

PURPOSE 1. To introduce counter and event controlled loops

 2. To work with the while loop

 3. To introduce the do-while loop

 4. To work with the for loop

 5. To work with nested loops

 6. To briefly introduce the concept of files

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

 3. In the lab, students should complete labs assigned to them by the instructor.

L E S S O N S E T

5

Loops and Files

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 56

Pre-lab Writing Assignment Pre-lab reading 10 min. 65

LESSON 5A

Lab 5.1

Working with the while Loop

Basic understanding

25 min.

65

 of the while loop
Lab 5.2

Working with the

Basic understanding

25 min.

67

do-while Loop of do-while loop

LESSON 5B

Lab 5.3

Working with the for Loop

Understanding of for

15 min.

69

 loops
Lab 5.4

Nested Loops

Understanding of

15 min

70

 nested for loops
Lab 5.5

Reading and Writing

Basic understanding

15 min.

72

to a File of reading and writing files
continues

55

56 LESSON SET 5 Loops and Files

Lab 5.6

Student Generated Code Basic understanding 30 min. 73

Assignments of loop control structures

P R E - L A B R E A D I N G A S S I G N M E N T

Increment and Decrement Operator

To execute many algorithms we need to be able to add or subtract 1 from a giv-

en integer quantity. For example:

count = count + 1; // what would happen if we used ==

// instead of = ?

count += 1;

Both of these statements increment the value of count by 1. If we replace “+”

with “-” in the above code, then both statements decrement the value of

count by 1. C++ also provides an increment operator ++ and a decrement

operator -- to perform these tasks. There are two modes that can be used:

count++; // increment operator in the postfix mode

count--; // decrement operator in the postfix mode

The while Loop

++count; // increment operator in the prefix mode

--count; // decrement operator in the prefix mode

The two increment statements both execute exactly the same. So do the decre-

ment operators. What is the purpose of having postfix and prefix modes? To

answer this, consider the following code:

int age = 49;

if (age++ > 49)

cout << "Congratulations - You have made it to the half-century"

<< " mark !" << endl;

In this code, the cout statement will not execute. The reason is that in the post-

fix mode the comparison between age and 49 is made first. Then the value of

age is incremented by one. Since 49 is not greater than 49, the if conditional

is false. Things are much different if we replace the postfix operator with the pre-

fix operator:

int age = 49;

if (++age > 49)

cout << " Congratulations - You have made it to the half-century"

<< " mark !" << endl;

In this code age is incremented first. So its value is 50 when the comparison is

made. The conditional statement is true and the cout statement is executed.

Often in programming one needs a statement or block of statements to repeat dur-

ing execution. This can be accomplished using a loop. A loop is a control struc-

ture that causes repetition of code within a program. C++ has three types of

loops. The first we will consider is the while loop. The syntax is the following:

while (expression)

{

statement_1;

statement_2;

:

statement_n;

}

Pre-Lab Reading Assignment 57

If there is only one statement, then the curly braces can be omitted. When a

while loop is encountered during execution, the expression is tested to see if it

is true or false. The block of statements is repeated as long as the expression is

true. Consider the following:

Sample Program 5.1:

#include <iostream>

using namespace std;

int main()

{

int num = 5;

int numFac = 1;

while (num > 0)

{

numFac = numFac * num;

num––; // note the use of the decrement operator

}

cout << " 5! = " << numFac << endl;

return 0;

}

This program computes 5! = 5 * 4 * 3 * 2 * 1 and then prints the result to the screen.

Note how the while loop controls the execution. Since num = 5 when the while

loop is first encountered, the block of statements in the body of the loop is exe-

cuted at least once. In fact, the block is executed 5 times because of the decre-

ment operator which forces the value of num to decrease by one every time the

block is executed. During the fifth iteration of the loop num becomes 0, so the

next time the expression is tested num > 0 is false and the loop is exited. Then

the cout statement is executed.

What do you think will happen if we eliminated the decrement operator

num–– in the above code? The value of num is always 5. This means that the

expression num > 0 is always true! If we try to execute the modified program,

the result is an infinite loop, i.e., a block of code that will repeat forever. One

must be very cautious when using loops to ensure that the loop will termi-

nate. Here is another example where the user may have trouble with termi-

nation.

Sample Program 5.2:

#include <iostream>

using namespace std;

int main()

{

char letter = 'a';

while (letter != 'x')

continues

58 LESSON SET 5 Loops and Files

{

cout << "Please enter a letter" << endl;

cin >> letter;

cout << "The letter your entered is " << letter << endl;

}

return 0;

}

Note that this program requires input from the user during execution. Infinite

loops can be avoided, but it would help if the user knew that the 'x' charac-

ter terminates the execution. Without this knowledge the user could continual-

ly enter characters other than 'x' and never realize how to terminate the

program. In the lab assignments you will be asked to modify this program to make

it more user friendly.

Counters

Often a programmer needs to control the number of times a particular loop is

repeated. One common way to accomplish this is by using a counter. For exam-

ple, suppose we want to find the average of five test scores. We must first input

and add the five scores. This can be done with a counter-controlled loop as

shown in Sample Program 5.3. Notice how the variable named test works as a

counter. Also notice the use of a constant for the number of tests. This is done

so that the number of tests can easily be changed if we want a different number

of tests to be averaged.

Sample Program 5.3:

#include <iostream>

using namespace std;

const int NUMBEROFTESTS = 5;

int main()

{

int score ; // the individual score read in

float total = 0.0; // the total of the scores

float average; // the average of the scores

int test = 1; // counter that controls the loop

while (test <= NUMBEROFTESTS) // Note that test is 1 the first time

// the expression is tested

{

cout << "Enter your score on test " << test << ": " << endl;

cin >> score;

total = total + score;

test++;

}

average = total / NUMBEROFTESTS;

Pre-Lab Reading Assignment 59

cout << "Your average based on " << NUMBEROFTESTS

<< " test scores is " << average << endl;

return 0;

}

Sample Program 5.3 can be made more flexible by adding an integer variable called

numScores that would allow the user to input the number of tests to be processed.

Sentinel Values

We can also control the execution of a loop by using a sentinel value which is

a special value that marks the end of a list of values. In a variation of the previ-

ous program example, if we do not know exactly how many test scores there are,

we can input scores which are added to total until the sentinel value is input.

Sample Program 5.4 revises Sample Program 5.3 to control the loop with a sen-

tinel value. The sentinel in this case is -1 since it is an invalid test score. It does

not make sense to use a sentinel between 0 and 100 since this is the range of valid

test scores. Notice that a counter is still used to keep track of the number of test

scores entered, although it does not control the loop. What happens if the first

value the user enters is a -1?

Sample Program 5.4:

#include <iostream>

using namespace std;

int main()

{

int score ; // the individual score read in

float total = 0.0; // the total of the scores

float average; // the average of the scores

int test = 1; // counter that controls the loop

cout << "Enter your score on test " << test

<< " (or -1 to exit): " << endl;

cin >> score; // Read the 1st score

while (score != -1) // While we have not entered the sentinel

// (ending) value, do the loop

{

total = total + score;

test++;

cout << "Enter your score on test " << test

<< " (or -1 to exit): " << endl;

cin >> score; // Read the next score

continues

60 LESSON SET 5 Loops and Files

}

if (test > 1) // If test = 1, no scores were entered

{

average = total / (test - 1);

cout << "Your average based on " << (test - 1)

<< " test scores is " << average << endl;

}

return 0;

}

Notice that the program asks for input just before the while loop begins and

again as the last instruction in the while loop. This is done so that the while loop

can test for sentinel data. Often this is called priming the read and is frequently

implemented when sentinel data is used to end a loop.

Data Validation

The do-while Loop

One nice application of the while loop is data validation. The user can input data

(from the keyboard or a file) and then a while loop tests to see if the value(s)

is valid. The loop is skipped for all valid input but for invalid input the loop is

executed and prompts the user to enter new (valid) input. The following is an

example of data validation.

cout << "Please input your choice of drink "

<< "(a number from 1 to 4 or 0 to quit)" << endl;

cout << " 1 - Coffee" << endl

<< " 2 - Tea" << endl

<< " 3 - Coke" << endl

<< " 4 - Orange Juice" << endl << endl

<< " 0 - QUIT" << endl << endl;

cin >> beverage;

while (beverage < 0 || beverage > 4)

{

cout << "Valid choices are 0 - 4. Please re-enter: ";

cin >> beverage;

}

What type of invalid data does this code test for? If beverage is an integer vari-

able, what happens if the user enters the character ‘$’ or the float 2.9?

The while loop is a pre-test or top test loop. Since we test the expression before

entering the loop, if the test expression in the while loop is initially false, then

no iterations of the loop will be executed. If the programmer wants the loop to

be executed at least once, then a post-test or bottom test loop should be used.

C++ provides the do-while loop for this purpose. A do-while loop is similar to

a while loop except that the statements inside the loop body are executed before

Pre-Lab Reading Assignment 61

the expression is tested. The format for a single statement in the loop body is the

following:

do

statement;

while (expression);

Note that the statement must be executed once even if the expression is false. To

see the difference between these two loops consider the code

int num1 = 5;

int num2 = 7;

while (num2 < num1)

{

num1 = num1 + 1;

num2 = num2 - 1;

}

Here the statements num1 = num1 + 1 and num2 = num2 - 1 are never executed

since the test expression num2 < num1 is initially false. However, we get a

different result using a do-while loop:

int num1 = 5;

int num2 = 7;

do

{

num1 = num1 + 1;

num2 = num2 - 1;

The for Loop

} while (num2 < num1);

In this code the statements num1 = num1 + 1 and num2 = num2 - 1 are executed

exactly once. At this point num1 = 6 and num2 = 6 so the expression num2 < num1

is false. Consequently, the program exits the loop and moves to the next section

of code. Also note that since we need a block of statements in the loop body, curly

braces must be placed around the statements. In Lab 5.2 you will see how do-

while loops can be useful for programs that involve a repeating menu.

The for loop is often used for applications that require a counter. For example,

suppose we want to find the average (mean) of the first n positive integers. By

definition, this means that we need to add 1 + 2 + 3 + . . . + n and then divide

by n. Note this should just give us the value in the “middle” of the list 1, 2, . . . , n.

Since we know exactly how many times we are performing a sum, the for loop

is the natural choice.

The syntax for the for loop is the following:

for (initialization; test; update)

{

statement_1;

statement_2;

:

statement_n;

}

62 LESSON SET 5 Loops and Files

Notice that there are three expressions inside the parentheses of the for statement,

separated by semicolons.

1. The initialization expression is typically used to initialize a counter that

must have a starting value. This is the first action performed by the loop

and is done only once.

2. The test expression, as with the while and do-while loops, is used to

control the execution of the loop. As long as the test expression is true,

the body of the for loop repeats. The for loop is a pre-test loop which

means that the test expression is evaluated before each iteration.

3. The update expression is executed at the end of each iteration. It

typically increments or decrements the counter.

Now we are ready to add the first n positive integers and find their mean value.

Sample Program 5.5:

#include <iostream>

using namespace std;

int main()

{

int value;

int total = 0;

int number;

float mean;

cout << "Please enter a positive integer" << endl;

cin >> value;

if (value > 0)

{

for (number = 1; number <= value; number++)

{

total = total + number;

} // curly braces are optional since

// there is only one statement

mean = static_cast<float>(total) / value; // note the use of the typecast

// operator

cout << "The mean average of the first " << value

<< " positive integers is " << mean << endl;

}

else

return 0;

}

cout << "Invalid input - integer must be positive" << endl;

Note that the counter in the for loop of Sample Program 5.5 is number. It incre-

ments from 1 to value during execution. There are several other features of this

code that also need to be addressed. First of all, why is the typecast operator

needed to compute the mean? What do you think will happen if it is removed?

Pre-Lab Reading Assignment 63

Finally, what would happen if we entered a float such as 2.99 instead of an inte-

ger? Lab 5.3 will demonstrate what happens in these cases.

Nested Loops

Often programmers need to use a loop within a loop, or nested loops. Sample Program

5.6 below provides a simple example of a nested loop. This program finds the average

number of hours per day spent programming by each student over a three-day week-

end. The outer loop controls the number of students and the inner loop allows the

user to enter the number of hours worked each of the three days for a given student.

Note that the inner loop is executed three times for each iteration of the outer loop.

Sample Program 5.6:

// This program finds the average time spent programming by a student each

// day over a three day period.

#include <iostream>

using namespace std;

int main()

{

int numStudents;

float numHours, total, average;

int count1 = 0, count2 = 0; // these are the counters for the loops

cout << "This program will find the average number of hours a day"

<< " that each given student spent programming over a long weekend"

<< endl << endl;

cout << "How many students are there ?" << endl << endl;

cin >> numStudents;

for (count1 = 1; count1 <= numStudents; count1++)

{

total = 0;

for (count2 = 1; count2 <= 3; count2++)

{

cout << "Please enter the number of hours worked by student "

<< count1 << " on day " << count2 << "." << endl;

cin >> numHours;

total = total + numHours;

}

average = total / 3;

cout << endl;

cout << "The average number of hours per day spent programming by"

<< " student " << count1 <<" is " << average

<< endl << endl << endl;

}

return 0.

}

In Lab 5.4 you will be asked to modify this program to make it more flexible.

64 LESSON SET 5 Loops and Files

 Files

So far all our input has come from the keyboard and our output has gone to the

monitor. Input, however, can come from files and output can go to files. To do

either of these things we should add the #include <fstream> directive in the head-

er to allow files to be created and accessed. A file containing data to be input to

the computer should be defined as an ifstream data type and an output file

should be defined as ofstream.

Sample Program 5.7

Suppose we have a data file called grades.dat that contains three grades, and

we want to take those grades and output them to a file that we will call final-

grade.out. The following code shows how this can be done in C++.

 #include <fstream> // This statement is needed to use files

 using namespace std;

int main()

 {

 float grade1, grade2, grade3; // This defines 3 float variables

 ifstream dataFile; // This defines an input file stream.

// dataFile is the "internal" name that is

// used in the program for accessing the

// data file.

 ofstream outFile; // This defines an output file stream.

// outFile is the "internal" name that is

// used in the program for accessing the

// output file.

outFile << fixed << showpoint; // These can be used with output files as

// well as with cout.

dataFile.open("grades.dat"); // This ties the internal name, dataFile,

 // to the actual file, grades.dat.

outFile.open("finalgrade.out");

//

This ties the internal name, outFile, to

 // the actual file, finalgrade.out.

dataFile >> grade1 >> grade2

//

This reads the values from the input file

>> grade3; // into the 3 variables.

outFile << grade1 << endl; // These 3 lines write the values stored in

outFile << grade2 << endl; // the 3 variables to the output file

outFile << grade3 << endl;

return 0;

}

Pre-Lab Reading Assignment 65

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

L E S S O N 5 A

1. A block of code that repeats forever is called .

2. To keep track of the number of times a particular loop is repeated, one

can use a(n) .

3. An event controlled loop that is always executed at least once is the

 .

4. An event controlled loop that is not guaranteed to execute at least once is

the .

5. In the conditional if(++number < 9), the comparison number < 9 is made

 and number is incremented . (Choose

first or second for each blank.)

6. In the conditional if(number++ < 9), the comparison number < 9 is made

 and number is incremented . (Choose

first or second for each blank.)

7. A loop within a loop is called a .

8. List the preprocessor directive that is used to allow data and output files to

be used in the program.

9. To write out the first 12 positive integers and their cubes, one should use

a(n) loop.

10. A(n) value is used to indicate the end of a list of values.

It can be used to control a while loop.

11. In a nested loop the loop goes through all of its itera-

tions for each iteration of the loop. (Choose inner or

outer for each blank.)

LAB 5.1 Working with the while Loop

Bring in program while.cpp from the Lab 5 folder. (This is Sample Program 5.2

from the Pre-lab Reading Assignment). The code is shown below:

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

char letter = 'a';

while (letter != 'x')

{

cout << "Please enter a letter" << endl;

cin >> letter;

cout << "The letter you entered is " << letter << endl;

}

return 0;

}

66 LESSON SET 5 Loops and Files

Exercise 1: This program is not user friendly. Run it a few times and explain

why.

Exercise 2: Add to the code so that the program is more user friendly.

Exercise 3: How would this code affect the execution of the program if the

while loop is replaced by a do-while loop? Try it and see.

Bring in program sentinel.cpp from the Lab 5 Folder. The code is shown below:

// This program illustrates the use of a sentinel in a while loop.

// The user is asked for monthly rainfall totals until a sentinel

// value of -1 is entered. Then the total rainfall is displayed.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

// Fill in the code to define and initialize to 1 the variable month

float total = 0, rain;

cout << "Enter the total rainfall for month " << month << endl;

cout << "Enter -1 when you are finished" << endl;

// Fill in the code to read in the value for rain

// Fill in the code to start a while loop that iterates

// while rain does not equal -1

{

// Fill in the code to update total by adding it to rain

// Fill in the code to increment month by one

cout << "Enter the total rainfall in inches for month "

<< month << endl;

cout << "Enter -1 when you are finished" << endl;

// Fill in the code to read in the value for rain

}

if (month == 1)

cout << "No data has been entered" << endl;

else

cout << "The total rainfall for the " << month-1

<< " months is "<< total << " inches." << endl;

return 0;

}

Lesson 5A 67

Exercise 4: Complete the program above by filling in the code described in the

statements in bold so that it will perform the indicated task.

Exercise 5: Run the program several times with various input. Record your

results. Are they correct? What happens if you enter –1 first? What happens

if you enter only values of 0 for one or more months? Is there any numeri-

cal data that you should not enter?

Exercise 6: What is the purpose of the following code in the program above?

if (month == 1)

cout << "No data has been entered" << endl;

LAB 5.2 Working with the do-while Loop

Bring in the program dowhile.cpp from the Lab 5 folder. The code is shown

below:

// This program displays a hot beverage menu and prompts the user to

// make a selection. A switch statement determines which item the user

// has chosen. A do-while loop repeats until the user selects item E

// from the menu.

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

// Fill in the code to define an integer variable called number,

// a floating point variable called cost,

// and a character variable called beverage

bool validBeverage;

cout << fixed << showpoint << setprecision(2);

do

{

cout << endl << endl;

cout << "Hot Beverage Menu" << endl << endl;

cout << "A: Coffee $1.00" << endl;

cout << "B: Tea $.75" << endl;

cout << "C: Hot Chocolate $1.25" << endl;

cout << "D: Cappuccino $2.50" << endl << endl << endl;

continues

68 LESSON SET 5 Loops and Files

cout << "Enter the beverage A,B,C, or D you desire" << endl;

cout << "Enter E to exit the program" << endl << endl;

// Fill in the code to read in beverage

switch(beverage)

{

case 'a':

case 'A':

case 'b':

case 'B':

case 'c':

case 'C':

case 'd':

case 'D': validBeverage = true;

break;

default: validBeverage = false;

}

if (validBeverage == true)

{

cout << "How many cups would you like?" << endl;

// Fill in the code to read in number

}

// Fill in the code to begin a switch statement

// that is controlled by beverage

{

case 'a':

case 'A': cost = number * 1.0;

cout << "The total cost is $ " << cost << endl;

break;

// Fill in the code to give the case for hot chocolate ($1.25 a cup)

// Fill in the code to give the case for tea ($0.75 a cup)

// Fill in the code to give the case for cappuccino ($2.50 a cup)

case 'e':

case 'E': cout << " Please come again" << endl;

break;

default:cout << // Fill in the code to write a message

// indicating an invalid selection.

cout << " Try again please" << endl;

}

} // Fill in the code to finish the do-while statement with the

// condition that beverage does not equal E or e.

// Fill in the appropriate return statement

}

Lesson 5A 69

L E S S O N 5 B

Exercise 1: Fill in the indicated code to complete the above program. Then

compile and run the program several times with various inputs. Try all the

possible relevant cases and record your results.

Exercise 2: What do you think will happen if you do not enter A, B, C, D

or E? Try running the program and inputting another letter.

Exercise 3: Replace the line

if (validBeverage == true)

with the line

if (validBeverage)

and run the program again. Are there any differences in the execution of

the program? Why or why not?

LAB 5.3 Working with the for Loop

Bring in program for.cpp from the Lab 5 folder (this is Sample Program 5.5 from

the Pre-lab Reading Assignment). This program has the user input a number n and

then finds the mean of the first n positive integers. The code is shown below:

// This program has the user input a number n and then finds the

// mean of the first n positive integers

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int value; // value is some positive number n

int total = 0; // total holds the sum of the first n positive numbers

int number; // the amount of numbers

float mean; // the average of the first n positive numbers

cout << "Please enter a positive integer" << endl;

cin >> value;

if (value > 0)

{

for (number = 1; number <= value; number++)

{

total = total + number;

} // curly braces are optional since there is only one statement

mean = static_cast<float>(total) / value; // note the use of the typecast

// operator here

cout << "The mean average of the first " << value

<< " positive integers is " << mean << endl;

continues

70 LESSON SET 5 Loops and Files

}

else

cout << "Invalid input - integer must be positive" << endl;

return 0;

}

Exercise 1: Why is the typecast operator needed to compute the mean in the

statement mean = static_cast(float)(total)/value;? What do you think

will happen if it is removed? Modify the code and try it. Record what happens.

Make sure that you try both even and odd cases. Now put static_cast<float>

total back in the program.

Exercise 2: What happens if you enter a float such as 2.99 instead of an integer

for value? Try it and record the results.

Exercise 3: Modify the code so that it computes the mean of the consecutive

positive integers n, n+1, n+2, . . . , m, where the user chooses n and m.

For example, if the user picks 3 and 9, then the program should find the

mean of 3, 4, 5, 6, 7, 8, and 9, which is 6.

LAB 5.4 Nested Loops

Bring in program nested.cpp from the Lab 5 folder (this is Sample Program 5.6

from the Pre-lab Reading Assignment). The code is shown below:

// This program finds the average time spent programming by a student

// each day over a three day period.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int numStudents;

float numHours, total, average;

int student,day = 0; // these are the counters for the loops

cout << "This program will find the average number of hours a day"

<< " that a student spent programming over a long weekend\n\n";

cout << "How many students are there ?" << endl << endl;

cin >> numStudents;

for(student = 1; student <= numStudents; student++)

{

total = 0;

for(day = 1; day <= 3; day++)

{

cout << "Please enter the number of hours worked by student "

<< student <<" on day " << day << "." << endl;

cin >> numHours;

continues

Lesson 5B 71

total = total + numHours;

}

average = total / 3;

cout << endl;

cout << "The average number of hours per day spent programming by "

<< "student " << student << " is " << average

<< endl << endl << endl;

}

return 0;

}

Exercise 1: Note that the inner loop of this program is always executed exactly

three times—once for each day of the long weekend. Modify the code so

that the inner loop iterates n times, where n is a positive integer input by

the user. In other words, let the user decide how many days to consider

just as they choose how many students to consider.

Sample Run:

Exercise 2: Modify the program from Exercise 1 so that it also finds the average

number of hours per day that a given student studies biology as well as

programming. For each given student include two prompts, one for each

subject. Have the program print out which subject the student, on average,

spent the most time on.

72 LESSON SET 5 Loops and Files

LAB 3.5 Reading and Writing to a File

Bring in billfile.cpp from the Lab 5 folder. The code is as follows:

// This program will read in the quantity of a particular item and its price.

// It will then print out the total price.

// The input will come from a data file and the output will go to

// an output file.

// PLACE YOUR NAME HERE

#include <fstream>

#include <iomanip>

using namespace std;

int main()

{

 ifstream dataIn; // defines an input stream for a data file
 ofstream dataOut; // defines an output stream for an output file
 int quantity; // contains the amount of items purchased
 float itemPrice; // contains the price of each item
 float totalBill; // contains the total bill, i.e. the price of all items

dataIn.open("transaction.dat"); // This opens the file.

dataOut.open("bill.out");

// Fill in the appropriate code in the blank below

 << setprecision(2) << fixed << showpoint; // formatted output

// Fill in the input statement that brings in the

// quantity and price of the item

// Fill in the assignment statement that determines the total bill.

// Fill in the output statement that prints the total bill, with a label,

// to an output file

return 0;

}

Exercise 1: Notice that this is an altered version of Lab 3.1. This program gets

the information from a file and places the output to a file. You must

create the data file. Your instructor will tell you how to create the data file

and where to put it. Create a data file called transaction.dat that has the

following information:

22

10.98

Exercise 2: Fill in the blank and the statements that will read the data from the

file and print the following to bill.out:

The total bill is $241.56

Lesson 5B 73

LAB 5.6 Student Generated Code Assignments

Option 1: Write a program that performs a survey tally on beverages. The

program should prompt for the next person until a sentinel value of –1 is

entered to terminate the program. Each person participating in the survey

should choose their favorite beverage from the following list:

1. Coffee 2. Tea 3. Coke 4. Orange Juice

Sample Run:

Option 2: Suppose Dave drops a watermelon off a high bridge and lets it fall

until it hits the water. If we neglect air resistance, then the distance d in

meters fallen by the watermelon after t seconds is d = 0.5 * g * t2, where the

acceleration of gravity g = 9.8 meters/second2. Write a program that asks the

user to input the number of seconds that the watermelon falls and the

height h of the bridge above the water. The program should then calculate

the distance fallen for each second from t = 0 until the value of t input by

the user. If the total distance fallen is greater than the height of the bridge,

then the program should tell the user that the distance fallen is not valid.

74 LESSON SET 5 Loops and Files

Sample Run 1:

Sample Run 2:

Option 3: Write a program that prompts the user for the number of tellers at

Nation’s Bank in Hyatesville that worked each of the last three years. For

each worker the program should ask for the number of days out sick for

each of the last three years. The output should provide the number of

tellers and the total number of days missed by all the tellers over the last

three years.

See the sample output below.

Sample Run:

