

PURPOSE 1. To introduce the concept of a search routine

 2. To introduce the linear and binary searches

 3. To introduce the concept of a sorting algorithm

 4. To introduce the bubble and selection sorts

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

 3. In the lab, students should complete labs assigned to them by the instructor.

L E S S O N S E T

8

Searching and Sorting Arrays

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 138

Pre-lab Writing Assignment Pre-lab reading 10 min. 148

LESSON 8A

Lab 8.1

Working with the Linear

Understanding of

15 min.

149

Search character arrays
Lab 8.2

Working with the Binary

Understanding of

20 min.

150

Search integer arrays
Lab 8.3

Working with Sorts

Understanding of arrays

15 min.

152

LESSON 8B

Lab 8.4

Student Generated Code

Understanding of arrays

50 min.

156

Assignments

137

138 LESSON 8 Searching and Sorting Arrays

P R E - L A B R E A D I N G A S S I G N M E N T

Search Algorithms

A search algorithm is a procedure for locating a specific datum from a collection

of data.

For example, suppose you want to find the phone number for Wilson Electric

in the phonebook. You open the phonebook to the business section under W and

then look for all the entries that begin with the word Wilson. There are numer-

ous such entries, so you look for the one(s) that end with Electric. This is an exam-

ple of a search algorithm. Since each section in the phonebook is alphabetized,

this is a particularly easy search. Of course, there are numerous types of “collections

of data” that one could search. In this section we will focus on searching arrays.

Two algorithms, the linear and binary searches, will be studied. We will see that

each algorithm has its advantages and disadvantages.

Linear Search

The easiest array search to understand is probably the linear search. This algo-

rithm starts at the beginning of the array and then steps through the elements

sequentially until either the desired value is found or the end of the array is

reached. For example, suppose we want to find the first occurrence of the letter

“o” in the word “Harpoon.” We can visualize the corresponding character array

as follows:

0 1 2 3 4 5 6 7

H a r p o o n \0

In C++ we can initialize the character array with the desired string:

char word[8] = "Harpoon";

So word[0]='H', word[3]= 'p', and word[7] = '\0 '. The '\0' marks the end of

the string and is called the null character. It is discussed further in Lesson Set 10.

If we perform a linear search looking for 'o', then we first check word[0] which

is not equal to 'o'. So we then move to word[1] which is also not equal to 'o'.

We continue until we get to word[4]='o'. At this point the subscript 4 is returned

so we know the position in the array that contains the first occurrence of the let-

ter 'o'. What would happen if we searched for 'z'? Certainly we would step

through the array until we reached the end and not find any occurrence of 'z'.

What should the search function return in this case? It is customary to return –1

since this is not a valid array subscript. Here is the complete program that per-

forms the linear search:

Sample Program 8.1:

// This program performs a linear search on a character array

#include <iostream>

using namespace std;

int searchList(char[], int, char); // function prototype

const int SIZE = 8;

Pre-lab Reading Assignment 139

int main()

{

char word[SIZE] = "Harpoon";

int found;

char ch;

cout << "Enter a letter to search for:" << endl;

cin >> ch;

found = searchList(word, SIZE, ch);

if (found == -1)

cout << "The letter " << ch

<< " was not found in the list" << endl;

else

cout << "The letter " << ch <<" is in the " << found + 1

<< " position of the list" << endl;

return 0;

}

//***

// searchList

//

// task: This searches an array for a particular value

// data in: List of values in an array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

int searchList(char list[], int numElems, char value)

{

for (int count = 0;count < numElems; count++)

{

if (list[count] == value)

// each array entry is checked to see if it contains

// the desired value.

return count;

// if the desired value is found, the array subscript

// count is returned to indicate the location in the array

}

return -1; // if the value is not found, -1 is returned

}

23 45 12 456 99

12 29 45 23 456

19 15 13 13 11 6 –1 –3

19 15 16 13 13 11 –1 –3

–3 0 1 1 12 14 18 25

140 LESSON 8 Searching and Sorting Arrays

For example, suppose we wish to search the word “Harpoon” for the letter 'o'.

The function SearchList does the linear search and returns the index 4 of the

array where 'o' is found. However, the program outputs 5 for the position since

we want to output the character’s position within the string rather than its stor-

age location in the word array. You have certainly noticed that there is a second

occurrence of 'o' in the word “Harpoon.” However, the linear search does not

find it since it quits after finding the first occurrence.

One advantage of the linear search is its simplicity. It is easy to step sequen-

tially through an array and check each element for a designated value. Another

advantage is that the elements of the array do not need to be in any order to imple-

ment the algorithm. For example, to search the integer arrays

First Array

Second Array

for the integer 99, the linear search will work. It will return 4 for the first array

and –1 for the second. The main disadvantage of the linear search is that it is time-

consuming for large arrays. If the desired piece of data is not in the array, then

the search has to check every element of the array before it returns –1. Even if

the desired piece of data is in the array, there is a very good chance that a sig-

nificant portion of the array will need to be checked to find it. So we need a more

efficient search algorithm for large arrays.

The Binar y Search

A more efficient algorithm for searching an array is the binary search which elim-

inates half of the array every time it does a check. The drawback is that the data

in the array must be ordered to use a binary search. If we are searching an array

of integers, then the values stored in the array must be arranged in order from

largest to smallest or smallest to largest.

Examples: Consider the following three integer arrays:

1)

2)

3)

The arrays in 1) and 3) could be searched using a binary search. In 1) the val-

ues are arranged largest to smallest and in 3) the values are arranged smallest to

largest. However, the array in 2) could not be searched using a binary search due

to the first three elements of the array: the values of the elements decrease from

19 to 15 but then increase from 15 to 16.

Now that we know which types of arrays are allowed, let us next describe

what the binary search actually does. For the sake of argument, let us assume the

values of an integer array are arranged from smallest to largest and the integer

we are searching for is stored in the variable wanted. We first pick an element in

the middle of the array—let us call it middle. Think about how the number,

Pre-lab Reading Assignment 141

whether it be even or odd, of elements in the array affects this choice. If middle =

wanted, then we are done. Otherwise, wanted must be either greater than or less

than middle. If wanted < middle, then since the array is in ascending order we

know that wanted must be before middle in the array so we can ignore the sec-

ond half of the array and search the first half. Likewise, if wanted > middle, we

can ignore the first half of the array and search just the second half. In both cas-

es we can immediately eliminate half of the array. Once we have done this, we

will choose the middle element of the half that is left over and then repeat the

same process until either wanted is found or it is determined that wanted is not

in the array.

The following program performs a binary search on an array of integers that

is ordered from largest to smallest. Students should think about the logic of this

search and how it differs from the argument given above for data ordered small-

est to largest.

Sample Program 8.2:

// This program demonstrates a Binary Search

#include <iostream>

using namespace std;

int binarySearch(int [], int, int); // function prototype

const int SIZE = 16;

int main()

{

int found, value;

int array[] = {34,19,19,18,17,13,12,12,12,11,9,5,3,2,2,0};

// array to be searched

cout << "Enter an integer to search for:" << endl;

cin >> value;

found = binarySearch(array, SIZE, value);

// function call to perform the binary search

// on array looking for an occurrence of value

if (found == -1)

cout << "The value " << value << " is not in the list" << endl;

else

{

}

cout << "The value " << value << " is in position number "

<< found + 1 << " of the list" << endl;

return 0;

}

continues

142 LESSON 8 Searching and Sorting Arrays

//***

// binarySearch

//

// task: This searches an array for a particular value

// data in: List of values in an orderd array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

int binarySearch(int array[],int numElems,int value) //function heading

{

int first = 0; // First element of list

int last = numElems - 1; // last element of the list

int middle; // variable containing the current

// middle value of the list

while (first <= last)

{

middle = first + (last - first) / 2;

if (array[middle] == value)

return middle; // if value is in the middle, we are done

else if (array[middle]<value)

last = middle - 1; // toss out the second remaining half of

// the array and search the first

else

}

first = middle + 1; // toss out the first remaining half of

// the array and search the second

return -1; // indicates that value is not in the array

}

If you run this program and search for 2, the output indicates that 2 is in the 14th

position of the array. Since 2 is in the 14th and 15th position, we see that the

binary search found the first occurrence of 2 in this particular data set; however,

in Lab 8.2 you will search for values other than 2 and see that there are other pos-

sibilities for which occurrence of a sought value is found.

Sorting Algorithms

We have just seen how to search an array for a specific piece of data; however,

what if we do not like the order in which the data is stored in the array? For exam-

ple, if a collection of numerical values is not in order, we might like them to be

so we can use a binary search to find a particular value. Or, if we have a list of

names, we may want them put in alphabetical order. To sort data stored in an

array, one uses a sorting algorithm. In this section we will consider two such

algorithms—the bubble sort and the selection sort.

Pre-lab Reading Assignment 143

The Bubble Sort

The bubble sort is a simple algorithm used to arrange data in either ascending

(lowest to highest) or descending (highest to lowest) order. To see how this sort

works, let us arrange the array below in ascending order.

9 2 0 11 5

Element 0 Element 1 Element 2 Element 3 Element 4

The bubble sort begins by comparing the first two array elements. If Element 0 >

Element 1, which is true in this case, then these two pieces of data are exchanged.

The array is now the following:

2 9 0 11 5

Element 0 Element 1 Element 2 Element 3 Element 4

Next elements 1 and 2 are compared. Since Element 1 > Element 2, another

exchange occurs:

2 0 9 11 5

Element 0 Element 1 Element 2 Element 3 Element 4

Now elements 2 and 3 are compared. Since 9 < 11, there is no exchange at this

step. Next elements 3 and 4 are compared and exchanged:

2 0 9 5 11

Element 0 Element 1 Element 2 Element 3 Element 4

At this point we are at the end of the array. Note that the largest value is now in

the last position of the array. Now we go back to the beginning of the array and

repeat the entire process over again. Elements 0 and 1 are compared. Since 2 > 0,

an exchange occurs:

0 2 9 5 11

Element 0 Element 1 Element 2 Element 3 Element 4

Next elements 1 and 2 are compared. Since 2 < 9, no swap occurs. However, when

we compare elements 2 and 3 we find that 9 > 5 and so they are exchanged. Since

Element 4 contains the largest value (from the previous pass), we do not need

to make any more comparisons in this pass.

The final result is:

0 2 5 9 11

Element 0 Element 1 Element 2 Element 3 Element 4

The data is now arranged in ascending order and the algorithm terminates. Note

that the larger values seem to rise “like bubbles” to the larger positions of the array

as the sort progresses.

We just saw in the previous example how the first pass through the array posi-

tioned the largest value at the end of the array. This is always the case. Likewise,

the second pass will always position the second to largest value in the second posi-

tion from the end of the array. The pattern continues for the third pass, fourth pass,

and so on until the array is fully sorted. Subsequent passes have one less array

element to check than their immediate predecessor.

144 LESSON 8 Searching and Sorting Arrays

Sample Program 8.3:

// This program uses a bubble sort to arrange an array of integers in

// ascending order

#include <iostream>

using namespace std;

// function prototypes

void bubbleSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

bubbleSortArray(values,SIZE);

cout << "The values after the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

void displayArray(int array[], int elems) // function heading

{ // displays the array

for (int count = 0; count < elems; count++)

cout << array[count] << " " << endl;

}

//**

// bubbleSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

Pre-lab Reading Assignment 145

void bubbleSortArray(int array[], int elems)

{

bool swap;

int temp;

int bottom = elems - 1; // bottom indicates the end part of the

// array where the largest values have

// settled in order

do

{

swap = false;

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1])

{ // the next three lines do a swap

temp = array[count];

array[count] = array[count+1];

array[count+1] = temp;

swap = true; // indicates that a swap occurred

}

}

bottom--; // bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

} while(swap != false);

// loop repeats until a pass through the array with

// no swaps occurs

}

While the bubble sort algorithm is fairly simple, it is inefficient for large arrays since

data values only move one at a time.

The Selection Sort

A generally more efficient algorithm for large arrays is the selection sort. As

before, let us assume that we want to arrange numerical data in ascending order.

The idea of the selection sort algorithm is to first locate the smallest value in the

array and move that value to the beginning of the array (i.e., position 0). Then

the next smallest element is located and put in the second position (i.e., position

1). This process continues until all the data is ordered. An advantage of the selec-

tion sort is that for n data elements at most n-1 moves are required. The disad-

vantage is that n(n-1)/2 comparisons are always required. To see how this sort

works, let us consider the array we arranged using the bubble sort:

9 2 0 11 5

Element 0 Element 1 Element 2 Element 3 Element 4

First the smallest value is located. It is 0, so the contents of Element 0 and Element 2

are swapped:

0 2 9 11 5

Element 0 Element 1 Element 2 Element 3 Element 4

146 LESSON 8 Searching and Sorting Arrays

Next we look for the second smallest value. The important point to note here is

that we do not need to check Element 0 again since we know it already contains

the smallest data value. So the sort starts looking at Element 1. We see that the

second smallest value is 2, which is already in Element 1. Starting at Element 2

we see that 5 is the smallest of the remaining values. Thus the contents of Element 2

and Element 4 are swapped:

0 2 5 11 9

Element 0 Element 1 Element 2 Element 3 Element 4

Finally, the contents of Element 3 and Element 4 are compared. Since 11 > 9, the

contents are swapped leaving the array ordered as desired:

0 2 5 9 11

Element 0 Element 1 Element 2 Element 3 Element 4

Sample Program 8.4:

// This program uses a selection sort to arrange an array of integers in

// ascending order

#include <iostream>

using namespace std;

// function prototypes

void selectionSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the selection sort is performed are:" << endl;

displayArray(values,SIZE);

selectionSortArray(values,SIZE);

cout << "The values after the selection sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

Pre-lab Reading Assignment 147

void displayArray(int array[], int elems) // function heading

{ // Displays array

for (int count = 0; count < elems; count++)

cout << array[count] << " ";

cout << endl;

}

//**

// selectionSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

void selectionSortArray(int array[], int elems)

{

int seek; // array position currently being put in order

int minCount; // location of smallest value found

int minValue; // holds the smallest value found

for (seek = 0; seek < (elems-1); seek++) // outer loop performs the swap

// and then increments seek

{

minCount = seek;

minValue = array[seek];

for(int index = seek + 1; index < elems; index++)

{

// inner loop searches through array

// starting at array[seek] searching

// for the smallest value. When the

// value is found, the subscript is

// stored in minCount. The value is

// stored in minValue.

if(array[index] < minValue)

{

minValue = array[index];

minCount = index;

}

}

// the following two statements exchange the value of the

// element currently needing the smallest value found in the

// pass(indicated by seek) with the smallest value found

// (located in minValue)

continues

148 LESSON 8 Searching and Sorting Arrays

array[minCount] = array[seek];

array[seek] = minValue;

}

}

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The advantage of a linear search is that it is .

2. The disadvantage of a linear search is that it is .

3. The advantage of a binary search over a linear search is that a binary

search is .

4. An advantage of a linear search over a binary search is that the data must

be for a binary search.

5. After 3 passes of a binary search, approximately what fraction of the

original array still needs to be searched (assuming the desired data has not

been found)?

6. While the sort algorithm is conceptually simple, it can be

inefficient for large arrays because data values only move one at a time.

7. An advantage of the sort is that, for an array of size n, at

most n – 1 moves are required.

8. Use the bubble sort on the array below and construct the first 3 steps that

actually make changes. (Assume the sort is from smallest to largest).

19 –4 91 0 –17

Element 0 Element 1 Element 2 Element 3 Element 4

Element 0 Element 1 Element 2 Element 3 Element 4

Element 0 Element 1 Element 2 Element 3 Element 4

Element 0 Element 1 Element 2 Element 3 Element 4

9. Use the selection sort on the array below and construct the first 3 steps

that actually make changes. (Assume the sort if from smallest to largest).

19 –4 91 0 –17

Element 0 Element 1 Element 2 Element 3 Element 4

Element 0 Element 1 Element 2 Element 3 Element 4

Element 0 Element 1 Element 2 Element 3 Element 4

Element 0 Element 1 Element 2 Element 3 Element 4

Lesson 8A 149

LESSO N 8

LAB 8.1 Working with the Linear Search

Bring in program linear_search.cpp from the Lab 8 folder. This is Sample

Program 8.1 from the Pre-lab Reading Assignment. The code is the following:

// This program performs a linear search on a character array

// Place Your Name Here

#include <iostream>

using namespace std;

int searchList(char[], int, char); // function prototype

const int SIZE = 8;

int main()

{

char word[SIZE] = "Harpoon";

int found;

char ch;

cout << "Enter a letter to search for:" << endl;

cin >> ch;

found = searchList(word, SIZE, ch);

if (found == -1)

cout << "The letter " << ch

<< " was not found in the list" << endl;

else

cout << "The letter " << ch <<" is in the " << found + 1

<< " position of the list" << endl;

return 0;

}

//***

// searchList

//

// task: This searches an array for a particular value

// data in: List of values in an array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

150 LESSON 8 Searching and Sorting Arrays

int searchList(char List[], int numElems, char value)

{

for (int count = 0; count <= numElems; count++)

{

if (List[count] == value)

// each array entry is checked to see if it contains

// the desired value.

return count;

// if the desired value is found, the array subscript

// count is returned to indicate the location in the array

}

return -1; // if the value is not found, -1 is returned

}

Exercise 1: Re-write this program so that it searches an array of integers rather

than characters. Search the integer array nums[8] =

3 6 –19 5 5 0 –2 99

for several different integers. Make sure you try integers that are in the array

and others that are not. What happens if you search for 5?

Exercise 2: Re-write the program so that the user can continue to input values

that will be searched for, until a sentinel value is entered to end the program.

Should a pre or post test loop be used?

LAB 8.2 Working with the Binar y Search

Bring in program binary_search.cpp from the Lab 8 folder. This is Sample

Program 8.2 from the Pre-lab Reading Assignment. The code is the following:

// This program demonstrates a Binary Search

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int binarySearch(int [], int, int); // function prototype

const int SIZE = 16;

int main()

{

int found, value;

int array[] = {34,19,19,18,17,13,12,12,12,11,9,5,3,2,2,0};

// array to be searched

cout << "Enter an integer to search for:" << endl;

cin >> value;

found = binarySearch(array, SIZE, value);

Lesson 8A 151

// function call to perform the binary search

// on array looking for an occurrence of value

if (found == -1)

cout << "The value " << value << " is not in the list" << endl;

else

{

}

cout << "The value " << value << " is in position number "

<< found + 1 << " of the list" << endl;

return 0;

}

//***

// binarySearch

//

// task: This searches an array for a particular value

// data in: List of values in an orderd array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

int binarySearch(int array[],int numElems,int value) //function heading

{

int first = 0; // First element of list

int last = numElems - 1; // last element of the list

int middle; // variable containing the current

// middle value of the list

while (first <= last)

{

middle = first + (last - first) / 2;

if (array[middle] == value)

return middle; // if value is in the middle, we are done

else if (array[middle] < value)

last = middle - 1; // toss out the second remaining half of

// the array and search the first

else

}

first = middle + 1; // toss out the first remaining half of

// the array and search the second

return -1; // indicates that value is not in the array

}

152 LESSON 8 Searching and Sorting Arrays

Exercise 1: The variable middle is defined as an integer. The program contains

the assignment statement middle=first+(last-first)/2. Is the right side

of this statement necessarily an integer in computer memory? Explain how

the middle value is determined by the computer. How does this line of

code affect the logic of the program? Remember that first, last, and

middle refer to the array positions, not the values stored in those array

positions.

Exercise 2: Search the array in the program above for 19 and then 12. Record

what the output is in each case.

Note that both 19 and 12 are repeated in the array. Which occurrence of

19 did the search find?

Which occurrence of 12 did the search find?

Explain the difference.

Exercise 3: Modify the program to search an array that is in ascending order.

Make sure to alter the array initialization.

LAB 8.3 Working with Sorts

Bring in either the program bubble_sort.cpp or selection_sort.cpp from the

Lab 8 folder. These are Sample Programs 8.3 and 8.4, respectively, from the Pre-

lab Reading Assignment. The code for both are given below.

// This program uses a bubble sort to arrange an array of integers in

// ascending order

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

// function prototypes

void bubbleSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

bubbleSortArray(values,SIZE);

Lesson 8A 153

cout << "The values after the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

void displayArray(int array[], int elems) // function heading

{ // displays the array

for (int count = 0; count < elems; count++)

cout << array[count] << " " << endl;

}

//**

// bubbleSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

void bubbleSortArray(int array[], int elems)

{

bool swap;

int temp;

int bottom = elems - 1; // bottom indicates the end part of the

// array where the largest values have

// settled in order

do

{

swap = false;

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1])

{ // the next three lines do a swap

temp = array[count];

array[count] = array[count+1];

array[count+1] = temp;

swap = true; // indicates that a swap occurred

}

}

154 LESSON 8 Searching and Sorting Arrays

bottom--; // bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

} while(swap != false);

// loop repeats until a pass through the array with

// no swaps occurs

}

selection_sort.cpp

// This program uses a selection sort to arrange an array of integers in

// ascending order

//PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

// function prototypes

void selectionSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the selection sort is performed are:" << endl;

displayArray(values,SIZE);

selectionSortArray(values,SIZE);

cout << "The values after the selection sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

void displayArray(int array[], int elems) // function heading

{ // Displays array

for (int count = 0; count < elems; count++)

cout << array[count] << " ";

cout << endl;

Lesson 8A 155

}

//**

// selectionSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

void selectionSortArray(int array[], int elems)

{

int seek; // array position currently being put in order

int minCount; // location of smallest value found

int minValue; // holds the smallest value found

for (seek = 0; seek < (elems-1);seek++) // outer loop performs the swap

// and then increments seek

{

minCount = seek;

minValue = array[seek];

for(int index = seek + 1; index < elems; index++)

{

// inner loop searches through array

// starting at array[seek] searching

// for the smallest value. When the

// value is found, the subscript is

// stored in minCount. The value is

// stored in minValue.

if(array[index] < minValue)

{

minValue = array[index];

minCount = index;

}

}

// the following two statements exchange the value of the

// element currently needing the smallest value found in the

// pass(indicated by seek) with the smallest value found

// (located in minValue)

array[minCount] = array[seek];

array[seek] = minValue;

}

}

156 LESSON 8 Searching and Sorting Arrays

Exercise 1: Re-write the sort program you chose so that it orders integers from

largest to smallest rather than smallest to largest.

Exercise 2: Modify your program from Exercise 1 so that it prints the array at

each step of the algorithm. Try sorting the array

23 0 45 –3 –78 1 –1 9

by hand using whichever algorithm you chose. Then have your program

do the sort. Does the output match what you did by hand?

LAB 8.4 Student Generated Code Assignments

Write a program that prompts the user to enter the number of elements and the

numbers themselves to be placed in an integer array that holds a maximum of 50

elements. The program should then prompt the user for an integer which will be

searched for in the array using a binary search. Make sure to include the fol-

lowing steps along the way:

i) A sort routine must be called before the binary search. You may use either

the selection sort or the bubble sort. However, the sort must be imple-

mented in its own function and not in main.

ii) Next include a function called by main to implement the binary search.

The ordered array produced by the sort should be passed to the search

routine which returns the location in the sorted array of the sought value,

or -1 if the value is not in the array.

iii) Add a value returning function that computes the mean of your data set.

Recall that the mean is the sum of the data values divided by the number

of pieces of data. Your program should output the size of the array

entered, the array as entered by the user, the sorted array, the integer

being searched for, the location of that integer in the sorted array (or an

appropriate message if it is not in the array), and the mean of the data set.

iv) (Optional) Modify your program so that the data is entered from a file

rather than from the keyboard. The first line of the file should be the size

of the integer array. The second line should contain the integer searched

for in the data set. Finally, the array elements are to start on the third line.

Make sure you separate each array element with a space. The output, as

described in iii), should be sent to a file.

