

PURPOSE 1. To introduce the concept of void functions (procedures)

 2. To work with void functions (procedures) that have no parameters

 3. To introduce and work with void functions (procedures) that have pass by value and

pass by reference parameters

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

 3. In the lab, students should complete labs assigned to them by their instructor.

L E S S O N S E T

6.1

Introduction to Void Functions
(Procedures)

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 76

Pre-lab Writing Assignment Pre-lab reading 10 min. 83

LESSON 6.1A

Lab 6.1

Functions with No

Confident in use of the

15 min.

84

Parameters control structures
Lab 6.2

Introduction to Pass by Value

Basic understanding of

35 min.

84

 pass by value.

LESSON 6.1B

Lab 6.3

Introduction to Pass by

Basic understanding of

25 min.

86

Reference pass by reference.
Lab 6.4

Student Generated Code

Basic understanding of

30 min.

89

Assignments pass by reference and

value.

75

76 LESSON SET 6.1 Introduction to Void Functions (Procedures)

P R E - L A B R E A D I N G A S S I G N M E N T

Modules

A key element of structured (well organized and documented) programs is their

modularity: the breaking of code into small units. These units, or modules, that

do not return a value are called procedures in most languages and are called

void functions in C++. Although procedures is the authors’ preferred term, this

manual uses the word function to describe both void functions (discussed in this

lesson set) and value returning functions (studied in the next lesson set), as

this is the terminology used in C++.

The int main() section of our program is a function and, up until now, has

been the only coded module used in our programs. We also have used pre-

defined functions such as pow and sqrt which are defined in library routines and

“imported” to our program with the #include <cmath> directive. We now explore

the means of breaking our own code into modules. In fact, the main function

should contain little more than “calls” to other functions. Think of the main func-

tion as a contractor who hires sub-contractors to perform certain duties: plumbers

to do the plumbing, electricians to do the electrical work, etc. The contractor is

in charge of the order in which these sub-contract jobs are issued.

The int main()function consists mostly of calls to functions just like a con-

tractor issues commands to sub-contractors to come and do their jobs. A computer

does many simple tasks (modules) that, when combined, produce a set of com-

plex operations. How one determines what those separate tasks should be is

one of the skills learned in software engineering, the science of developing qual-

ity software. A good computer program consists of several tasks, or units of code,

called modules or functions.

In simple programs most functions are called, or invoked, by the main func-

tion. Calling a function basically means starting the execution of the instructions

contained in that module. Sometimes a function may need information “passed”

in order to perform designated tasks.

If a function is to find the square root of a number, then it needs that num-

ber passed to it by the calling function. Information is passed to or from a func-

tion through parameters. Parameters are the components of communication

between functions. Some functions do very simple tasks such as printing basic

output statements to the screen. These may be instructions to the user or just

documentation on what the program will do. Such functions are often called

parameter-less functions since they do not require anything passed by the call-

ing procedure.

Sample Program 6.1a:

#include <iostream>

using namespace std;

void printDescription(); // Function prototype

int main()

{

cout << "Welcome to the Payroll Program." << endl;

printDescription(); // Call to the function

Pre-lab Reading Assignment 77

cout << "We hoped you enjoyed this program." << endl;

return 0;

}

//***

// printDescription

//

// Task: This function prints a program description

// Data in: none

//

//***

void printDescription() // The function heading

{

cout << "***"

<< endl << endl;

cout << "This program takes two numbers (pay rate and hours)"

<< endl;

cout << "and outputs gross pay. " << endl;

cout << "***"

<< endl << endl;

}

In this example, three areas have been highlighted. Starting from the bottom we

have the function itself which is often called the function definition.

The function heading void printDescription()consists of the name of the

function preceded by the word void. The word void means that this function will

not return a value to the module that called it.1 The function name is followed

by a set of parentheses. Just like the main function, all functions begin with a left

brace and end with a right brace. In between these braces are the instructions of

the function. In this case they consist solely of cout statements that tell what the

program does.

Notice that this function comes after the main function. How is this function

activated? It must be called by either the main function or another function in the

program. This function is called by main with the simple instruction

printDescription();.

A call to a function can be classified as the sixth fundamental instruction (see

Lesson Set 2). Notice the call consists only of the name of the function (not the

word void preceding it) followed by the set of parentheses and a semicolon. By

invoking its name in this way, the function is called. The program executes the body

of instructions found in that function and then returns to the calling function

(main in this case) where it executes the remaining instructions following the call.

Let us examine the order in which the instructions are executed.

1 In the next lesson set we will see that the word preceding the name of a function can be

the data type of the value that the function will return to the calling function.

78 LESSON SET 6.1 Introduction to Void Functions (Procedures)

The main function is invoked which then executes the following instruction:

cout << "Welcome to the Pay Roll Program" << endl;

Next the call to the function printDescription is encountered which executes

the following instructions:

cout << "**" << endl << endl;

cout << "This program takes two numbers (pay rate & hours)" << endl;

cout << "and outputs gross pay " << endl;

cout << "**" << endl << endl;

After all the instructions in printDescription are executed, control returns to main

and the next instruction after the call is executed:

cout << "We hoped you enjoyed this program" << endl;

The first highlighted section of the example is found before main() in what we

call the global section of the program. It is called a prototype and looks just like

the function heading except it has a semicolon at the end. Since our example has

the “definition of the function” after the call to the function, the program will give

us an error when we try to call it if we do not have some kind of signal to the

computer that the definition will be forthcoming. That is the purpose of the pro-

totype. It is a promise (contract if you will) to the compiler that a void function

called printDescription will be defined after the main function. If the

printDescription function is placed in the file before the main function which

calls it, then the prototype is not necessary. However, most C++ programs are writ-

ten with prototypes so that main() can be the first function.

Pass by Value

The following program, Sample Program 6.1b, is an extension of the code above.

This program will take a pay rate and hours worked and produce the gross pay

based on those numbers. This can be done in another function called calPaycheck.

Sample Program 6.1b:

#include <iostream>

using namespace std;

// Function prototypes

void printDescription();

void calPaycheck(float, int);

int main()

{

float payRate;

int hours;

cout << "Welcome to the Payroll Program." << endl;

Pre-lab Reading Assignment 79

printDescription(); // Call to the printDescription function

cout << endl << "Please input the pay per hour." << endl;

cin >> payRate;

cout << endl << "Please input the number of hours worked." << endl;

cin >> hours;

cout << endl << endl;

calPaycheck(payRate, hours); // Call to the calPaycheck function

cout << "We hope you enjoyed this program." << endl;

return 0;

}

//**

// printDescription

//

// Task: This function prints a program description

// Data in: no parameters received from the function call

//

//**

void printDescription() // The function heading

{

cout << "**" << endl << endl;

cout << "This program takes two numbers (pay rate and hours) " << endl;

cout << "and outputs gross pay. " << endl;

cout << "**" << endl << endl;

}

//**

// calPaycheck

//

// Task: This function computes and outputs gross pay

// Data in: rate and time

//

//**

void calPaycheck(float rate, int time)

{

float gross;

gross = rate * time;

cout << "The pay is " << gross << endl;

}

The bold sections of this program show the development of another function.

This function is a bit different in that it has parameters inside the parentheses of

the call, heading and prototype. Recall that parameters are the components

of communication to and from a function and the call to that function. The

80 LESSON SET 6.1 Introduction to Void Functions (Procedures)

function calPaycheck needs information from the calling routine. In order to

find the gross pay it needs the rate per hour and the number of hours worked

to be passed to it. The call provides this information by having parameters inside

the parentheses of the call calPaycheck(payRate,hours);. Both payRate and

hours are called actual parameters. They match in a one-to-one correspon-

dence with the parameters in the function heading which are called rate and time:

void calPaycheck(float rate, int time)

The parameters in a function heading are called formal parameters.

It is important to compare the call with the function heading.

Call Function heading

calPaycheck(payRate,hours); void calPaycheck(float rate, int time)

1. The call does not have any word preceding the name whereas the func-

tion heading has the word void preceding its name.

2. The call must NOT give the data type before its actual parameters whereas

the heading MUST give the data type of its formal parameters.

3. Although the formal parameters may have the same name as their corre-

sponding actual parameters, they do not have to be the same. The first

actual parameter, payRate, is paired with rate, the first formal parameter.

This means that the value of payRate is given to rate. The second actual

parameter, hours, is paired with time, the second formal parameter, and

gives time its value. Corresponding (paired) parameters must have the same

data type. Notice that payRate is defined as float in the main function and

thus it can legally match rate which is also defined as float in the function

heading. hours is defined as int so it can be legally matched (paired) with

time which is defined as int in the function heading.

4. The actual parameters (payRate and hours) pass their values to their

corresponding formal parameters. Whatever value is read into payRate in

the main function will be given to rate in the calPaycheck function. This

is called pass by value. It means that payRate and rate are two distinct

memory locations. Whatever value is in payRate at the time of the call will

be placed in rate’s memory location as its initial value. It should be noted

that if the function calPaycheck were to alter the value of rate, it would

not affect the value of payRate back in the main function. In essence, pass

by value is like making a copy of the value in payRate and placing it in

rate. Whatever is done to that copy in rate has no effect on the value in

payRate. Recall that a formal parameter can have the same name as its

corresponding actual parameter; however, they are still two different

locations in memory.

How does the computer know which location to go to if there are two

variables with the same name? The answer is found in a concept called

scope. Scope refers to the location in a program where an indentifier is

accessible. All variables defined in the main function become inactive

when another function is called and are reactivated when the control

returns to main. By the same token, all formal parameters and variables

defined inside a function are active only during the time the function is

executing. What this means is that an actual parameter and its correspond-

ing formal parameter are never active at the same time. Thus there is no

confusion as to which memory location to access even if corresponding

Pre-lab Reading Assignment 81

parameters have the same name. More on scope will be presented in the

next lesson set.

It is also important to compare the prototype with the heading.

Prototype Function heading

void calPaycheck(float, int); void calPaycheck(float rate, int time)

1. The prototype has a semicolon at the end and the heading does not.

2. The prototype lists only the data type of the parameters and not their name.

However, the prototype can list both and thus be exactly like the heading

except for the semicolon. Some instructors tell students to copy the proto-

type without the semicolon and paste it to form the function heading.

Let us look at all three parts—prototype, call and heading:

1. The heading MUST have both data type and name for all its formal

parameters.

2. The prototype must have the data type and can have the name for its

formal parameters.

3. The call MUST have the name but MUST NOT have the data type for its

actual parameters.

Pass by Reference

Suppose we want the calPaycheck function to only compute the gross pay and

then pass this value back to the calling function rather than printing it. We need

another parameter, not to get information from the call but to give information

back to the call. This particular parameter can not be passed by value since

any change made in a function to a pass by value formal parameter has no effect

on its corresponding actual parameter. Instead, this parameter is passed by ref-

erence, which means that the calling function will give the called function the

location of its actual parameter instead of a copy of the value that is stored in that

location. This then allows the called function to go in and change the value of

the actual parameter.

Example: Assume that I have a set of lockers each containing a sheet of paper

with a number on it. Making a copy of a sheet from a particular locker and

giving that sheet to you will ensure that you will not change my original copy.

This is pass by value. On the other hand, if I give you a spare key to a particu-

lar locker, you could go to that locker and change the number on the sheet of

paper located there. This is pass by reference.

How does the program know whether a parameter is passed by value or by

reference? All parameters are passed by value unless they have the character &

listed after the data type, which indicates a pass by reference.

Sample Program 6.1C:

#include <iostream>

#include <iomanip>

using namespace std;

// Function prototypes

continues

82 LESSON SET 6.1 Introduction to Void Functions (Procedures)

void printDescription(); // prototype for a parameter-less function

void calPaycheck(float, int, float&); // prototype for a function with 3

// parameters. The first two are passed

// by value. The third is passed by

// reference

int main()

{

float payRate;

float grossPay;

float netPay;

int hours;

cout << "Welcome to the Payroll Program." << endl;

printDescription(); // Call to the description function

cout << endl << "Please input the pay per hour." << endl;

cin >> payRate;

cout << endl << "Please input the number of hours worked." << endl;

cin >> hours;

cout << endl << endl;

calPaycheck(payRate, hours, grossPay); // Call to the calPaycheck function

etPay = grossPay - (grossPay * .20);

cout << "The net pay is " << netPay << endl;

cout << "We hoped you enjoyed this program." << endl;

return 0;

}

//**

// printDescription

//

// Task: This function prints a program description

// Data in: none

// Data out: no actual parameters altered

//

//**

void printDescription() // The function heading

{

cout << "**" << endl << endl;

cout << "This program takes two numbers (pay rate and hours) " << endl;

cout << "and outputs gross pay. " << endl;

cout << "**" << endl << endl;

}

Pre-lab Writing Assignment 83

//**

// calPaycheck

//

// Task: This function computes gross pay

// Data in: rate and time

// Data out: gross (alters the corresponding actual parameter)

//

//**

void calPaycheck(float rate, int time, float& gross)

{

gross = rate * time;

}

Notice that the function calPaycheck now has three parameters. The first two, rate

and time, are passed by value while the third has an & after its data type indi-

cating that it is pass by reference. The actual parameter grossPay is paired with

gross since they both are the third parameter in their respective lists. But since

this pairing is pass by reference, these two names refer to the SAME memory loca-

tion. Thus what the function does to its formal parameter gross changes the val-

ue of grossPay. After the calPaycheck function finds gross, control goes back

to the main function that has this value in grossPay. main proceeds to find the

net pay, by taking 20% off the gross pay, and printing it. Study this latest revision

of the program very carefully. One of the lab exercises asks you to alter it.

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The word precedes the name of every function proto-

type and heading that does not return a value back to the calling routine.

2. Pass by indicates that a copy of the actual parameter is

placed in the memory location of its corresponding formal parameter.

3. parameters are found in the call to a function.

4. A prototype must give the of its formal

parameters and may give their .

5. A after a data type in the function heading and in the

prototype indicates that the parameter will be passed by reference.

6. Functions that do not return a value are often called in

other programming languages.

7. Pass by indicates that the location of an actual parame-

ter, rather than just a copy of its value, is passed to the called function.

8. A call must have the of its actual parameters and must

NOT have the of those parameters.

9. refers to the region of a program where a variable is

“active.”

10. parameters are found in the function heading.

84 LESSON SET 6.1 Introduction to Void Functions (Procedures)

L E S S O N 6 . 1 A

LAB 6.1 Functions with No Parameters

Retrieve program proverb.cpp from the Lab 6.1 folder. The code is as follows:

// This program prints the proverb

// "Now is the time for all good men to come to the aid of their party"

// in a function (procedure) called writeProverb that is called by the main function

//PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

void writeProverb(); //This is the prototype for the writeProverb function

int main()

{

// Fill in the code to call the writeProverb function

return 0;

}

// ***

// writeProverb

//

// task: This function prints a proverb

// data in: none

// data out: no actual parameter altered

//

// **

// Fill in the function heading and the body of the function that will print

// to the screen the proverb listed in the comments at the beginning of the

// program

Exercise 1: Fill in the code (places in bold) so that the program will print out the

proverb listed in the comments at the beginning of the program. The

proverb will be printed by the function which is called by the main func-

tion.

LAB 6.2 Introduction to Pass by Value

Retrieve program newproverb.cpp from the Lab 6.1 folder. The code is as follows:

// This program will allow the user to input from the keyboard

// whether the last word to the following proverb should be party or country:

Lesson 6.1A 85

// "Now is the time for all good men to come to the aid of their "

// Inputting a 1 will use the word party. Any other number will use the word country.

// PLACE YOUR NAME HERE

#include <iostream>

#include <string>

using namespace std;

// Fill in the prototype of the function writeProverb.

int main ()

{

int wordCode;

cout << "Given the phrase:" << endl;

cout << "Now is the time for all good men to come to the aid of their "

<< endl;

cout << "Input a 1 if you want the sentence to be finished with party"

<< endl;

cout << "Input any other number for the word country" << endl;

cout << "Please input your choice now" << endl;

cin >> wordCode; cout

<< endl;

writeProverb(wordCode);

return 0;

}

// **

// writeProverb

//

// task: This function prints a proverb. The function takes a number

// from the call. If that number is a 1 it prints "Now is the time

// for all good men to come to the aid of their party."

// Otherwise, it prints "Now is the time for all good men

// to come to the aid of their country."

// data in: code for ending word of proverb (integer)

// data out: no actual parameter altered

//

// ***

void writeProverb (int number)

86 LESSON SET 6.1 Introduction to Void Functions (Procedures)

{

// Fill in the body of the function to accomplish what is described above

}

Exercise 1: Some people know this proverb as “Now is the time for all good

men to come to the aid of their country” while others heard it as “Now is

the time for all good men to come to the aid of their party.” This program

will allow the user to choose which way they want it printed. Fill in the

blanks of the program to accomplish what is described in the program

comments. What happens if you inadvertently enter a float such as -3.97?

Exercise 2: Change the program so that an input of 1 from the user will print

“party” at the end, a 2 will print “country” and any other number will be

invalid so that the user will need to enter a new choice.

Sample Run:

Exercise 3: Change the previous program so the user may input the word to

end the phrase. The string holding the user’s input word will be passed to the

proverb function instead of passing a number to it. Notice that this change

requires you to change the proverb function heading and the prototype as

well as the call to the function.

L E S S O N 6 . 1 B

Sample Run:

Given the phrase:

Now is the time for all good men to come to the aid of their

Please input the word you would like to have finish the proverb

family

Now is the time for all good men to come to the aid of their family

Lab 6.3 Introduction to Pass by Reference

Retrieve program paycheck.cpp from the Lab 6.1 folder. This program is similar

to Sample Program 6.1C that was given in the Pre-lab Reading Assignment. The

code is as follows:

// This program takes two numbers (payRate & hours)

// and multiplies them to get grosspay.

// It then calculates net pay by subtracting 15%

//PLACE YOUR NAME HERE

Lesson 6.1B 87

#include <iostream>

#include <iomanip>

using namespace std;

//Function prototypes

void printDescription();

void computePaycheck(float, int, float&, float&);

int main()

{

float payRate;

float grossPay;

float netPay;

int hours;

cout << setprecision(2) << fixed;

cout << "Welcome to the Pay Roll Program" << endl;

printDescription(); //Call to Description function

cout << "Please input the pay per hour" << endl;

cin >> payRate;

cout << endl << "Please input the number of hours worked" << endl;

cin >> hours;

cout << endl << endl;

computePaycheck(payRate,hours,grossPay,netPay);

// Fill in the code to output grossPay

cout << "The net pay is $" << netPay << endl;

cout << "We hope you enjoyed this program" << endl;

return 0;

}

// **

// printDescription

//

// task: This function prints a program description

// data in: none

// data out: no actual parameter altered

//

// **

continues

88 LESSON SET 6.1 Introduction to Void Functions (Procedures)

void printDescription() // The function heading

{

cout << "**" << endl << endl;

cout << "This program takes two numbers (payRate & hours)" << endl;

cout << "and multiplies them to get gross pay " << endl;

cout << "it then calculates net pay by subtracting 15%" << endl;

cout << "**" << endl << endl;

}

// ***

// computePaycheck

//

// task: This function takes rate and time and multiples them to

// get gross pay and then finds net pay by subtracting 15%.

// data in: pay rate and time in hours worked

// data out: the gross and net pay

//

// **

void computePaycheck(float rate, int time, float& gross, float& net)

{

// Fill in the code to find gross pay and net pay

}

Exercise 1: Fill in the code (places in bold) and note that the function

computePaycheck determines the net pay by subtracting 15% from the gross

pay. Both gross and net are returned to the main() function where those

values are printed.

Exercise 2: Compile and run your program with the following data and make

sure you get the output shown.

Lesson 6.1B 89

Exercise 3: Are the parameters gross and net, in the modified calPaycheck

func- tion you created in Exercise 1 above, pass by value or pass by

reference?

Exercise 4: Alter the program so that gross and net are printed in the function

compute computePaycheck instead of in main(). The main() function executes

the statement

cout << "We hoped you enjoyed this program" << endl;

after the return from the function calPaycheck.

Exercise 5: Run the program again using the data from Exercise 2. You should

get the same results. All parameters should now be passed by value.

LAB 6.4 Student Generated Code Assignments

Option 1: Write a program that will read two floating point numbers (the first

read into a variable called first and the second read into a variable called

second) and then calls the function swap with the actual parameters first

and second. The swap function having formal parameters number1 and

number2 should swap the value of the two variables. Note: This is similar

to a program you did in Lesson Set 1; however, now you are required to

use a function. You may want to look at logicprob.cpp from Lesson Set 1.

Sample Run:

Exercise 1: Compile the program and correct it if necessary until you get no

syntax errors.

Exercise 2: Run the program with the sample data above and see if you get the

same results.

Exercise 3: The swap parameters must be passed by .

(Assume that main produces the output.) Why?

Option 2: Write a program that will input miles traveled and hours spent in

travel. The program will determine miles per hour. This calculation must

be done in a function other than main; however, main will print the

calculation. The function will thus have 3 parameters: miles, hours, and

milesPerHour. Which parameter(s) are pass by value and which are

passed by reference? Output is fixed with 2 decimal point precision.

90 LESSON SET 6.1 Introduction to Void Functions (Procedures)

Sample Run:

Option 3: Write a program that will read in grades, the number of which is

also input by the user. The program will find the sum of those grades and

pass it, along with the number of grades, to a function which has a “pass

by reference” parameter that will contain the numeric average of those

grades as processed by the function. The main function will then deter-

mine the letter grade of that average based on a 10-point scale.

90–100 A

80–89 B

70–79 C

60–69 D

0–59 F

Sample Run:

