∃pl1)	(Patient(p1)	^	Placed(pl1)	^	pl1.patientID	=	p1.patientID		

^	p1.fName	=	“John”	^	p1.lName=	“Doe”	^	∃pl2	(Placed(pl2)		
^	pl2.patientID	=	p.patientID	^	pl2.roomID	=	pl1.roomID))	
^	¬	∃pa	(PatientAdmitted(pa)	^	pa.patientID	=	p.patientID	
^	pa.dischargedDate	=	NULL)	

}	
	
10.	List	all	currently	admitted	patients	who	don't	have	any	currently	active	prescriptions.	
	
{	p	|	Patient(p)	^	(∃pa)	(PatientAdmitted(pa)	^	pa.dischargedDate	=	NULL	

^	pa.patientID	=	p.patientID)	^	¬	∃rx	(Prescription(rx)	
^	rx.sDate	≤	today	^	rx.eDate	≥	today	
^	rx.patientID	=	p.patientID)	

}	 	

	
77	

	

2.4.4	Domain	Relational	Calculus	Expressions	for	Queries	
	
Domain	relational	calculus	is	a	variation	of	relational	calculus.	In	domain	relational	calculus,	each	
variable	represents	a	single	value	within	a	tuple,	instead	of	a	tuple	itself.	
	
1.	List	all	patients	who	have	been	assessed	by	each	of	all	nurses	who	are	currently	hired.		
	
{	<	p,	f,	l>	|	Patient(p,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_,	_,	_)		

^		(∀e)	(Employee(e,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_)	^	works(e,	_,	_,	!=	NULL)		
	 	 →		(∃a)	(Assessment(a,	e,	p,	_,	_,	_,	_)))	
}			
	
2.	List	all	nurses	who	have	been	assigned	to	least	2	patients	in	the	same	time	period.	
	
{	<	e,	f,	l	>	|	Employee(e,	_,	fName,	_,	lName,	_,	_,	_,	_,	_,	_,	_)	
	 ^	(∃p1)	(∃p2)	(∃sD)		(Assigned(e,	p1,	sD,	_)	^	Assigned(e,	p2,	<=	sD,	>=	sD)	
	 ^	p1	!=	p2)	
}	
	
3.	List	the	medications	that	all	currently	admitted	patients	have	in	common.	
	
{	<	m,	n,	p	>	|	Medication(m,	n,	p)		

^	(∀p)	(Patient	(p,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_	,	_,	_,	_)	^	PatientAdmitted(p,	_,	_,	NULL)	
→	(∃rx)	(Prescription(rx,	_,	p,	m,	_,	_,	<=	today,	>=	today,	_)))	

}	
	
4.	List	all	patients	who	have	been	admitted	to	the	hospital	exactly	once.	
	
{	<	p,	f,	l>	|	Patient(p,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_,	_,	_)		
	 ^	(∃d)	(PatientAdmitted(p,	d,	_)	^	¬(∃d2)	(PatientAdmitted(p,	d2,	_)	^	d	!=	d2))	
}	
	
5.	List	all	patients	who	have	received	special	need	orders	for	all	of	the	same	activities	as	John	Doe	
ordered	for	Chelsea	Doe.	
	
{	<p,	f,	l>	|		Patient(p,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_,	_,	_)		

^	(∀p2)	(∀e)(∀a)	(Patient(p2,	_,	“Chelsea”,	_,	“Doe”,	_,	_,	_,	_,	_,	_,	_,	_,	_)		
^	Employee(e,	_,	“John”,	_,	“Doe”,	_,	_,	_,	_,	_,	_,	_)		
^	SpecialNeed(_,	e,	p2,	a,	_,	_,	_,	_)	
	 →	SpecialNeed(_,	_,	p,	a,	_,	_,	_,	_))		

}	 	

	
78	

	

6.	List	all	of	the	patients	who	have	been	assessed	today	by	at	least	one	of	the	nurses	who	assessed	
John	Doe	on	1/27/15.	
	
{	<p,	f,	l>	|		Patient(p,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_,	_,	_)		

^	(∃e)	(∃p2)	(Patient(p2,	_,	“John”,	_,	“Doe”,	_,	_,	_,	_,	_,	_,	_,	_,	“1/27/16”)		
^	Assessment(_,	e,	p2,	_,	_,	_,	_,	_)	

	 ^	Assessment(_,	e,	p,	_,	_,	_,	_,	today))	
}	
	
7.	List	the	nurses	who	most	recently	administered	one	of	Chelsea	Doe’s	prescriptions.	
	
{	<e,	f,	l>	|	Employee(e,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_)	

^	(∃p)	(∃rx)	(∃d)	(Patient	(p,	_	,	“Chelsea”,	_,	“Doe”,	_,	_,	_,	_,	_,	_,	_,	_,	_)	
^	Prescription	(rx,	_,	p,	_,	_,	_,	_,	_,)	
^	Administers	(e,	rx,	d)	
^		¬	(∃rx2)	(∃d2)	(Prescription	(rx2,	_,	p,	_,	_,	_,	_,	_)	^	Administers(_,	rx2,	d2)	
^	d2	>	d))	

}	
	
8.	List	nurses	who	have	performed	each	of	all	activities	in	the	database.	
	
{	<e,	f,	l>	|	Employee(e,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_)	
	 ^		(∀a)	(Activity(a,	_,	_)		
	 	 →	∃s	(SpecialNeed(s,	_,	_,	a,	_,	_,	_,	_)	^	Performs(e,	s,	_)))	
}	
	
9.	List	all	discharged	patients	who	stayed	in	the	same	room	as	John	Doe.	
{	<p,	f,	l>	|		Patient(p,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_,	_,	_)		
	 ^		¬	PatientAdmitted(p,	_,	NULL)	
	 ^	(∃p2)	(∃r)	(Patient(p2,	_,	“John”,	_,	“Doe”,	_,	_,	_,	_,	_,	_,	_,	_,	_)		
	 ^	Placed	(p2,	r,	_,	_)	
	 ^	Placed(p,	r,	_,	_))	
}	
	
10.	List	all	currently-admitted	patients	who	don't	have	any	currently	active	prescriptions.	
	
{	<p,	f,	l>	|	Patient(p,	_,	f,	_,	l,	_,	_,	_,	_,	_,	_,	_,	_,	_)		
	 ^	PatientAdmitted(p,	_,	NULL)	
	 ^	¬	Prescription(_,	_,	p,	_,	_,	_,	<=	today,	>=	today)	
}	 	

	
79	

	

3.	Oracle	Database	Management	System	
	

3.1	Normalization	of	Relations	
	
Before	we	implement	our	logical	database	as	a	physical	database,	it	is	important	to	analyze	the	quality	
of	the	relational	database	schema	design.	In	this	section,	we	will	define	a	formal	method	called	
normalization	for	measuring	whether	a	relational	database	schema	is	well	designed,	and	we	will	explore	
some	of	the	problems	that	can	occur	when	applying	operations	to	a	poorly	normalized	database	design	
once	it	is	implemented.	Then,	we	will	analyze	the	relation	schemas	in	the	Charity	General	Hospital	
logical	design	
	
3.1.1	Normalization	and	Normal	Forms	
	
Before	we	analyze	the	quality	of	the	relation	schemas	in	the	Charity	General	Hospital	database,	we	
should	define	the	concepts	of	normalization,	as	well	as	how	to	measure	normalization	using	normal	
forms.	
	
Description	of	Normalization	and	Normal	Forms	
	
A	relational	database	schema	can	be	poorly	designed	so	that	tuples	contain	redundant	data.	This	is	
problematic	because	if	the	value	for	a	redundant	attribute	is	changed	in	one	tuple,	it	may	have	to	be	
changed	in	several	others	for	the	data	to	remain	coherent	–	this	is	known	as	a	modification	anomaly.	
Normalization	is	the	process	of	decomposing,	or	“breaking	apart”	relation	schemas	so	that	this	
redundancy	is	removed	and	modification	anomalies	do	not	occur.		
In	order	to	test	how	well	each	relation	schemas	is	normalized,	we	will	use	a	formal	method	for	
measuring	normalization	called	normal	form	tests.	There	are	four	main	normal	forms	that	a	relation	
schema	can	satisfy	or	belong	to:	first,	second,	third,	and	Boyce-Codd.	The	normal	forms	can	be	used	to	
rank	relation	schemas	–	the	higher	the	normal	form,	the	more	normalized	the	schema	is.	In	a	well-
designed	relational	database,	all	schemas	should	satisfy	at	least	third	normal	form.	

The	conditions	that	must	be	satisfied	for	each	normal	form	will	now	be	explained	in	detail.	
	
First	Normal	Form	
In	order	for	first	normal	form	(1NF)	to	be	satisfied,	all	attribute	values	in	a	relation	schema	must	single	
and	atomic.	In	other	words,	1NF	does	not	allow	relation	tuples	that	contain	nested	tuples	of	values.		
There	are	several	methods	to	decompose	a	relation	schema	that	is	not	(1NF).	The	multi-value	attribute	
can	be	made	into	a	separate	relation	that	contains	the	original	relation’s	primary	key	as	a	foreign	key	
attribute.	This	method	is	used	to	map	multi-value	attributes	in	the	ER-model	to	relations	in	the	previous	
chapter.	Another	method	can	be	used	if	the	multi-value	attribute	contains	a	specific	number	of	values	
for	each	tuple;	in	this	case,	a	new	single-value	attribute	is	added	to	the	relation	schema	for	each	value	in	
the	multi-value	attribute.	Finally,	the	multi-value	attribute	replaced	with	a	new	single-value	attribute,	

	
80	

	

and	each	of	the	multiple	values	will	be	stored	in	a	separate,	“duplicate”	tuple.	For	example,	if	the	
attribute	value	contains	three	nested	sub	values,	there	will	be	three	tuples	that	each	contain	one	of	the	
multiple	values,	and	are	otherwise	identical.	The	final	solution	creates	redundant	data,	so	it	should	be	
avoided.	
	
Second	Normal	Form	
Second	normal	form	(2NF)	evaluates	relational	schema	attributes	based	on	functional	dependency.	A	set	
of	attributes	Y	is	functionally	dependent	on	another	set	of	values	X	if	the	set	of	values	for	X	map	to	only	
one	set	of	values	for	Y.	In	other	words,	the	values	of	X	can	be	used	to	determine	the	values	of	Y.	An	
example	of	a	functional	dependency	is	the	primary	key	of	a	tuple,	because	each	primary	key	value	maps	
to	only	one	tuple.	Functional	dependency	is	notated	as:	

X	→	Y	

Y	functionally	depends	on	X.	

In	order	for	a	relation	schema	to	satisfy	2NF,	it	must	satisfy	1NF.	Also,	all	attributes	that	are	not	part	of	
the	primary	key	must	fully	functionally	depend	on	the	primary	key.	Attributes	fully	functionally	depend	
on	the	primary	key	if	the	functional	dependency	no	longer	holds	once	one	of	the	attributes	for	the	
primary	key	is	removed;	in	other	words,	nonprime	attributes	(a	term	for	attributes	that	are	not	part	of	
the	primary	key)	must	functionally	depend	on	the	entire	primary	key,	not	just	a	part	of	it.	
All	relation	schemas	that	have	a	single-attribute	primary	key	automatically	past	the	2NF	test.	If	a	
relational	schema	fails	the	test,	it	can	be	normalized	by	being	broken	into	smaller	relation	schemas	
whose	primary	keys	are	subsets	of	the	original	primary	key.		
	
Third	Normal	Form	
In	order	for	a	relation	schema	to	satisfy	Third	Normal	Form	(3NF),	it	must	satisfy	2NF	and	1NF.	Also,	
there	cannot	be	any	non-prime	attributes	that	functionally	depend	on	other	non-prime	attributes.	In	
other	words,	no	non-prime	attributes	can	transitively	depend	on	the	primary	key.		
If	a	relation	schema	fails	the	3NF	test,	then	it	can	be	normalized	by	being	decomposed	into	relations	
where	the	left	side	of	a	functional	dependency	is	always	a	primary	key	attribute	(or	a	superkey	which	
contains	the	primary	key).		
	
Boyce-Codd	Normal	Form	
Boyce-Codd	Normal	Form	(BCNF)	is	very	similar	to	3NF,	but	is	stricter.	In	order	for	a	relation	schema	to	
satisfy	BCNF,	all	previous	normal	forms	must	be	satisfied,	and	the	left	side	of	any	functional	dependency	
must	be	a	primary	key	(or	superkey)	of	the	relation	schema.	BCNF	is	stricter	than	3NF	because	it	does	
not	allow	any	prime	attributes	(members	of	primary	or	candidate	keys)	to	depend	on	non-prime	
attributes.	

If	a	relation	schema	fails	the	BNF	test,	the	schema	can	be	decomposed	into	relations	where	the	non-
prime	attributes	at	the	left	side	of	any	functional	dependencies	become	prime	attributes	of	the	new	
relation	schemas.	

	
81	

	

Anomalies	that	Result	from	Poor	Normalization	
	
Unless	3NF	or	BCNF	at	minimum	are	satisfied,	relations	will	contain	redundant	data	that	cause	
anomalies	to	occur	when	data	is	modified.	These	anomalies	can	be	divided	into	three	classes:	insertion,	
modification,	and	deletion.	
	
Insertion	Anomalies	
Redundant	data	that	violates	2NF,	3NF,	or	BCNF	tests	can	be	created	by	storing	the	natural	join	of	two	
relations	as	one	relation.	Several	anomalies	or	incoherencies	can	occur	when	trying	to	insert	new	tuples	
for	the	“joined”	relation	schema.		
First,	to	insert	two	tuples	that	represent	two	relations	that	are	both	joined	to	the	same	relation,	the	
attribute	values	for	the	joined	relation	must	be	exactly	the	same	for	both	tuples	in	order	for	the	data	to	
be	coherent.	
	
Second,	to	insert	a	tuple	representing	a	relation	that	is	not	joined	to	any	other	relations,	the	attribute	
values	for	the	other	relation	schema	must	all	be	set	to	NULL.	This	creates	problems	because	NULL	values	
have	many	possible	interpretations,	including	“absent,”	“not	applicable,”	and	“unknown.”	Also,	if	any	of	
the	attributes	that	are	set	to	NULL	help	compose	the	primary	key	of	the	joined	relation,	then	the	entity	
integrity	constraint	will	be	violated	(see	Phase	2).	
	
Update	Anomalies	
If	a	set	of	tuples	can	represent	one	single	relation	that	is	joined	to	several	other	relations,	then	the	
attribute	values	representing	the	single	relation	will	appear	in	all	of	the	tuples.	If	any	of	those	attribute	
values	at	are	changed	in	one	tuple,	they	must	be	changed	in	all	of	the	tuples	in	order	for	the	data	to	
remain	coherent.	
	
Deletion	Anomalies	
If	a	set	of	tuples	can	represent	one	single	relation	that	is	joined	to	several	other	relations,	and	all	of	the	
tuples	are	removed,	then	any	record	of	the	single	relation	will	be	completely	removed	from	the	
database.	In	other	words,	it	will	be	impossible	to	join	the	single	relation	to	other	relations	in	the	future.	
	

	

	

	 	

	
82	

	

3.1.2	Normal	Forms	for	This	Database	
	
We	will	now	analyze	each	of	the	relation	schemas	in	the	database	to	determine	if	they	at	least	satisfy	
3NF.	Then,	we	will	analyze	a	relation	schema	that	results	from	joining	two	relation	schema	and	discuss	
anomalies	that	can	occur	as	a	result.		
	
Employee	
Functional	Dependencies:	
FD1.	Trivial;	{empID}	→	{SSN,	fName,	mName,	…,	licNo}		
FD2.	{SSN}	→	{empID,	fName,	mName,	…,	licNo}	
	
Candidate	Keys:	
empID	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.	
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key	(SSN	is	a	candidate	
key).	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Prescription	
Functional	Dependencies:	
FD1.	Trivial;	{rxId}	→	{empID,	…,	rxDate}		
	
Candidate	Keys:	
rxID	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.	
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.		
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	 	

	
83	

	

Medication	
Functional	Dependencies:	
FD1.	Trivial;	{medID}	→	{medName,	medPurpose}		
FD2.	Trivial;	{medName}	→	{medID,	medPurpose}		
	
Candidate	Keys:	
medID,	medName	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.	
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.		
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Room	
Functional	Dependencies:	
FD1.	Trivial;	{roomID}	→	{unitID,	roomNo}		
FD2.	{unitID,	roomNo}	→	{roomID}		
	
Candidate	Keys:	
roomID,	{unitID,	roomNo}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.	
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key	({untID,	roomNo}	
is	a	candidate	key).		
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	 	

	
84	

	

Unit	
Functional	Dependencies:	
FD1.	Trivial;	{unitID}	→	{unitName,	unitAbbrv}		
FD2.	{unitName}	→	{unitID,	unitAbbrv}	
FD3.	{unitAbbrv}	→	{unitID,	unitName}		
	
Candidate	Keys:	
unitID,	unitName,	unitAbbrv	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.	
3NF	is	satisfied	because	there	are	no	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Patient	
Functional	Dependencies:	
FD1.	Trivial;	{patientID}	→	{SSN,	fName,	mName,	…,	licNo}		
FD2.	{SSN}	→	{patientID,	fName,	mName,	…,	licNo}	
	
Candidate	Keys:	
patientID,	SSN	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.	
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key	(SSN	is	a	candidate	
key).	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	 	

	
85	

	

	
Patient	Admitted	
Functional	Dependencies:	
FD1.	Trivial;	{patientID,	admittedDate}	→	{dischargedDate}		
	
Candidate	Keys:	
{patientID,	admittedDate}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	no	attributes	functionally	depend	on	only	part	of	the	primary	key.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Placed	
Functional	Dependencies:	
FD1.	Trivial;	{patientID,	roomID,	sDate}	→	{eDate}		
	
Candidate	Keys:	
{patientID,	roomID,	sDate}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	no	attributes	functionally	depend	on	only	part	of	the	primary	key.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	 	

	
86	

	

Assessment	
Functional	Dependencies:	
FD1.	Trivial;	{asmtID}	→	{empID,…,date}		
FD2.	{patientID,	date}	→	{empID,	…}	
FD3.	{empID,	date}	→	{patientID,	…}	
	
Candidate	Keys:	
asmtID,	{patientID,	date},	{empID,	date}	
*the	non-primary	candidate	keys	are	unique	because	date	is	of	type	“timestamp”	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Special	Need	
Functional	Dependencies:	
FD1.	Trivial;	{snID}	→	{empID,…,date}		
	
Candidate	Keys:	
snID	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	 	

	
87	

	

Administers	
Functional	Dependencies:	
FD1.	{rxID,	date}	→	{empID}	
FD2.	{empID,	date}		→	{rxID}	
	
Candidate	Keys:	
{rxID,	date},	{empID,	date}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Assigned	To	
Functional	Dependencies:	
FD1.	Trivial;	{empID,	patientID,	sDate}	→	{eDate}	
	
Candidate	Keys:	
{empID,	patientID,	sDate}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
	 	

	
88	

	

Performs	
Functional	Dependencies:	
FD1.	{snID,	date}	→	{empID}	
FD2.	{empID,	date}		→	{snID}	
	
Candidate	Keys:	
{snID,	date},	{empID,	date}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	no	attributes	depend	on	only	part	of	the	primary	key.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	
	
Works	In	
Functional	Dependencies:	
FD1.	{empID,	unitID,	sDate}	→	{eDate}	
	
Candidate	Keys:	
{empID,	unitID,	sDate}	
	
Normal	Form:	
1NF	is	satisfied	because	all	attributes	have	atomic	domains.	
2NF	is	satisfied	because	the	primary	key	only	has	one	attribute.		
3NF	is	satisfied	because	no	non-prime	attributes	depend	on	other	non-prime	attributes.	
BNF	is	satisfied	because	the	left	side	of	all	functional	dependencies	is	a	candidate	key.	
	
BNF	is	satisfied,	so	there	should	be	no	inherent	modification	anomalies.	
	

	
	 	

	
89	

	

Example	of	Poorly	Normalized	Relation:	Prescription-Medication	
	
Prescription-Medication	is	a	relation	schema	created	by	natural	joining	the	Prescription	and	Medication	
relations.	We	will	show	its	functional	dependencies,	explain	why	it	does	not	satisfy	all	of	the	normal	
form	tests,	and	illustrate	some	of	the	anomalies	that	can	occur	as	a	result.	
	
Relation:	
prescriptionmedication(rxID,	empID,	patientID,	dosage,	freq,	sDate,	eDate,	rxDate,	medName,	
medPurpose)	
	
Functional	Dependencies:		
FD1.	{rxID}	→	{empID,	…,	medName,	medPurpose}	
FD2.	{medName}	→	{medPurpose}	
	
Candidate	Keys:	
rxID	
	
Normal	Form:	
1NF	and	2NF	are	satisfied,	but	3NF	is	not.	This	is	because	medPurpose	functionally	depends	on	a	
nonprime	attribute	medName,	and	thus	transitively	depends	on	the	primary	key.	
	
Possible	Anomalies:	
If	the	same	medication	is	prescribed	multiple	times,	both	the	medName	and	medPurpose	fields	must	be	
exactly	the	same	for	all	tuples	so	that	the	data	remains	consistent.	If	the	medName	is	modified	in	one	of	
the	tuples	with	an	UPDATE	operation,	it	must	be	modified	in	all	the	tuples	for	which	the	medication	is	
prescribed.	In	order	to	add	a	medication	to	the	database	that	hasn’t	been	prescribed,	the	prescription	
fields	all	have	to	be	“NULL.”	If	all	prescriptions	for	a	medication	are	removed	from	the	database,	then	
any	record	of	the	medication	will	be	removed	as	well.		
	
	 	

	
90	

	

3.2	SQL*PLUS:	Main	Purpose	and	Functionality	
	
Now	that	the	quality	of	the	relational	design	has	been	proven,	we	will	describe	the	physical	
implementation	process.	The	physical	database	was	implemented	and	loaded	with	sample	data	using	
SQL	*	Plus.	SQL	*	Plus	is	a	command-line	user	interface	for	interacting	with	the	Oracle	DBMS.	The	main	
purpose	of	SQL	*	Plus	is	to	allow	database	administrators	to	quickly	define	and	easily	maintain	a	
database.	It	allows	users	to	enter	SQL	commands	to	define	and	manage	schema	objects,	manipulate	and	
query	existing	data,	and	control	the	formatting	of	output.	It	also	allows	users	to	create	and	run	scripts	
that	execute	multiple	of	the	above	commands	at	once.	Finally,	SQL	*	Plus	allows	users	to	create	and	run	
PL/SQL	scripts;	PL/SQL	is	Oracle’s	procedural	extension	of	SQL,	combining	SQL	statements	with	flow	
control	structures	like	conditions	and	loops.	PL/SQL	programs	can	be	saved	as	stored	procedures	and	set	
to	automatically	run	using	triggers.	
	
3.3	Schema	Objects	for	Oracle	DBMS	
	
Tables	
	
Tables	are	a	basic	unit	of	data	storage	in	an	Oracle	database.	The	data	is	stored	in	rows	which	contain	
the	attributes	of	the	relational	schema.	In	a	table,	columns	have	column	names	(such	as	emp_id,	
first_name,	and	start_date),	a	specified	datatype	(such	as	NUMBER,	VARCHAR2,	or	TIMESTAMP),	and	a	
width.	Once	the	data	are	inserted	into	the	tables,	it	can	then	be	updated,	deleted,	or	queried	using	SQL	
language.	Tables	may	also	contain	virtual	columns	which	derive	values	on	demand	through	user	
specified	functions.	
	
Syntax:		
	
create	table	<tablename>	(
	 <column-definition-1>,	
	 …	
	 <column-definition-n>,	
	 	 <table	constraints>	
)	
	
<column-definition>:=	<column-name>	<column-datatype>	<column-constraints>	
	
<table	constraints>:=		
constraint	<constraint-name>	primary	key	(<column-name>),		
foreign	key	(<column-name>)	references	<table-name>	(<column-name>),		
unique	(<column-name>),		
check	<boolean-expression>	
	
	 	

	
91	

	

Examples	in	this	Implementation:	
	

• arjt_activity	
• arjt_administers	
• arjt_assignment_old	
• arjt_assessment	
• arjt_assigned_to	
• arjt_employee	
• arjt_medication	
• arjt_patient_admitted	
• arjt_patient	
• arjt_performs	
• arjt_placed	
• arjt_prescription	
• arjt_room	
• arjt_special_need	
• arjt_unit	
• arjt_works_in	

	
	
Views	
	
Views	are	the	results	of	a	query	stored	as	virtual	tables;	they	do	not	store	data,	but	a	SELECT	statement	
that	generates	a	specific	representation	of	data.	This	way,	a	DBA	can	control	which	data	is	available,	
how	it	is	presented,	and	how	it	is	formatted	before	it	is	queried	by	other	users.	Often,	front-end	
applications	query	from	views	instead	of	tables	to	save	time	and	simplify	queries.	Many	of	the	
operations	that	apply	to	tables	can	be	applied	to	views,	including	SELECT,	CREATE,	INSERT,	UPDATE,	and	
DELETE;	these	operations	modify	information	in	the	base	tables	from	which	the	views	are	derived.	When	
information	in	the	base	tables	changed,	views	are	dynamically	recreated.		
	
Syntax:		
create	or	replace	view	<view_name>	AS	<select	statement/query>	
	
Procedures	
	
Procedures	are	stored	blocks	of	PL/SQL	code	that	can	be	run	via	the	command	line	or	in	scripts.	Because	
procedures	are	stored,	they	are	reusable;	thus,	they	are	often	used	to	perform	repetitive	manipulations	
on	data.	Procedures	take	advantage	of	the	flow	control	structures	provided	by	PL/SQL,	so	they	can	
perform	more	complex	operations	than	pure	SQL	scripts.	They	can	be	invoked	in	triggers,	so	that	the	
stored	procedure	runs	each	time	a	specific	event	occurs.	 	

	
92	

	

Syntax:	
create	or	replace	procedure	<procedure	name>	begin	<PL/SQL	statements>	end	
	
Note:	Procedures	will	be	implemented	during	Phase	4	of	the	process.	
	
	
Triggers	
	
Triggers	are	stored	blocks	of	PL/SQL	code	that	automatically	run	each	time	a	specific	event	occurs	(like	
an	INSERT	operation).	
	
Syntax:		
create	or	replace	trigger	<triggername>	after	<event	name>	on	<table	name>		
begin	<PL/SQL	statements>	end	
	
	
Packages	
	
Packages	are	groupings	of	PL/SQL	objects	and	procedures	that	provide	an	interface	to	more	complicated	
SQL	*	Plus	functionality.	They	abstract	and	encapsulate	data	and	functions	similarly	to	classes	in	object-
oriented	programming.	Packages	contain	a	spec	block	that	defines	the	public	interface	to	the	package,	
as	well	as	a	“body”	block	which	fully	defines	the	hidden,	abstracted	code	within	procedures.	Packages	
allow	complex	procedures	to	be	easily	reused	and	hidden	from	front-end	application	developers.		
	
Syntax:	
create	or	replace	package	<package_name>	as	<object	and	procedure	declarations>	end	
create	or	replace	package	body	<package_name>	as	<object	and	procedure	definitions>	end		
	
	
Sequence	Generators	
	
Sequence	generators	use	a	mathematical	function	to	produce	a	sequence	of	unique	values.	Each	time	
the	sequence	generator	is	requested,	it	responds	with	the	next	number	in	the	sequence.	Sequence	
generators	are	often	used	to	generate	unique	values	for	primary	key	attributes,	and	ensure	that	unique	
primary	key	values	are	used	for	new	tuples	being	inserted	by	multiple	users	at	the	same	time.	Sequence	
generators	have	a	caching	option	which	allows	the	generator	to	pre-calculate	and	store	the	next	n	
numbers	in	the	sequence	in	memory.	
	 	

	
93	

	

Syntax:	
	
create	sequence	<sequence	name>	
minvalue	<minimum	value>	
maxvalue	<maximum	value>	
start	with	<starting	number>	
increment	by	<increment	size>	
cache	<cache_size>	
	
Examples	in	this	implementation:	
	

• arjt_prescription_id_sequence	
• arjt_room_id_sequence	
• arjt_unit_id_sequence	
• arjt_assessment_id_sequence	
• arjt_specialneed_id_sequence	
• arjt_activity_id_sequence	

	
	
Indexes	
	
Creating	indexes	provide	faster	access	paths	to	specified	table	columns	which	speed	up	queries.	
Columns	may	be	used	in	multiple	indexes	as	long	as	each	index	contains	a	unique	set	of	columns.	Oracle	
automatically	creates	indexes	for	primary	keys.	Indexes	are	logically	and	physically	independent	as	they	
may	be	created	and	dropped	at	anytime	without	affecting	the	table	data	or	other	indexes,	although	
previously	indexed	data	can	be	slower.	Oracle	provides	the	following	indexing	schemes	which	
correspond	to	speed	improvements.	

• B-tree	indexes	
• B-tree	cluster	indexes	
• Hash	cluster	indexes	
• Reverse	key	indexes	
• Bitmap	indexes	
• Bitmap	join	indexes	

	

	
	 	

	
94	

	

3.4	List	Relations	With	SQL	Commands	
	
Employee:	
	
	
	
	
	
	
	
	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

WINTER342 SQL> desc arjt_employee
 Name Null? Type
 ----------------------- -------- ----------------
 EMP_ID NOT NULL NUMBER(5)
 SSN NOT NULL NUMBER(9)
 FIRST_NAME NOT NULL VARCHAR2(30)
 MID_NAME VARCHAR2(30)
 LAST_NAME NOT NULL VARCHAR2(30)
 STREET NOT NULL VARCHAR2(50)
 CITY NOT NULL VARCHAR2(30)
 STATE NOT NULL VARCHAR2(30)
 ZIP NOT NULL NUMBER(5)
 PHONE NOT NULL NUMBER(10)
 LIC_TYPE NOT NULL VARCHAR2(2)
 LIC_NO NOT NULL NUMBER(6)

WINTER342 SQL> spool off

	
95	

	

Prescription:	

	 	
WINTER342 SQL> desc arjt_prescription
 Name Null? Type
 ----------------------- -------- ----------------
 RX_ID NOT NULL NUMBER(5)
 EMP_ID NOT NULL NUMBER(5)
 PAT_ID NOT NULL NUMBER(5)
 MED_ID NOT NULL NUMBER(5)
 DOS NOT NULL VARCHAR2(50)
 FREQ NOT NULL VARCHAR2(100)
 START_DATE NOT NULL DATE
 END_DATE NOT NULL DATE
 DAT NOT NULL DATE

WINTER342 SQL> spool off

	
96	

	

Medication:	

	

	 	

WINTER342 SQL> select * from arjt_medication;

 MED_ID MED_NAME MED_PURP
---------- --------------------------- --------------------
 1 Triclosan Painkiller
 2 Acetaminophen Blood thinner
 3 Cytarabine Insomnia
 4 Flurazepam Hydrochloride Laxative
 5 Lisinopril Antibiotic
 6 Loratadine Antibiotic
 7 Ciprofloxacin Blood thinner
 8 Hydrocodon Painkiller
 9 Escitalopram Oxalate Blood thinner
 10 Spironolactone Anti-allergin

10 rows selected.

WINTER342 SQL> spool off

WINTER342 SQL> desc arjt_medication
 Name Null? Type
 ----------------------- -------- ----------------
 MED_ID NOT NULL NUMBER(5)
 MED_NAME NOT NULL VARCHAR2(30)
 MED_PURP NOT NULL VARCHAR2(30)

WINTER342 SQL> spool off

	
97	

	

Room:	

	

	 	

WINTER342 SQL> desc arjt_room
 Name Null? Type
 ----------------------- -------- ----------------
 ROOM_ID NOT NULL NUMBER(5)
 UNIT_ID NOT NULL NUMBER(5)
 ROOM_NO NOT NULL NUMBER(3)

WINTER342 SQL> spool off

WINTER342 SQL> select * from arjt_room;

ROOM_ID UNIT_ID ROOM_NO
------- ------- -------
 1 1 101
 2 1 102
 3 1 103
 4 1 104
 5 1 105
 6 1 106
 7 1 107
 8 2 108
 9 2 109
 10 2 110
 11 2 201
 12 2 202
 13 2 203
 14 2 204
 15 3 205
 16 3 206
 17 3 207
 18 3 208
 19 3 209
 20 3 210
 21 4 301
 22 4 302
 23 4 303
 24 4 304
 25 4 305
 26 5 306
 27 5 307
 28 5 308
 29 5 309
 30 5 310

30 rows selected.

WINTER342 SQL> spool off

	
98	

	

Unit:	

	 	

WINTER342 SQL> select * from arjt_unit;

UNIT_ID UNIT_NAME UNIT_ABBRV
------- --------------------------- ----------
 1 Accute assessment ACU
 2 Intensive care ICU
 3 Nenoatal intensive care NICU
 4 Physical therapy PT
 5 Medical/Surgical MedSurg

WINTER342 SQL> spool off

WINTER342 SQL> desc arjt_unit
 Name Null? Type
 ----------------------- -------- ----------------
 UNIT_ID NOT NULL NUMBER(5)
 UNIT_NAME NOT NULL VARCHAR2(50)
 UNIT_ABBRV NOT NULL VARCHAR2(10)

WINTER342 SQL> spool off

	
99	

	

Patient:	

	

	 	WINTER342 SQL> desc arjt_patient
 Name Null? Type
 ----------------------- -------- ----------------
 PAT_ID NOT NULL NUMBER(5)
 SSN NOT NULL NUMBER(9)
 FIRST_NAME NOT NULL VARCHAR2(30)
 MID_NAME VARCHAR2(30)
 LAST_NAME NOT NULL VARCHAR2(30)
 STREET NOT NULL VARCHAR2(50)
 ZIP NOT NULL NUMBER(5)
 CITY NOT NULL VARCHAR2(50)
 STATE NOT NULL VARCHAR2(50)
 PHONE NOT NULL NUMBER(10)
 DOB NOT NULL DATE
 GENDER NOT NULL VARCHAR2(1)
 INS_STAT NOT NULL VARCHAR2(50)
 LANGUAGE NOT NULL VARCHAR2(50)

WINTER342 SQL> spool off

	
100	

	

Placed:	

	 	WINTER342 SQL> desc arjt_placed
 Name Null? Type
 ----------------------- -------- ----------------
 PAT_ID NOT NULL NUMBER(5)
 ROOM_ID NOT NULL NUMBER(5)
 START_DATE NOT NULL DATE
 END_DATE DATE

WINTER342 SQL> spool off

	
101	

	

	 	

	
102	

	

Patient	Admitted:	

	 	WINTER342 SQL> desc arjt_patient_admitted
 Name Null? Type
 ----------------------- -------- ----------------
 PAT_ID NOT NULL NUMBER(5)
 ADM_DATE NOT NULL DATE
 DIS_DATE DATE

WINTER342 SQL> spool off

	
103	

	

	 	

	
104	

	

Assessment:	

	

	 	

WINTER342 SQL> desc arjt_assessment
 Name Null? Type
 ----------------------- -------- ----------------
 ASMT_ID NOT NULL NUMBER(5)
 EMP_ID NOT NULL NUMBER(5)
 PAT_ID NOT NULL NUMBER(5)
 BP_SYS NOT NULL NUMBER(3)
 BP_DIA NOT NULL NUMBER(3)
 RESP_RATE NOT NULL NUMBER(3)
 HRT_RATE NOT NULL NUMBER(3)
 DAT NOT NULL TIMESTAMP(6)

WINTER342 SQL> spool off

	
105	

	

	 	

	
106	

	

Special	Need:	

	

	 	
WINTER342 SQL> desc arjt_special_need
 Name Null? Type
 ----------------------- -------- ----------------
 SN_ID NOT NULL NUMBER(5)
 EMP_ID NOT NULL NUMBER(5)
 PAT_ID NOT NULL NUMBER(5)
 ACT_ID NOT NULL NUMBER(5)
 FREQ NOT NULL VARCHAR2(100)
 START_DATE NOT NULL DATE
 END_DATE NOT NULL DATE
 DAT NOT NULL DATE

WINTER342 SQL> spool off

	
107	

	

Activity:	

	

	 	

WINTER342 SQL> desc arjt_activity
 Name Null? Type
 ----------------------- -------- ----------------
 ACT_ID NOT NULL NUMBER(5)
 ACT_NAME NOT NULL VARCHAR2(30)
 DESCR VARCHAR2(70)

WINTER342 SQL> spool off

WINTER342 SQL> select * from arjt_activity;

ACT_ID ACT_NAME DESCR
------ -------------------------
--
 1 bed turn Rotate patient in bed
 2 wound care Clean and dress wounds
 3 catheter care Change out catheter
 4 showering Assist patient with shower
 5 burn care Clean and care for burn wounds
 6 physical therapy Perform physical therapy for patient
 7 functional mobility Help patient walk and move about
 8 assisted feeding Help patient consume food
 9 assisted toilet hygiene Help patient use the bathroom
 10 bathing Assist patient with bath

10 rows selected.

WINTER342 SQL> spool off

	
108	

	

Administers:	

	

	 	WINTER342 SQL> desc arjt_administers
 Name Null? Type
 ----------------------- -------- ----------------
 EMP_ID NOT NULL NUMBER(5)
 RX_ID NOT NULL NUMBER(5)
 DAT NOT NULL TIMESTAMP(6)

WINTER342 SQL> spool off

	
109	

	

	 	

	
110	

	

Assigned	To:	

	

	 	

WINTER342 SQL> desc arjt_assigned_to
 Name Null? Type
 ----------------------- -------- ----------------
 EMP_ID NOT NULL NUMBER(5)
 PAT_ID NOT NULL NUMBER(5)
 START_DATE NOT NULL TIMESTAMP(6)
 END_DATE TIMESTAMP(6)

WINTER342 SQL> spool off

	
111	

	

	 	

	
112	

	

Performs:	

	

	 	

WINTER342 SQL> desc arjt_performs
 Name Null? Type
 ----------------------- -------- ----------------
 EMP_ID NOT NULL NUMBER(5)
 SN_ID NOT NULL NUMBER(5)
 DAT NOT NULL TIMESTAMP(6)

WINTER342 SQL> spool off

	
113	

	

	 	

	
114	

	

Works	In:	

	

	 	

WINTER342 SQL> desc arjt_works_in
 Name Null? Type
 ----------------------- -------- ----------------
 EMP_ID NOT NULL NUMBER(5)
 UNIT_ID NOT NULL NUMBER(5)
 START_DATE NOT NULL DATE
 END_DATE DATE

WINTER342 SQL> spool off

WINTER342 SQL> select * from arjt_works_in;

EMP_ID UNIT_ID START_DATE END_DATE
------ ------- ------------ ------------
 1 1 22-JAN-16
 2 1 19-JAN-16
 10 5 26-DEC-15 02-MAR-16
 1 4 23-DEC-15 29-FEB-16
 8 5 13-DEC-15 17-FEB-16
 7 4 24-NOV-15
 8 4 21-OCT-15 23-DEC-15
 2 3 20-OCT-15 21-DEC-15
 9 5 17-OCT-15 03-JAN-16
 7 4 22-SEP-15 04-DEC-15
 6 2 18-SEP-15
 9 5 17-SEP-15 03-DEC-15
 1 4 15-SEP-15 14-NOV-15
 4 4 01-SEP-15
 10 5 14-AUG-15 17-OCT-15
 4 5 06-AUG-15 15-OCT-15
 5 2 28-JUL-15
 5 3 09-JUL-15 26-SEP-15
 8 1 08-JUL-15 16-SEP-15
 6 5 08-JUL-15 20-SEP-15
 3 4 27-JUN-15
 5 2 25-MAY-15 28-JUL-15
 2 1 23-MAY-15 26-JUL-15
 3 5 20-APR-15 23-JUN-15
 4 1 19-APR-15 18-JUN-15
 6 1 16-APR-15 24-JUN-15
 4 4 31-MAR-15 10-JUN-15
 7 4 09-MAR-15 14-MAY-15
 2 5 24-FEB-15 06-MAY-15
 1 2 18-FEB-15 02-MAY-15

30 rows selected.

WINTER342 SQL> spool off

	
115	

	

3.5	Example	Queries	in	SQL	
	
In	this	section,	we	will	list	the	SQL	implementation	of	each	of	the	queries	from	the	previous	phase.	We	
will	also	implement	three	extra	queries	which	demonstrate	SQL	*	Plus	functionality.	For	each	query,	we	
will	show	the	selection	of	sample	data	that	the	query	returns.	Note	that	test	data	was	added	to	the	
already-existing	sample	data	to	ensure	a	minimum,	testable	set	of	data	for	each	query.	
	
1.	List	all	patients	who	have	been	assessed	by	each	of	all	nurses	who	are	currently	hired.	
	
	
	
	 	

WINTER342 SQL> list

 select unique p.pat_id, p.first_name, p.last_name from arjt_patient
p
 where not exists (select * from arjt_employee e
 where exists (select * from arjt_works_in w
 where w.end_date is NULL and w.emp_id = e.emp_id
)
 and not exists (
 select * from arjt_assessment a
 where a.emp_id = e.emp_id and a.pat_id = p.pat_id
)
)

WINTER342 SQL> @queries/q1

 PAT_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 1 Chloe Price
 4 Lisa Plant
 5 William Price
 8 Dana Ward
 10 Rachel Amber

WINTER342 SQL> spool off

	
116	

	

2.	List	all	nurses	who	have	been	assigned	to	least	2	patients	in	the	same	time	period.	
	
	
	
	 	

WINTER342 SQL> list

 select unique e.emp_id, e.first_name, e.last_name
 from arjt_employee e
 where exists (select * from arjt_assigned_to a1, arjt_assigned_to
a2
 where a1.emp_id = e.emp_id and a2.emp_id = e.emp_id
 and a1.pat_id != a2.pat_id and a1.start_date >= a2.start_date
 and a1.start_date <= a2.end_date
)

WINTER342 SQL> @queries/q2

 EMP_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 1 Albert Perry
 5 Jose Day
 6 Stephanie Johnson
 7 William Price

WINTER342 SQL> spool off

	
117	

	

3.	List	the	medications	that	all	currently	admitted	patients	have	in	common.	
	
	
	
	 	

WINTER342 SQL> list

 select unique m.med_id, m.med_name, m.med_purp
 from arjt_medication m
 where not exists (select * from arjt_patient p
 where exists (select * from arjt_patient_admitted pa
 where pa.pat_id = p.pat_id and pa.dis_date is null
)
 and not exists (select * from arjt_prescription rx
 where rx.start_date <= sysdate and rx.end_date >= sysdate
 and rx.med_id = m.med_id and rx.pat_id = p.pat_id
)
)

WINTER342 SQL> @queries/q3

 MED_ID MED_NAME MED_PURP
---------- ------------------------------

 4 Flurazepam Hydrochloride Laxative
 6 Loratadine Antibiotic
 9 Escitalopram Oxalate Blood thinner

WINTER342 SQL> spool off

	
118	

	

4.	List	all	patients	who	have	been	admitted	to	the	hospital	exactly	once.	
	
	
	
	 	

WINTER342 SQL> list

 select unique p.pat_id, p.first_name, p.last_name
 from arjt_patient p
 where exists (select * from arjt_patient_admitted pa
 where pa.pat_id = p.pat_id and
 not exists (select * from arjt_patient_admitted pa2
 where pa2.pat_id = p.pat_id and pa.adm_date != pa2.adm_date
)
)

WINTER342 SQL> @queries/q4

 PAT_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 2 Max Caulfield
 3 Kate Marsh
 14 Luke Parker

WINTER342 SQL> spool off

	
119	

	

5.	List	all	patients	who	have	received	special	need	orders	for	all	of	the	same	activities	as	John	Doe	
ordered	for	Chelsea	Doe.	
	
	
	
	 	

WINTER342 SQL> list

 select p.pat_id, p.first_name, p.last_name
 from arjt_patient p
 where not exists (select * from arjt_patient p2, arjt_special_need
s,
 arjt_employee e
 where s.pat_id = p2.pat_id and s.emp_id = e.emp_id
 and p2.first_name = 'Max' and p2.last_name = 'Caulfield'
 and e.first_name = 'David' and e.last_name = 'Madson'
 and not exists (select * from arjt_special_need s2
 where s2.act_id = s.act_id and p.pat_id = s2.pat_id
)
)

WINTER342 SQL> @queries/q5

 PAT_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 2 Max Caulfield
 3 Kate Marsh
 4 Lisa Plant

WINTER342 SQL> spool off

	
120	

	

6.	List	all	of	the	patients	who	have	been	assessed	today	by	at	least	one	of	the	nurses	who	assessed	
John	Doe	on	1/27/15.	
	
	
	
	 	

WINTER342 SQL> list

 select unique p.pat_id, p.first_name, p.last_name
 from arjt_patient p
 where exists (select * from arjt_employee e, arjt_assessment a1,
 arjt_patient p1
 where a1.emp_id = e.emp_id and a1.pat_id = p1.pat_id
 and p1.first_name = 'Chloe' and p1.last_name = 'Price'
 and a1.dat = to_timestamp('5/22/2015 21:42:59', 'MM/DD/YYYY
hh24:mi:ss')
 and exists (select * from arjt_assessment a2
 where a2.emp_id = e.emp_id and a2.pat_id = p.pat_id
 and a2.dat = to_timestamp('2/21/2016 1:35:14', 'MM/DD/YYYY
hh24:mi:ss')
)
)

WINTER342 SQL> @queries/q6

 PAT_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 6 Warren Graham
 2 Max Caulfield
 8 Dana Ward
 10 Rachel Amber

WINTER342 SQL> spool off

	
121	

	

7.	List	the	nurses	who	most	recently	administered	one	of	Chelsea	Doe’s	prescriptions.	
	
	
	
	 	

WINTER342 SQL> list

 select unique e.emp_id, e.first_name, e.last_name
 from arjt_employee e
 where exists (select * from arjt_patient p, arjt_prescription rx,
 arjt_administers a
 where rx.pat_id = p.pat_id and a.rx_id = rx.rx_id
 and p.first_name = 'Chloe' and p.last_name = 'Price'
 and a.emp_id = e.emp_id
 and not exists (select * from arjt_patient p2,
arjt_prescription rx2,
 arjt_administers a2
 where rx2.pat_id = p2.pat_id and a2.rx_id = rx2.rx_id and
 p2.first_name = 'Chloe' and p2.last_name = 'Price' and
 a2.dat > a.dat
)
)

WINTER342 SQL> @queries/q7

 EMP_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 6 Stephanie Johnson

WINTER342 SQL> spool off

	
122	

	

8.	List	nurses	who	have	performed	each	of	all	activities	in	the	database.	
	
	
	
	 	

WINTER342 SQL> list

 select unique e.emp_id, e.first_name, e.last_name
 from arjt_employee e
 where not exists (select * from arjt_activity a
 where not exists (select * from arjt_special_need s,
arjt_performs p
 where s.act_id = a.act_id and p.sn_id = s.sn_id and p.emp_id
= e.emp_id
)
)

WINTER342 SQL> @queries/q8

 EMP_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 1 Albert Perry
 2 Arthur Moore
 5 Jose Day

WINTER342 SQL> spool off

	
123	

	

9.	List	all	discharged	patients	who	stayed	in	the	same	room	as	John	Doe.	
	
	 	WINTER342 SQL> list

 select unique p.first_name, p.last_name
 from arjt_patient p
 where exists (select * from arjt_patient p1, arjt_placed pl1
 where pl1.pat_id = p1.pat_id
 and p1.first_name = 'Chloe'
 and p1.last_name = 'Price'
 and exists (select * from arjt_placed pl2
 where pl2.pat_id = p.pat_id and pl1.room_id = pl2.room_id
)
)
 and not exists (select * from arjt_patient_admitted pa
 where pa.pat_id = p.pat_id and pa.dis_date is null
)

WINTER342 SQL> @queries/q9

FIRST_NAME LAST_NAME
------------------------------ ------------------------------
Max Caulfield

WINTER342 SQL> spool off

	
124	

	

10.	List	all	currently-admitted	patients	who	don't	have	any	currently	active	prescriptions.	
	
	
	 	

WINTER342 SQL> list

 select unique p.pat_id, p.first_name, p.last_name
 from arjt_patient p
 where exists (select * from arjt_patient_admitted pa
 where pa.pat_id = p.pat_id
 and not exists (select * from arjt_prescription rx
 where rx.start_date <= sysdate and rx.end_date >= sysdate
 and rx.pat_id = p.pat_id
)
)

WINTER342 SQL> @queries/q10

 PAT_ID FIRST_NAME LAST_NAME
---------- ------------------------------

 8 Dana Ward
 11 Frank Bowers

WINTER342 SQL> spool off

	
125	

	

Additional	Queries	
In	addition	to	the	queries	designed	in	Phase	II,	we	have	included	three	other	queries	that	demonstrate	
Oracle	and	SQL*Plus	functionality.		
	
11.	List	all	the	medications	and	the	number	of	times	each	has	been	prescribed.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
This	query	uses	the	group	by	clause	and	the	count	aggregate	function	to	show	the	number	of	
prescriptions	associated	with	each	medication.	The	group	by	clause	combines	tuples	that	have	the	same	
value	for	a	set	of	attributes	(or	attribute	expressions)	into	one	tuple.	It	requires	an	aggregate	function	
(like	“count”),	runs	the	aggregate	function	over	attribute	expressions	from	the	grouped	tuples,	and	
returns	the	result	as	one	of	the	columns	(in	this	case,	“Number	of	Rx”).	 	

WINTER342 SQL> list

 select med_name "Medication", count(*) "Number of Rx"
 from arjt_medication natural join arjt_prescription
 group by med_name
 order by count(*)

WINTER342 SQL> @queries/q11

Medication Number of Rx
------------------------------ ------------
Hydrocodon 1
Ciprofloxacin 1
Spironolactone 2
Lisinopril 2
Acetaminophen 3
Cytarabine 3
Escitalopram Oxalate 10
Loratadine 10
Triclosan 15
Flurazepam Hydrochloride 17

10 rows selected.

WINTER342 SQL> spool off

	
126	

	

	
12.	List	all	the	activities	and	all	the	times	they	have	been	performed	if	they	have	been	performed	less	
than	three	times.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
This	query	uses	the	group	by	clause	combined	with	the	having	clause.	The	having	clause	filters	the	
results	of	the	group	by	clause	by	evaluating	conditions	over	the	aggregate	function.	In	this	case,	only	the	
tuples	were	the	count	is	less	than	3	are	selected.	This	query	also	uses	the	natural	join	operation	instead	
of	the	Cartesian	product	(notated	by	a	“,”	in	queries	1-10).	Natural	join	automatically	equates	attribute	
expressions	that	have	the	same	name	and	removes	duplicate	columns.	
	 	

WINTER342 SQL> list

 select act_name "Activity", count(*) "Number of SN"
 from arjt_activity natural join arjt_special_need
 group by act_name
 having count(*) < 3

WINTER342 SQL> @queries/q12

Activity Number of SN
------------------------------ ------------
burn care 1
bathing 2
physical therapy 2
bed turn 1
showering 1
catheter care 1

6 rows selected.

WINTER342 SQL> spool off

	
127	

	

13.	List	all	employees	and	their	prescriptions	they	have	ordered	(if	they	are	doctors).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
128	

	

This	query	demonstrates	several	SQL	*	Plus	functionalities.	It	uses	the	create	or	replace	view	command	
to	save	a	query	as	a	“virtual	table,”	which	can	be	queried	from	like	a	physical	table.	It	also	uses	SQL	*	
Plus	commands	to	control	the	formatting	of	output;	“break	on”	prevents	duplicate	attribute	values	from	
being	displayed	in	a	continuous	sequence,	and	“set	pagesize”	determines	how	many	records	are	
displayed	before	a	page	break.		
	
The	query	itself	uses	the	left	outer	join	operation,	which	displays	all	tuples	on	the	left	side	of	a	join	
regardless	of	whether	there	are	any	associated	tuples	on	the	right	side	of	the	join	(in	this	case,	the	right-
side	values	are	displayed	as	empty	or	“NULL”).	By	outer	left	joining	ajrt_employee	with	arjt_prescription,	
all	employees	are	displayed	-	including	nurses	-	even	though	nurses	do	not	order	prescriptions.	
Variations	of	the	outer	join	operation	include	left	outer	join,	right	outer	join,	and	outer	join.	 	

	
129	

	

3.6	Data	Loader	
	
It	is	important	to	demonstrate	how	large	amounts	of	sample	data	is	loaded	into	the	physical	
implementation	of	the	database.	Methods	include	manually	writing	SQL	commands	to	insert	data	and	
using	software	applications,	which	automatically	generate	SQL,	insert	scripts	from	data	stored	in	files.	
	
“Insert”	SQL	Statements	
The	simplest	way	to	insert	data	into	Oracle	DBMS	tables	uses	the	“insert	into”	SQL	statement	provided	
by	Oracle.	The	statement	has	two	variations:	
	

1. insert	into	<table	name>	(<column	name	1>,	…,	<column	name	n>	values	(<expression	1>,	…	
<expression	n>)	

2. insert	into	<table	name>	<select	query>	
	
The	first	variation	lets	you	specify	value	expressions	for	each	column	in	the	table	when	inserting	a	
record.	The	second	variation	lets	you	use	the	result	of	a	query	as	the	column	values.		
	
Since	a	command	has	to	be	written	for	each	of	the	records	that	need	to	be	inserted,	this	method	is	not	
desirable	for	loading	large	amounts	of	sample	data	into	the	database.	The	following	methods	generate	
and	run	SQL	commands	from	files,	which	contain	the	data	that	needs	to	be	inserted.	As	a	result,	these	
methods	are	far	faster.	
	
Oracle	SQL	Developer	
SQL	Developer	is	a	free	software	application	provided	by	Oracle	that	allows	users	to	develop	and	
manage	Oracle	databases.	Using	a	graphical	user	interface,	users	view	all	the	tables	in	the	database,	and	
can	easily	import	data	into	them	with	CSV	files.	SQL	Developer	can	also	create	an	insert	script	with	SQL	
commands	should	the	user	choose	to	insert	the	data	manually.	Oracle	SQL	Developer	was	the	method	
we	used	to	load	our	database	with	records.	
	
Data	Loader	
Dr.	Huaqing	Wang	has	developed	a	software	application,	which	uses	a	command	line	interface	to	insert	
data	into	database	tables	from	a	text	file.	The	user	specifies	the	name	of	the	database,	the	password,	
and	the	text	file	to	be	used	in	the	command	line.	The	text	file	must	follow	a	specific	format,	which	
specifies	the	data	and	the	table	into	which	the	tuple	should	be	inserted.	However,	the	user	can	specify	
which	character	is	used	as	a	delimiter	to	separate	columns	through	the	command	line	(e.g.	“,”	or	“|”).	
Based	on	the	information	in	the	text	file,	“insert	into”	SQL	statements	are	generated	and	run.	This	
speeds	up	the	process	of	inserting	data	because	the	user	does	not	have	to	manually	type	every	
component	of	the	“insert	into”	command.	 	

	
130	

	

4.	Oracle	Database	Management	System	PL/SQL	
Components	
	
In	the	previous	phase	of	development,	we	showed	how	a	physical	database	could	be	constructed	with	
Oracle	DBMS.	We	also	showed	some	basic	operations	that	could	be	performed	on	the	records	in	the	
database.	However,	adhering	to	integrity	constraints	and	business	rules	when	manipulating	a	database	
often	requires	that	more	complex	operations	be	defined.	
	
In	this	phase,	we	will	explore	how	to	implement	complex	database	operations	using	Oracle’s	procedural	
extension	of	the	SQL	language:	PL/SQL.	First,	we	will	explain	the	purpose	of	PL/SQL	as	well	as	its	
benefits.	After	this,	we	will	we	will	explore	some	of	the	features	provided	by	PL/SQL	and	the	syntax	for	
utilizing	each.	Then,	we	will	list	and	explain	sample	PL/SQL	operations	for	our	Oracle	database.	Finally,	
we	will	explore	extensions	of	SQL	offered	by	other	popular	commercial	DBMS	and	compare	them	to	
PL/SQL.	
	

4.1	Oracle	PL/SQL	
	
PL/SQL	is	Oracle’s	procedural	language	extension	of	SQL.	It	allows	users	to	define	the	order	in	which	SQL	
statements	are	executed	using	flow	control	structures	like	conditional	statements	and	loops.	PL/SQL	is	
used	to	build	stored	procedures	and	functions.	Stored	procedures	and	functions	are	precompiled	blocks	
of	PL/SQL	code	that	can	be	run	at	any	time.	
	
There	are	several	advantages	to	using	stored	procedures	in	a	database	application	instead	of	manually	
writing	PL/SQL	blocks	and	sending	them	to	the	server.	First,	stored	procedures	are	precompiled,	
meaning	that	the	PL/SQL	code	does	not	need	to	be	compiled	every	time	it	is	run;	this	saves	time	during	
execution.	Also,	stored	procedures	are	reusable;	they	condense	complex	operations	into	single	
functions	that	can	be	repeatedly	used	by	different	developers	and	users.	Finally,	stored	procedures	hide	
complex	functionality	from	users,	making	code-writing	easier	and	safer.	
	
	 	

	
131	

	

4.1.1	Program	Structure	and	Control	Statements	
	
PL/SQL	is	divided	into	collections	of	statements	called	blocks.	Each	block	has	its	own	local	variables	and	
scope.	Blocks	can	be	unnamed	(or	anonymous)	or	named.	Named	blocks	can	be	procedures	or	
functions.	The	syntax	for	an	anonymous	block	is	described	below.	
	
Syntax	for	anonymous	block:
declare <variables> begin <PL/SQL statements> end;	
	
PL/SQL	offers	flow	control	structures	that	control	the	order	in	which	statements	are	executed.	These	
include	conditional	statements	(“if”	statements)	and	different	types	of	loops	(for,	while,	and	basic	
loops).	The	syntax	for	these	are	described	below.	
	
Syntax	for	conditional	statements:	

if <condition> then
 <PL/SQL statements>
elseif <conditon> then
 <PL/SQL statements>
else
 <PL/SQL statements>
end if;

Syntax	for	loops:	

loop
 <PL/SQL statements>
end loop;

for <counter variable> in <range> loop
 <PL/SQL statements>
end loop;

while <condition> loop
 <PL/SQL statements>
end loop;
	
	
	 	

	
132	

	

4.1.2	Stored	Procedures	
	
A	stored	procedure	is	a	group	of	SQL	statements	that	perform	a	particular	task.	It	encapsulates	a	set	of	
operations	or	queries	to	execute	on	a	database.	Unlike	stored	functions,	stored	procedures	do	not	
return	values.	Sometimes,	procedures	can	cause	triggers	to	execute	when	a	particular	event	occur.	One	
advantage	to	using	stored	procedures	instead	of	just	SQL	statements	is	that	it	eliminates	the	possibility	
of	SQL	injections.		When	passing	parameters	to	a	stored	procedure,	that	procedure	checks	the	type	of	
that	parameter	to	make	sure	that	it	matches	the	type	of	that	stored	procedure.	
	
Syntax	of	a	Stored	Procedure:	
create [or replace] procedure <procedure name> (
 <parameter list>
)
as
 <declarations>
begin
 <executable section>
end;
	

4.1.3	Stored	Functions	
	
A	stored	function	is	almost	identical	to	a	stored	procedure,	except	that	it	has	a	return	value.	Instead	of	
modifying	data	in	the	database,	functions	are	meant	to	calculate	and	return	a	value.	
	
Syntax	of	a	Stored	Procedure:	
create [or replace] procedure <procedure name> (
 <parameter list>
)
return <return type>
as
 <declarations>
begin
 <executable section>
end;
	
	
	 	

	
133	

	

4.1.4	Packages	
	
Packages	are	Oracle	Schema	objects	which	combine	procedures,	functions,	types,	and	other	objects	into	
one	unit.	All	the	objects	in	a	package	have	their	own	namespace,	so	packages	can	be	used	to	avoid	name	
conflicts.	Packages	contain	a	“header”	section	that	contains	prototypes	for	the	procedures	and	
functions,	as	well	as	a	“body”	section	that	contains	the	definitions	of	the	procedures	and	functions.	
	
Syntax	of	a	Package:	
create or replace package <package name> as
 <function, procedure, object prototypes>
end;

create or replace package body <package name> as
 <function, procedure, object definitions>
end;
	
	
4.1.5	Triggers	
	
A	trigger	is	a	stored	PL/SQL	procedure	associated	with	a	table,	view,	schema,	or	the	database	itself.	A	
trigger	will	automatically	execute	when	a	certain	event	takes	place.	Triggers	can	be	executed	before,	
after,	or	instead	of	an	event.	One	example	where	a	trigger	is	needed	is	a	cascade	delete	operation.	
When	deleting	a	tuple,	other	tuples	that	reference	that	tuple	must	first	be	deleted.	This	requires	what	is	
called	a	cascade	operation.	Some	cascade	operations	may	be	implemented	to	delete	two	or	more	levels	
of	tuples.		
	
Syntax	of	a	Trigger:	
create or replace trigger <trigger name>
<before, after, instead of> <event name> on <table name>
for each row
begin
	 <PL/SQL statements>
end;		
	 	

	
134	

	

4.2	Oracle	PL/SQL	Subprogram	Examples	
	
In	this	section,	we	will	list	and	define	a	package,	three	procedures/functions,	and	three	triggers	for	our	
database.	The	package	groups	all	of	the	procedures	and	functions	together	into	one	unit.	The	
procedures	include	a	procedure	to	insert	a	patient,	a	procedure	to	delete	a	patient,	and	a	function	to	
return	the	average	heart	rate	for	patients.	The	three	triggers	we	have	implemented	are	the	cascade	
delete	trigger,	update	trigger,	and	instead	of	trigger	for	updating	a	view.	
	
Package	Definition:	
A	package	groups	functions,	procedures,	type	definitions,	and	other	Oracle	Schema	objects	into	one	
unit.	Members	of	a	package	are	in	a	separate	namespace	than	the	rest	of	the	objects	in	the	database,	so	
using	packages	can	help	avoid	name	conflicts.	A	package	has	a	“header,”	which	includes	prototypes	for	
all	of	the	procedures	and	functions,	as	well	as	a	“body,”	which	defines	and	implements	all	of	the	
procedures	and	functions.	Below,	the	header	for	the	package	arjt_pkg	is	listed.	arjt_pkg	contains	the	
insert_patient	and	delete_patient	procedures,	as	well	as	the	average_heart_rate	function.	The	full	
definition	of	each	procedure	and	each	function	will	be	listed	and	explained	in	following	subsections.	
	
WINTER342 SQL> @crt/procedure/arjt_pkg_header

Package created.

WINTER342 SQL> list
 1 create or replace package arjt_pkg as
 2
 3 procedure delete_patient (
 4 pid in arjt_patient.pat_id%type
 5);
 6
 7 procedure insert_patient (
 8 ssn in arjt_patient.ssn%type,
 9 fn in arjt_patient.first_name%type,
 10 mn in arjt_patient.mid_name%type,
 11 ln in arjt_patient.last_name%type,
 12 s in arjt_patient.street%type,
 13 z in arjt_patient.zip%type,
 14 c in arjt_patient.city%type,
 15 st in arjt_patient.state%type,
 16 p in arjt_patient.phone%type,
 17 d in arjt_patient.dob%type,
 18 g in arjt_patient.gender%type,
 19 i in arjt_patient.ins_stat%type,
 20 l in arjt_patient.language%type
 21);
 22
 23 function average_heart_rate

	
135	

	

 24 (
 25 n number default 1
 26)
 27 return number;
 28
 29* end arjt_pkg;
WINTER342 SQL> @crt/procedure/arjt_pkg_body

Package body created.

WINTER342 SQL> list
 1 create or replace package body arjt_pkg as
 2
 ...function definitions listed individually below...
 91
 92
 93* end arjt_pkg;
WINTER342 SQL> spool off
	
	
Insert	Procedure	Definition:	
This	procedure	will	insert	a	patient	into	the	database	using	parameters.	When	this	procedure	is	
executed,	all	the	attributes	of	arjt_patient	except	“pat_id”	will	be	passed	as	parameters.	The	procedure	
will	first	find	the	max	value	for	“pat_id”	and	increment	it	automatically,	then	insert	the	rest	of	the	
parameters	into	the	proper	columns	of	the	table.	
	
WINTER342 SQL> list
 procedure arjt_insert_patient (
 ssn in arjt_patient.ssn%type,
 fn in arjt_patient.first_name%type,
 mn in arjt_patient.mid_name%type,
 ln in arjt_patient.last_name%type,
 s in arjt_patient.street%type,
 z in arjt_patient.zip%type,
 c in arjt_patient.city%type,
 st in arjt_patient.state%type,
 p in arjt_patient.phone%type,
 d in arjt_patient.dob%type,
 g in arjt_patient.gender%type,
 i in arjt_patient.ins_stat%type,
 l in arjt_patient.language%type
)
 is
 next_id arjt_patient.pat_id%type;
 begin
 select max(p.pat_id) into next_id from arjt_patient p;

	
136	

	

 next_id := next_id + 1;

 insert into arjt_patient (
 pat_id,
 ssn,
 first_name,
 mid_name,
 last_name,
 street,
 zip,
 city,
 state,
 phone,
 dob,
 gender,
 ins_stat,
 language
) values (next_id, ssn, trim(fn), trim(mn), trim(ln), trim(s), z,
trim(c), trim(st), p, d, trim(g), trim(i), trim(l));

 exception
 when others then
 rollback;
 dbms_output.put_line(sqlcode || ', ' || sqlerrm);
 commit;
 end;
WINTER342 SQL> spool off
	

Executing	Insert	Procedure:	
WINTER342 SQL> exec arjt_pkg.insert_patient(123456789, 'JoAnn', 'M',
'Tuazon', '1234 CSUB', 93311, 'Bakersfield', 'CA', 1234567890,
to_date('12/17/1993', 'mm/dd/yyyy'), 'F', 'Medicare', 'English');

PL/SQL procedure successfully completed.

Insert	Procedure	Results:	
After	the	procedure	executes,	it	will	automatically	insert	the	new	patient	into	the	next	row	of	
arjt_patient	with	the	next	possible	“pat_id”.		
	
WINTER342 SQL> select * from arjt_patient where first_name = 'JoAnn';

 PAT_ID SSN FIRST_NAME MID_NAME LAST_NAME STREET ZIP CITY
STATE PHONE DOB G INS_STAT LANGUAGE
---------- ---------- ---------- --------- ---------- ---------- ------ -----
------- ------ ----------- ---------- -- --------- ---------

	
137	

	

 16 123456789 JoAnn M Tuazon 1234 CSUB 93311
Bakersfield CA 1234567890 17-DEC-93 F Medicare English

WINTER342 SQL> spool off
	
	
Delete	Patient	Procedure	Definition:	
The	arjt_delete_pateint	procedure	will	delete	a	tuple	of	arjt_pateint	when	executed.	For	this	procedure,	
it	takes	one	parameter,	which	will	be	the	ID	of	the	patient	that	will	be	deleted.	The	execution	of	this	
procedure	alone	will	cause	an	error	because	there	are	other	tables	that	use	pat_id	as	a	foreign	key.		
	
WINTER342 SQL> list
 create or replace procedure arjt_delete_patient(
 pid in arjt_patient.pat_id%type
)
 is
 begin
 delete from arjt_patient p
 where p.pat_id = pid;
 commit;
 end;
WINTER342 SQL> spool off

Before	Delete	Patient	Trigger	Definition:	
To	properly	delete	a	patient	from	the	database,	all	the	tables	that	inclue	pat_id	as	a	foreign	key	also	
need	to	be	deleted.	This	trigger	will	automatically	execute	when	the	arjt_delete_patient	procedure	is	
called.	When	this	trigger	executes,	all	the	associated	tuples	with	a	pat_id	foreign	key	will	be	deleted	
before	the	patient	is	deleted	from	the	database.	
	
WINTER342 SQL> list
 create or replace trigger arjt_delete_patient
 before delete on arjt_patient
 for each row
 begin
 delete from arjt_special_need sn
 where sn.pat_id = :old.pat_id;

 delete from arjt_prescription rx
 where rx.pat_id = :old.pat_id;

 delete from arjt_assessment asmt
 where asmt.pat_id = :old.pat_id;

 delete from arjt_patient_admitted pa
 where pa.pat_id = :old.pat_id;

	
138	

	

 delete from arjt_assigned_to at
 where at.pat_id = :old.pat_id;

 delete from arjt_placed pl
 where pl.pat_id = :old.pat_id;

 exception
 when others then
 rollback;
 dbms_output.put_line(sqlcode || ', ' || sqlerrm);
 commit;
 end;
WINTER342 SQL> spool off	
	
	
Before	Delete	Prescription	Trigger	Definition:	
arjt_prescription	has	a	pat_id	attribute,	but	it	is	also	associated	with	a	arjt_administers	tuple.	The	
arjt_administers	tuple	that	is	associated	with	the	patient	must	also	be	deleted.	Before	deleting	the	
arjt_prescription	tuple,	this	trigger	will	delete	the	arjt_administers	tuple	that	matches	the	rx_id.	
	
WINTER342 SQL> list
 create or replace trigger arjt_delete_prescription
 before delete on arjt_prescription
 for each row
 begin
 delete from arjt_administers a
 where a.rx_id = :old.rx_id;

 exception
 when others then
 rollback;
 dbms_output.put_line(sqlcode || ', ' || sqlerrm);
 commit;
 end;
WINTER342 SQL> spool off
	
	
Before	Delete	Special	Need	Trigger	Definition:	
arjt_special_need	has	a	pat_id	attribute,	but	it	is	also	associated	with	a	arjt_performs	tuple.	The	
arjt_performs	tuple	that	is	associated	with	the	patient	must	also	be	deleted.	Before	deleting	the	
arjt_special_need	tuple,	this	trigger	will	delete	the	arjt_performs	tuple	that	matches	the	sn_id.	
	
WINTER342 SQL> list
 create or replace trigger arjt_delete_special_need
 before delete on arjt_special_need

	
139	

	

 for each row
 begin
 delete from arjt_performs pr
 where pr.sn_id = :old.sn_id;

 exception
 when others then
 rollback;
 dbms_output.put_line(sqlcode || ', ' || sqlerrm);
 commit;
 end;
WINTER342 SQL> spool off	
	
Executing	Delete	Procedure:	
WINTER342 SQL> exec arjt_pkg.delete_patient(13);

PL/SQL procedure successfully completed.
	
Delete	Procedure	Results:	
After	executing	and	passing	“13”	into	arjt_pkg.delete_pateint,	the	patient	with	a	value	of	“13”	for	the	
“pat_id”	attribute	will	be	deleted,	as	well	as	all	tables	associated	with	that	patient.	When	the	procedure	
is	called,	it	will	execute	the	appropriate	triggers,	which	will	successfully	cascade	delete	throughout	the	
database.	
	
WINTER342 SQL> select pat_id, first_name, last_name from arjt_patient;

 PAT_ID FIRST_NAME LAST_NAME
---------- ------------------------------ ------------------------------
 1 Chloe Price
 2 Max Caulfield
 3 Kate Marsh
 4 Lisa Plant
 5 William Price
 6 Warren Graham
 7 Victoria Chase
 8 Dana Ward
 9 Alyssa Anderson
 10 Rachel Amber
 11 Frank Bowers
 12 Stella Hill
 14 Luke Parker
 15 Daniel DaCosta

14 rows selected.

WINTER342 SQL> spool off

	
140	

	

	Average	Function	Result:	
The	average	function	takes	a	number	parameter	n	and	returns	the	average	heart	rate	of	the	top	n	tuples	
with	the	highest	heart	rates.	It	uses	the	order	by	clause	and	the	rownum	variable	to	retrieve	the	top	n	
tuples,	and	it	uses	the	average	aggregate	function	to	find	the	average	of	the	heart	rate	values.	
	
WINTER342 SQL> select arjt_pkg.average_heart_rate(10) from dual;

ARJT_PKG.AVERAGE_HEART_RATE(10)

 174.7

WINTER342 SQL> spool off
	
	
Instead	Of	Trigger	Definition:	
The	instead	of	trigger	can	be	used	to	control	update	operations	on	views	that	join	two	or	more	base	
tables.	When	an	update	operation	is	executed,	the	trigger	ensures	that	the	base	tables	are	updated	
instead	of	the	view.	In	this	case,	the	instead	of	trigger	handles	updates	on	a	view	that	joins	the	
arjt_prescription		and	arjt_medication	tables.	The	arjt_prescription	attributes	are	updated,	and	the	
arjt_medication	attributes	update	an	existing	medication	or	are	inserted	into	a	new	medication	
(depending	on	the	value	of	med_id).	
	
WINTER342 SQL> @insteadof

Trigger created.

WINTER342 SQL> list
 1 create or replace trigger arjt_prescription_info_update
 2 instead of update on arjt_prescription_info
 3 for each row
 4 declare
 5 row_cnt number;
 6 begin
 7 /* Find whether med_id references an existing med tuple */
 8 select count(*) into row_cnt from arjt_medication
 9 where med_id = :new.med_id;
 10
 11 if row_cnt = 0 then
 12 /* If med tuple does not exist, create a new one */
 13 insert into arjt_medication (med_id, med_name, med_purp)
 14 values (:new.med_id, :new.med_name, :new.med_purp);
 15 else
 16 /* else update existing med tuple */
 17 update arjt_medication mu set mu.med_name = :new.med_name,
mu.med_purp = :new.med_purp

	
141	

	

 18 where mu.med_id = :new.med_id;
 19 end if;
 20
 21 /* update prescription with attributes from prescription table */
 22 update arjt_prescription rx
 23 set rx.med_id = :new.med_id, rx.dos = :new.dos, rx.freq = :new.freq
 24 where rx.rx_id = :old.rx_id;
 25
 26 exception
 27 when others then
 28 rollback;
 29 dbms_output.put_line(sqlcode || ', ' || sqlerrm);
 30 commit;
 31* end;
WINTER342 SQL> spool off
	
	
Instead	Of	Trigger	Result:	
When	an	update	operation	is	performed	on	arjt_prescription_info,	the	arjt_prescription	and	
arjt_medication	attributes	are	updated.	The	prescription	with	an	“rx_id”	of	“1”	is	updated	with	the	no	
dosage	and	frequency	information.	The	medication	with	a	“med_id”	of	“3”	is	updated	with	the	new	
name	and	purpose	information.	
	
WINTER342 SQL> update arjt_prescription_info set med_id = 3, med_name =
'Advil', med_purp = 'Painkiller', freq = 'Once daily' where rx_id = 1;

1 row updated.

WINTER342 SQL> select * from arjt_medication where med_id = 3;

 MED_ID MED_NAME MED_PURP
---------- ------------------------------ ------------------------------
 3 Advil Painkiller

WINTER342 SQL> select * from arjt_prescription where rx_id = 1;

 RX_ID EMP_ID PAT_ID MED_ID DOS
---------- ---------- ---------- ---------- ---------------------------------

FREQ
START_DAT END_DATE

----------------------- --------- ---------
DAT

 1 12 1 3 113 mg

	
142	

	

Once daily
22-AUG-14 27-SEP-14
21-AUG-14

WINTER342 SQL> spool off
	
	
Update	Trigger	Definition:	
This	trigger	ensures	that	if	the	primary	key	value	of	a	tuple	in	arjt_activity	is	changed,	the	value	is	
changed	for	the	foreign	key	attributes	of	all	tuples	that	reference	arjt_activity	(in	this	case,	
ajrt_special_need	is	the	only	table).	
	
WINTER342 SQL> @before_update_activity

Trigger created.

WINTER342 SQL> list
 1 create or replace trigger arjt_update_activity
 2 before update on arjt_activity
 3 for each row
 4 begin
 5
 6 update arjt_special_need sn
 7 set sn.act_id = :new.act_id
 8 where sn.act_id = :old.act_id;
 9
 10 exception
 11 when others then
 12 rollback;
 13 dbms_output.put_line(sqlcode || ', ' || sqlerrm);
 14 commit;
 15* end;
WINTER342 SQL> spool off
	
	
	 	

	
143	

	

Update	Trigger	Result:	
The	value	of	“act_id”	for	a	tuple	in	arjt_activity	is	changed	from	“1”	to	“99.”	Before	the	update	
operation	is	committed,	the	trigger	changes	the	values	of	“act_id”	for	tuples	in	arjt_special_need	from	
“1”	to	“99.”	
	
WINTER342 SQL> update arjt_activity set act_id = 99 where act_id = 1;

1 row updated.

WINTER342 SQL> select * from arjt_special_need where act_id = 1;

no rows selected

WINTER342 SQL> select * from arjt_special_need where act_id = 99;

 SN_ID EMP_ID PAT_ID ACT_ID
---------- ---------- ---------- ----------
FREQ
START_DAT END_DATE

----------------------- --------- ---------
DAT

 12 12 11 99
Twice daily
06-DEC-15 31-DEC-15
06-DEC-15

WINTER342 SQL> spool off

	 	

	
144	

	

4.3	PL/SQL	Like	Tools	(Oracle,	Microsoft	SQL	Server,	and	MySQL)	
	
The	physical	database	and	procedures	for	this	project	were	implemented	using	Oracle	PL/SQL.	However,	
there	are	other	popular	commercial	DBMS	software	that	each	offer	unique	stored	procedure	
functionality.	In	this	section,	Oracle	PL/SQL,	Microsoft	SQL	Server	T-SQL	(Transact-SQL),	and	MySQL	will	
be	explored	and	compared	in	terms	of	stored	procedure	functionality	and	syntax.	
	
	
Microsoft	SQL	Server:	T-SQL	
	
Comparison	to	other	commercial	DBMS	languages:	
T-SQL	for	Microsoft	SQL	Server	offers	some	unique	functionality	compared	to	other	DBMS	languages.	
There	are	options	available	for	encrypting	the	text	of	the	procedure	as	well	as	restricting	user	
permissions	(using	the	with	clause).	Also,	T-SQL	allows	for	multiple	try-catch	blocks	in	a	procedure,	
unlike	PL/SQL	and	MySQL,	which	each	use	a	separate	section	for	handling	exceptions.	Unlike	in	MySQL,	
T-SQL	functions	can	easily	return	both	tables	and	scalar	values	(it	is	possible	to	do	this	in	Oracle	using	a	
pipelined	table	function,	but	not	as	easily).	T-SQL	has	a	unique	method	for	passing	and	using	parameters;	
the	‘@’	character	must	precede	all	parameters.	This	is	unlike	MySQL	and	PL/SQL.	T-SQL	has	advantages	
over	the	other	DBMS	languages,	but	it	also	lacks	some	functionality.	Unlike	Oracle,	T-SQL	does	not	offer	
for	loops;	only	basic	loops	and	while	loops	are	available.	Also,	T-SQL	does	not	allow	procedures	to	be	
grouped	into	packages.		
	
	
Syntax	for	creating	a	procedure/function:	
CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [OUT | OUTPUT | [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]

<procedure_option> ::=
 [ENCRYPTION]
 [RECOMPILE]
 [EXECUTE AS Clause]

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS return_data_type

	
145	

	

 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END
[;]
	

	
Syntax	for	basic	loop:	
WHILE @cnt < cnt_total
BEGIN
 {...statements...}
 SET @cnt = @cnt + 1;
END;
	

	
MySQL	
	
Comparison	to	other	commercial	DBMS	languages:	
MySQL	offers	similar	functionality	to	PL/SQL	and	T-SQL	while	missing	a	few	of	the	features.	MySQL	
offers	most	of	the	basic	control	structures	available	in	PL/SQL,	but	does	not	offer	for	loops;	only	while	
loops	and	basic	loops	are	available.	MySQL	does	not	offer	packages	for	namespace	management	like	
PL/SQL	does.	Parameters	are	passed	in	the	same	way	as	in	PL/SQL	(unlike	T-SQL).	It	is	important	to	note	
that	when	creating	a	procedure	in	MySQL,	the	delimiter	command	must	be	used	to	change	the	default	
end-line	character	from	a	semicolon	(;)	to	“//”;	otherwise,	only	the	first	line	of	the	procedure	will	be	
stored.	
	
	
Syntax	for	creating	a	procedure/function:	
CREATE
 [DEFINER = { user | CURRENT_USER }]
 PROCEDURE sp_name ([proc_parameter[,...]])
 [characteristic ...] routine_body

CREATE
 [DEFINER = { user | CURRENT_USER }]
 FUNCTION sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body
	
	
Syntax	for	basic	loop:	

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

	
146	

	

Oracle:	PL/SQL	
	
Comparison	to	other	commercial	DBMS	languages:	
PL/SQL	–	Oracle’s	procedural	SQL-based	language	for	Oracle	DBMS	–	was	used	to	implement	the	
physical	database	for	Charity	General	Hospital.	It	provides	several	unique	features	compared	to	the	
other	DBMS	languages,	including	packages,	which	prevent	name	conflicts,	and	more	complex	control	
structures	like	the	for	loop.	The	parameter-passing	mechanism	is	mostly	the	same	as	in	MySQL.		
	
Syntax	for	creating	a	procedure/function:	
create	or	replace	procedure	<procedure	name>	begin	<PL/SQL	statements>	end	
create	or	replace	function	<function	name>	return	<return	type>	begin	<PL/SQL	statements>	end	

	
Syntax	for	basic	loops:	
while <condition>
loop
 <statements>
end loop;

for <counter variable> in <range>
loop
 <statements>
end loop;

	
147	

	

5.	Graphical	User	Interface	Implementation	
	
In	this	phase,	we	will	implement	a	database	application	with	a	graphical	user	interface	(GUI).	We	will	
first	list	all	of	the	user	groups	that	may	user	the	application,	including	their	specific	needs.	Then,	we	will	
describe	the	Oracle	DBMS	features	required	to	implement	the	software	application,	including	views	and	
stored	procedures.	After	this,	we	will	provide	screenshots	for	all	of	the	features	in	a	component	of	the	
application	designed	for	one	of	the	user	groups.	Then,	we	will	describe	some	of	the	implementation	
process	for	the	application,	including	snippets	of	code.	Finally,	we	will	provide	an	overview	of	the	
database	implementation	process	and	important	lessons	learned.	

	
5.1	Daily	User	Activities	
	
When	designing	a	front-end	application	for	a	database,	it	is	important	to	remember	that	the	application	
will	be	used	by	a	variety	of	users,	each	of	whom	has	different	needs	and	expectations.	Each	distinct	user	
group	will	therefore	require	a	different	graphical	user	interface	that	provides	unique	functionalities.	We	
will	now	list	each	of	the	user	groups	for	Charity	General	Hospital	and	the	unique	required	functionalities.	
For	this	project,	we	will	only	implement	the	interface	for	one	of	the	user	groups.	
	
5.1.1	Registered	Nurse	Users	
	
Registered	Nurses	continuously	monitor	and	provide	services	to	their	assigned	patients.	They	must	be	
aware	of	all	of	the	services	ordered	for	patients	by	doctors,	and	they	must	document	all	of	their	actions.	
	
Required	Functionalities:	

• View	assigned	patients	
• Record	health	assessments	for	assigned	patients	
• View	doctor-ordered	prescriptions	for	patients	
• Record	when	prescriptions	are	administered	

	
5.1.2	Charged/Manager	Nurse	Users	
	
Charged	nurses	supervise	registered	nurses	during	a	shift	and	assign	each	nurse	to	specific	patients.	
	
Required	Functionalities:	

• Assign	nurses	to	patients	
• View	responsibilities	for	subordinate	nurses	and	assess	nurse’s	actions	during	a	shift	
• Manage	employment	status	of	subordinate	nurses	

	

	
148	

	

	
5.1.3	Doctor	Users	
	
Doctors	order	services	for	each	patient.	Services	ordered	include	prescribed	medication	and	special	
needs	ordered.	Nurses	carry	out	orders	made	by	doctors.	
	
Required	Functionalities	
	

• Manage	prescriptions	and	special	needs	activities	for	patients	
• View	patient	assessment	history	

	
5.1.4	Executive/Administrative	Users	
	
Administrator	users	make	sure	the	database	accurately	reflects	the	state	of	the	hospital.	Executive	users	
view	information	about	hospital	resource	usage	to	make	decisions	about	finances	and	human	resources.	
	
Required	Functionalities	
	

• View	hospital	resource	usage	reports	
• Manage	patient,	rooms,	units,	and	employee	information	

	

5.2.	Relations,	views,	and	subprograms		
	
In	order	to	provide	the	services	required	by	the	registered	nurses,	the	database	application	needs	to	
take	advantage	of	some	of	the	PL/SQL	functionalities	provided	by	Oracle	DBMS	(detailed	in	Phase	II	and	
Phase	III	of	development).	Functionalities	include	views	and	stored	procedures.	The	purpose	of	each	
view	and	stored	procedure	will	be	listed	below.	
	
View:	Nurse	Full	Name	
This	view	displays	the	full	name	of	all	hired	nurses	in	the	format:	LastName,	FirstName.	The	view	is	
useful	because	it	hides	the	logic	needed	to	format	the	last_name	and	first_name	fields	of	the	employee	
table,	as	well	as	the	logic	that	filters	doctors	from	nurses.	It	also	condenses	the	information	into	one	
display	field,	which	is	required	by	the	drop	down	list	control.	
	
View:	Prescription	Detail	
This	view	joins	the	medication,	prescription,	and	employee	tables	to	show	all	relevant	information	about	
a	prescription.	It	also	hides	unnecessary	fields	that	registered	nurses	do	not	need	to	access.	It	is	used	to	
populate	the	prescription	list.	
	
	
	

	
149	

	

View:	Prescription	Summary	
This	view	groups	prescriptions	by	medication	type	and	calculates	the	percentage	of	prescriptions	that	
use	each	medication,	given	a	range	of	dates.	The	view	hides	the	logic	for	ensuring	prescriptions	are	
within	a	date	range,	and	is	required	to	generate	the	Services	Summary	report.	
	
	
Stored	Procedure:	Insert	Assessment	
This	procedure	takes	the	parameters	necessary	to	create	an	assessment	and	automatically	calculates	
the	next	auto-increment	primary	key	for	the	assessment.	This	is	useful	because	it	prevents	developers	
from	miscalculating	primary	keys	and	creating	duplicates.	
	 	

	
150	

	

5.3	Menus	and	Displays	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
Nurses	can	use	the	dropdown	list	to	choose	their	name	or	type	their	last	name	to	automatically	
complete.	The	dropdown	list	displays	the	currently	hired	nurses	of	the	hospital.	When	the	nurse	chooses	
their	name,	the	patients	they	are	assigned	to	that	day	will	appear	in	the	box	below.	
	
	 	

	
151	

	

	
	
When	a	nurse	is	selected,	the	query	returns	the	list	of	patients	that	are	assigned	to	the	nurse	that	day.	
The	patient’s	name,	gender,	and	language	are	displayed	in	a	table.	The	nurse	is	then	able	to	select	a	
patient,	which	will	then	display	the	list	of	assessments	of	the	selected	patient	and	all	of	their	active	
prescriptions.		
	 	

	
152	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
When	a	patient	is	selected,	the	list	of	the	assessments	each	nurse	has	performed	that	day	is	displayed	to	
the	right	of	the	patient	list.	The	nurse	can	enter	the	patient’s	systolic	and	diastolic	blood	pressure,	
respiration	rate,	and	heart	rate.	The	date	is	automatically	set	to	today’s	date	and	they	can	set	the	time	
of	the	assessment	in	military	time	format.		
	

	
When	a	patient	is	selected,	their	active	prescriptions	appear	below	the	list	of	patients.	The	prescription	
box	displays	the	name	of	the	medication,	the	dosage,	frequency,	and	the	start	and	end	date	of	what	the	
doctor	has	prescribed	for	them.	When	a	prescription	is	selected,	the	box	displays	the	list	of	times	that	
other	nurses	have	administered	that	prescription	for	that	day.	After	a	nurse	has	administered	a	
medication,	the	nurse	may	select	a	date,	which	is	automatically	selected	to	the	current	date,	and	the	
time	it	was	administered.

	
153	

	

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
For	the	first	report	when	a	nurse	and	patient	are	selected,	the	report	dynamically	shows	the	information	
of	the	nurse,	how	many	total	patients	they	are	assigned	to	and	how	many	prescriptions	they	are	
responsible	for	that	day.	Each	prescription	is	displayed	with	the	patient	it	corresponds	with	along	with	
the	dosage,	frequency,	and	which	doctor	it	was	ordered	by.		This	report	is	useful	because	it	can	check	
for	errors	if	a	nurse	has	administered	a	prescription	more	than	what	was	listed	as	the	frequency.	 	

	
154	

	

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

	
155	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

For	the	second	report,	the	nurse	may	choose	a	range	of	dates	they	wish	to	view	for	a	summary	of	
services	they	have	provided.	The	first	part	of	the	report	shows	a	summary	of	prescriptions	with	a	pie	
chart	to	visualize	the	amount	of	times	each	medicine	has	been	prescribed.	Below	the	chart,	is	the	list	of	
the	medicines	and	the	percentage	and	number	of	times	each	medicine	has	been	prescribed.	This	is	
useful	because	it	shows	which	medicine	is	used	most	in	the	hospital	so	that	in	future	orders,	the	hospital	
can	order	more	of	that	specific	medicine.	Similar	to	the	prescription	summary,	a	second	page	lists	the	
different	types	of	special	needs	that	have	been	performed	within	the	date	range.	This	information	can	
be	useful	for	human	resources,	because	it	indicates	which	activities	nurses	should	be	trained	on.	 	

	
156	

	

5.4	Description	of	Code	
	
The	following	section	will	give	a	brief	overview	of	how	the	functionalities	for	the	registered	nurse	were	
implemented	in	software.	
	
ASP.NET	Runtime	Environment	and	C#	
	
The	application	runs	within	the	ASP.NET	runtime	environment,	using	XML	files	to	describe	the	layout	
and	components	of	interface	pages,	and	C#	code	to	handle	logic.	ASP.NET	automatically	provides	
threading	services,	and	uses	event	handler	functions	to	let	the	user	manipulate	pages	during	the	various	
stages	of	their	loading	cycle.	One	example	is	the	“Page_Load”	event	handler,	which	fires	every	time	the	
client	browser	finishes	loading	a	response	from	the	server.	In	our	Page_Load	handler,	the	default	values	
for	UI	components	are	set	(like	today’s	date).	
	

	
	
	
	 	

	
157	

	

5.4.1	Database	Connection	and	Interaction	
	
Connection	strings	(which	hold	information	required	to	connect	to	the	database)	are	stored	in	a	global	
configuration	file	called	web.config.	The	hostname	and	login	information	are	stored	for	use	throughout	
the	application.	
	

	
	
Components	from	the	database	are	populated	using	“DataSource”	objects,	which	specify	a	SQL	
statement,	a	connection	string,	and	parameters	that	can	be	populated	from	other	controls	on	the	page.	
The	Nurse	Drop	Down	List	populated	using	a	datasource.		
	

	
	
Stored	procedures	can	be	executed	in	C#	code	using	the	Oracle.DataAccess	library.	The	OracleCommand	
class	and	Oracle	Connection	lets	developers	specify	the	type	of	command	and	parameters	with	data	
types.	Here,	the	stored	Insert	Assessment	procedure	is	executed	in	C#	code.	The	connection	is	opened	
at	the	beginning	of	the	request	and	closed	before	the	request	ends.	
	

	
	
	
	 	

	
158	

	

5.4.2	Reports	and	Report	Generator	
	
The	DevExpress	XtraReports	feature	provides	a	GUI	interface	for	designing	reports	that	generates	C#	
files.	C#	code	can	be	used	to	generate	the	pages	of	report	and	export	them	in	pdf	format.	
	
XtraReports	provides	functionality	for	creating	queries	and	specifying	join	relationships	so	data	can	
automatically	populate	report	components.	

	 	

	
159	

	

5.4.3	Major	Features	
	
The	major	features	of	the	program	include	being	able	to	add	health	assessments	for	selected	patients	
given	by	a	selected	nurse.	The	interface	also	allows	users	to	create	records	for	administering	a	selected	
prescription.	Currently,	all	recording	processes	are	done	by	hand,	and	although	this	is	required	in	many	
hospitals	for	legal	reasons,	being	able	to	select	nurses	and	patients	rather	than	writing	their	information	
greatly	speeds	up	the	process.	
	
5.4.4	Learning	New	Tools	
	
Much	of	the	learning	process	for	ASP.NET	C#	and	DevExpress	XtraReports	involves	researching	already-
implemented	examples	and	questions	in	forums	and	message	boards.	Many	developers	have	
encountered	the	same	problems	when	using	the	framework,	and	as	a	result,	answers	already	exist.	
Another	useful	tool	is	reading	the	documentation	provided	by	Microsoft	and	DevExpress,	as	the	
documentation	often	contains	tutorials.	Also	useful	is	exploring	the	many	classes	provided	in	Microsoft	
C#	and	their	members.	Visual	Studio’s	IntelliSense	feature	makes	exploring	class	members	very	easy.	

	 	

	
160	

	

5.5	Design	and	Implementation	Process	
Before	this	report	concludes,	it	is	useful	to	provide	an	overview	all	of	the	steps	for	implementing	a	
database	application,	including	lessons	learned	from	this	development	process.	

Requirements	Collection	and	Analysis	

This	phase	involves	understanding	the	business,	including	its	components	and	how	they	are	related.	It	is	
important	to	perform	a	detailed	survey	of	the	business	so	its	operation	can	be	understood	completely.	

Conceptual	Database	Design	

This	part	includes	developing	a	detailed,	visual	representation	of	the	organization’s	structure	based	on	
the	data	collected	in	the	previous	phase.	It	is	important	that	multiple	designs	are	created	and	the	
potential	problems	of	each	fully	explored,	as	the	conceptual	design	will	form	the	groundwork	for	the	
physical	implementation.	

Logical	Database	Design	

It	is	important	to	convert	the	conceptual	design	into	one	that	can	be	used	in	a	software	implementation.	
The	process	for	converting	must	be	followed	accurately	and	precisely,	and	resulting	relations	must	be	
normalized	to	ensure	the	design	is	sound.	

Physical	Database	Implementation	

A	DBMS	with	useful	functionality	must	be	chosen,	and	the	logical	design	must	be	closely	followed	when	
constructing	the	database.	The	database	should	be	loaded	with	plenty	of	data	so	potential	problems	are	
visible.	Stored	procedures	and	views	should	be	design	to	make	application	development	easier.	

Database	Application	

A	user	interface	that	connects	to	the	database	must	be	designed	for	business	user.	Ease	of	use	must	be	
the	key	focus	of	design.	The	users	should	be	able	to	manipulate	and	access	the	database	without	
wasting	any	unnecessary	time.	

	

	 	

	
161	

	

5.6	Embedded	Questions	
	

Outcome	 Alex	Rinaldi	 JoAnn	Tuazon	
An	ability	to	analyze	a	problem,	and	identify	and	define	
the	computing	requirements	and	specifications	
appropriate	to	its	solution.	

	
9	

	
9	

An	ability	to	design,	implement	and	evaluate	a	computer-
based	system,	process,	component,	or	program	to	meet	
desired	needs,	An	ability	to	understand	the	analysis,	
design,	and	implementation	of	a	computerized	solution	to	
a	real-life	problem.	

	
	
8	

	
	
8	

An	ability	to	communicate	effectively	with	a	range	of	
audiences.	An	ability	to	write	a	technical	document	such	
as	a	software	specification	white	paper	or	a	user	manual.	

	
8	

	
9	

An	ability	to	apply	mathematical	foundations,	algorithmic	
principles,	and	computer	science	theory	in	the	modeling	
and	design	of	computer-based	systems	in	a	way	that	
demonstrates	comprehension	of	the	tradeoffs	involved	in	
design	choices.	

	
	
9	

	
	
8	

	

