

PU RPOSE 1. To work with relational operators

 2. To work with conditional statements

 3. To learn and use nested if statements

 4. To learn and use logical operators

 5. To learn and use the switch statement

PROCEDU RE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

L E S S O N S E T

4

Conditional Statements

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 42
Pre-lab Writing Assignment Pre-lab reading 10 min. 48
LESSON 4A
Lab 4.1

Relational Operators

Basic understanding of

15 min.

48

and the if Statement relational operators and

the simple if statement

Lab 4.2

if/else and Nested if

Basic understanding

20 min.

49

Statements of nested if statements
Lab 4.3

Logical Operators

Basic understanding

15 min.

50

 of logical operators
LESSON 4B
Lab 4.4

The switch Statement

Understanding of the

25 min.

51

 switch statement
Lab 4.5

Student Generated Code

Basic understanding of

30 min.

52

Assignments conditional statements

41

42 LESSON SET 4 Conditional Statements

P R E - L A B R E A D I N G A S S I G N M E N T

Relational Operators

The if Statement

You have already seen that the statement total = 5 is an assignment statement;

that is, the integer 5 is placed in the variable called total. Nothing relevant to our

everyday understanding of equality is present here. So how do we deal with

equality in a program? How about greater than or less than? C++ allows the pro-

grammer to compare numeric values using relational operators. They are the

following:

> Greater than

< Less than

> = Greater than or equal to

< = Less than or equal to

= = Equal to

! = Not equal to

An expression of the form num1 > num2 is called a relational expression. Note

that it does not assert that num1 is greater than num2. It actually tests to see if this

is true. So relational expressions are boolean. Their value must be either true or

false. The statement cost!=9 is false if cost has value 9 and true otherwise.

Consider the following code:

int years;

years = 6; // assignment statement years is assigned the value of 6

years == 5; // relational expression, not an assignment statement

years = years - 1; // assignment statement

years == 5; // relational expression

In this sequence the first occurrence of years == 5 is a false statement whereas

the second occurrence is true. Can you see why?

Sometimes we may only want a portion of code executed under certain condi-

tions. To do so, we use conditional statements. For example, if you are writ-

ing a payroll program to compute wages, then the program should only compute

overtime pay if the employee worked more than 40 hours in a given week.

Otherwise, when the program is executed the overtime portion of the code

should be bypassed. An if statement is one kind of conditional statement.

Consider the following program:

Sample Program 4.1:

// This program prints "You Pass" if a student's average is 60 or higher and prints

// "You Fail" otherwise

#include <iostream>

using namespace std:

int main()

{

float average;

Pre-lab Reading Assignment 43

cout << "Input your average" << endl;

cin >> average;

if (average >= 60) // note the use of a relational operator

cout << "You Pass" << endl;

if (average < 60)

cout << "You Fail" << endl;

return 0;

}

Note that it is not possible for this program to print out both “You Pass” and

“You Fail”. Only one of the if statements will be executed. Later we will see a

way to write this program without using 2 if statements.

If you want to conditionally execute several statements using if, the fol-

lowing syntax is required:

if (expression)

{

statement_1;

statement_2;

:

statement_n;

}

The if/else Statement

Note the curly braces surrounding the set of statements to be conditionally executed.

In Sample Program 4.1 we used two if statements. A more elegant approach

would be to use the if/else statement as follows:

if (average >= 60)

cout << "You Pass" << endl;

else

cout << "You Fail" << endl;

In every if/else statement the program can take only one of two possible

paths. Multiple statements can be handled using curly braces in the same way as

the if statement.

The if/else if Statement

The if/else statement works well if there are only two possible paths to follow.

However, what if there are more than two possibilities? For example, suppose we

need to decide what kind of vacation to take based on a yearly work bonus:

if the bonus is less than $1,000, we set up a tent and eat hot dogs in the back yard

if the bonus is less than $10,000 and greater than or equal to $1,000, we go to

Disney World

if the bonus is $10,000, we go to Hawaii

44 LESSON SET 4 Conditional Statements

We could code this using the if/else if statement as follows:

float bonus;

cout << "Please input the amount of your yearly bonus" << endl;

cin >> bonus;

if (bonus < 1000)

cout << "Another vacation eating hot dogs on the lawn" << endl;

else if (bonus < 10000)

cout << "Off to Disney World!" << endl;

else if (bonus == 10000)

cout << "Lets go to Hawaii!" << endl;

Can you explain why the first else if conditional statement does not require a

greater than or equal to 1000 condition?

In general we can use as many else if expressions as needed to solve a

given problem.

The Trailing else

What happens in the code above if the bonus entered is greater than $10,000?

Actually, nothing will happen since none of the conditional expressions are true

in this case. Sometimes it is advantageous to add a final or trailing else at the

end of a chain of if/else if statements to handle “all other cases.” For exam-

ple, we could modify the code to read:

if (bonus < 1000)

cout << "Another vacation on the lawn" << endl;

else if (bonus < 10000)

cout << "Off to Disney World!" << endl;

else if (bonus == 10000)

cout << "Lets go to Hawaii!" << endl;

else

{

cout << bonus << " is not a valid bonus" << endl;

cout << "Please run the program again with valid data" << endl;

} // Note the necessary use of the curly brackets here

Of course, few would complain about a bonus greater than $10,000 and the

Hawaii trip could still be done on this budget. However, if the maximum possi-

ble bonus is $10,000, then the trailing else will let the user know that an illegal

value has been entered.

Nested if Statements

Often programmers use an if statement within another if statement. For exam-

ple, suppose a software engineering company wants to screen applicants first for

experienced programmers and second for C++ programmers specifically. One

possible program is the following:

Pre-lab Reading Assignment 45

Sample Program 4.2:

#include <iostream>

using namespace std;

int main()

{

char programmer, cPlusPlus;

cout << "Before we consider your application, answer the following"

<< endl;

cout << " yes (enter Y) or no (enter N)" << endl;

cout << "Are you a computer programmer?" << endl;

cin >> programmer;

if (programmer == 'Y')

{

cout << "Do you program in C++?" << endl;

cin >> cPlusPlus;

if (cPlusPlus == 'Y')

cout << " You look like a promising candidate for employment"

<< endl;

else if (cPlusPlus == 'N')

cout << " You need to learn C++ before further consideration"

<< endl;

else

cout << " You must enter Y or N" << endl;

}

else if (programmer == 'N')

cout << " You are not currently qualified for employment" << endl;

else

cout << " You must enter Y or N" << endl;

return 0;

}

Note how C++ programmers are identified using a nested if statement. Also

note how the trailing else is used to detect invalid input.

Logical Operators

By using relational operators C++ programmers can create relational expressions.

Programmers can also combine truth values into a single expression by using

logical operators. For example, instead of a statement such as “if it is sunny, then

we will go outside,” one may use a statement such as “if it is sunny and it is warm,

then we will go outside.” Note that this statement has two smaller statements “it

is sunny” and “it is warm” joined by the AND logical operator. To evaluate to true,

both the sunny and warm requirements must be met.

46 LESSON SET 4 Conditional Statements

The NOT operator negates a single statement. For example, “it is sunny” can be

negated by “it is not sunny.”

The OR operator is similar to the AND in that it connects two statements.

However, there is an ambiguity about the meaning of the word or in English. In the

statement “tonight at 8:00 I will go to the concert in the park or I will go to the sta-

dium to see the ball game,” the word or is exclusive. That is, I can go to the con-

cert or to the game, but not both. However, in the statement “I need to draw an ace

or a king to have a good poker hand,” the word or is inclusive. In other words, I

can draw a king, an ace, or even both, and I will have a good hand. So we have a

choice to make. Let A and B be two statements. A OR B could mean A or B but not

both. It could also mean A or B or both. In computer science we use the second

meaning of the word or. For example, in the statement “if it is sunny or it is warm,

then I will go outside,” there are three scenarios where I will go outside: if it is

sunny but not warm, if it is warm but not sunny, or if it is sunny and warm.

The syntax used by C++ for logical operators is the following:

AND &&

OR | |

NOT !

Consider the following:

The switch Statement

if (dollars <= 0 || !(accountActive))

cout << " You may not withdraw money from the bank";

It is good programming practice to enclose the operand after the (!) operator in

parentheses. Unexpected things can happen in complicated expressions if you do

not. When will this code execute the cout statement? What type of variable do

you think accountActive is?

We have already seen how if statements can affect the branching of a program

during execution. Another way to do this is using the switch statement. It is also

a conditional statement. The switch statement uses the value of an integer expres-

sion to determine which group of statements to branch through. The sample

program below illustrates the syntax.

Sample Program 4.3:

#include <iostream>

using namespace std;

int main()

{

char grade;

cout << "What grade did you earn in Programming I?" << endl;

cin >> grade;

switch(grade) // This is where the switch statement begins

{

case 'A':cout << "an A - excellent work!" << endl;

break;

Pre-lab Reading Assignment 47

case 'B':cout << "you got a B - good job" << endl;

break;

case 'C':cout << "earning a C is satisfactory" << endl;

break;

case 'D':cout << "while D is passing, there is a problem" << endl;

break;

case 'F':cout << "you failed - better luck next time" << endl;

break;

default:cout << "You did not enter an A, B, C, D, or F" << endl;

}

return 0;

}

Note the use of the curly braces that enclose the cases and the use of break; after

each case. Also, consider the variable grade. It is defined as a character data type

and the case statements have character arguments such as 'B'. This seems to con-

tradict what we said above, namely that the switch statement uses the value of inte-

ger expressions to determine branching. However, this apparent contradiction is

resolved by the compiler automatically converting character data into the integer

data type. Finally, notice the role of the default statement. The default branch is

followed if none of the case expressions match the given switch expression.

Character & string comparisons

So far, relational operators have been used to compare numeric constants and vari-

ables. Characters and string objects can also be compared with the same opera-

tors. For example:

char letter = 'F';

string word = "passed";

switch(letter)

{

case 'A': cout << "Your grade is A." << endl;

break;

case 'B': cout << "Your grade is B." << endl;

break;

case 'C: cout << "Your grade is C." << endl;

break;

case 'D': cout << "Your grade is D." << endl;

break;

case 'F': word = "failed";

break;

default: cout << "You did not enter an A,B,C,D or F" << endl;

}

if (word == "passed")

cout << "You passed" << endl;

else

cout << "You failed" << endl;

What is printed ?

48 LESSON SET 4 Conditional Statements

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

L E S S O N 4 A

1. The two possible values for a relational expression are

and .

2. C++ uses the symbol to represent the AND operator.

3. The switch statement and if statements are examples of

statements.

4. In C++ is the meaning of the OR logical operator inclusive or exclusive?

5. C++ uses the symbol to represent the OR operator.

6. It is good programming practice to do what to the operand after the NOT

operator?

7. The switch statement uses the value of a(n) expression

to determine which group of statements to branch through.

8. In a switch statement the branch is followed if none of

the case expressions match the given switch expression.

9. C++ allows the programmer to compare numeric values using

 .

10. The C++ symbol for equality is .

LAB 4.1 Relational Operators and the if Statement

Exercise 1: Bring in the file initialize.cpp from the Lab 4 folder. The code

follows:

// This program tests whether or not an initialized value

// is equal to a value input by the user

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int num1, // num1 is not initialized

num2 = 5; // num2 has been initialized to 5

cout << "Please enter an integer" << endl;

cin >> num1;

cout << "num1 = " << num1 << " and num2 = " << num2 << endl;

if (num1 = num2)

cout << "Hey, that’s a coincidence!" << endl;

Lesson 4A 49

if (num1 != num2)

cout << "The values are not the same" << endl;

return 0;

}

Exercise 1: Run the program several times using a different input each time.

Does the program do what you expect? Is so, explain what it is doing. If

not, locate the error and fix it.

Exercise 2: Modify the program so that the user inputs both values to be

tested for equality. Make sure you have a prompt for each input. Test the

program with pairs of values that are the same and that are different.

Exercise 3: Modify the program so that when the numbers are the same it

prints the following lines:

The values are the same.

Hey that’s a coincidence!

Exercise 4: Modify the revised Exercise 3 program by replacing the two if

statements with a single if/else statement. Run the program again to test

the results.

LAB 4.2 if/else if Statements

Bring in the file grades.cpp from the Lab 4 folder. The code follows:

// This program prints "You Pass" if a student's average is

// 60 or higher and prints "You Fail" otherwise

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

float average; // holds the grade average

cout << "Input your average:" << endl;

cin >> average;

if (average > 60)

cout << "You Pass" << endl;

if (average < 60)

cout << "You Fail" << endl;

return 0;

}

50 LESSON SET 4 Conditional Statements

Exercise 1: Run the program three times using 80, 55 and 60 for the average.

What happens when you input 60 as the average? Modify the first if

statement so that the program will also print “You Pass” if the average

equals 60.

Exercise 2: Modify the program so that it uses an if/else statement rather

than two if statements.

Exercise 3: Modify the program from Exercise 2 to allow the following cate-

gories: Invalid data (data above 100), ‘A’ category (90–100), ‘B’ category

(80–89), “You Pass” category (60–79), “You Fail” category (0–59).

What will happen to your program if you enter a negative value such as -12?

Lab 4.3 Logical Operators

Retrieve LogicalOp.cpp from the Lab 4 folder. The code is as follows:

// This program illustrates the use of logical operators

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

char year;

float gpa;

cout << "What year student are you ?" << endl;

cout << "Enter 1 (freshman), 2 (sophomore), 3 (junior), or 4 (senior)"

<< endl << endl;

cin >> year;

cout << "Now enter your GPA" << endl;

cin >> gpa;

if (gpa >= 2.0 && year == '4')

cout << "It is time to graduate soon" << endl;

else if (year != '4'|| gpa <2.0)

cout << "You need more schooling" << endl;

return 0;

}

Exercise 1: How could you rewrite gpa >= 2.0 in the first if statement using

the NOT operator?

Exercise 2: Could you replace year !='4' in the else if statement with

year < 4 or year <= 3? Why or why not?

Lesson 4B 51

Exercise 3: If you replace

if (gpa >= 2.0 && year == '4')

with

if (gpa >= 2.0 || year == '4')

and replace

else if (year != '4'|| gpa < 2.0)

with

L E S S O N 4 B

else if (year != '4' && gpa < 2.0)

which students will graduate and which will not graduate according to this

new program?

Does this handle all cases (i.e., all combinations of year and gpa)?

Exercise 4: Could you replace else if (year != '4'|| gpa < 2.0) with the

single word else?

LAB 4.4 The switch Statement

Exercise 1: Bring in the file switch.cpp from the Lab 4 folder. This is Sample

Program 4.3 from the Pre-lab Reading Assignment. The code is shown

below. Remove the break statements from each of the cases. What is the

effect on the execution of the program?

// This program illustrates the use of the switch statement.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

char grade;

cout << "What grade did you earn in Programming I ?" << endl;

cin >> grade;

switch(grade) // This is where the switch statement begins

{

case 'A': cout << "an A - excellent work !" << endl;

break;

case 'B': cout << "you got a B - good job" << endl;

break;

case 'C': cout << "earning a C is satisfactory" << endl;

break;

case 'D': cout << "while D is passing, there is a problem" << endl;

break;

52 LESSON SET 4 Conditional Statements

case 'F': cout << "you failed - better luck next time" << endl

break;

default: cout << "You did not enter an A, B, C, D, or F" << endl;

}

return 0;

}

Exercise 2: Add an additional switch statement that allows for a Passing option

for a grade of D or better. Use the sample run given below to model your

output.

Sample Run:

What grade did you earn in Programming I ?

A

YOU PASSED!

an A - excellent work!

Exercise 3: Rewrite the program switch.cpp using if and else if statements

rather than a switch statement. Did you use a trailing else in your new

version? If so, what did it correspond to in the original program with the

switch statement?

LAB 4.5 Student Generated Code Assignments

Option 1: Write a program that prompts the user for their quarterly water bill

for the last four quarters. The program should find and output their

average monthly water bill. If the average bill exceeds $75, the output

should include a message indicating that too much water is being used. If

the average bill is at least $25 but no more than $75, the output should

indicate that a typical amount of water is being used. Finally, if the

average bill is less than $25, the output should contain a message praising

the user for conserving water. Use the sample run below as a model for

your output.

Sample Run 1:

Please input your water bill for quarter 1:

300

Please input your water bill for quarter 2:

200

Please input your water bill for quarter 3:

225

Please input your water bill for quarter 4:

275

Your average monthly bill is $83.33. You are using excessive amounts of water

Lesson 4B 53

Sample Run 2:

Please input your water bill for quarter 1:

100

Please input your water bill for quarter 2:

150

Please input your water bill for quarter 3:

75

Please input your water bill for quarter 4:

125

Your average monthly bill is $37.50. You are using a typical amount of water

Option 2: The local t-shirt shop sells shirts that retail for $12. Quantity dis-

counts are given as follow:

Number of Shirts Discount

5–10 10%

11–20 15%

21–30 20%

31 or more 25%

Write a program that prompts the user for the number of shirts required

and then computes the total price. Make sure the program accepts only

nonnegative input.

Use the following sample runs to guide you:

Sample Run 1:

How many shirts would you like ?

4

The cost per shirt is $12 and the total cost is $48

Sample Run 2:

How many shirts would you like ?

0

The cost per shirt is $12 and the total cost is $0

Sample Run 3:

How many shirts would you like ?

8

The cost per shirt is $10.80 and the total cost is $86.40

Sample Run 4:

How many shirts would you like ?

-2

Invalid Input: Please enter a nonnegative integer

54 LESSON SET 4 Conditional Statements

Option 3: The University of Guiness charges $3000 per semester for in-state

tuition and $4500 per semester for out-of-state tuition. In addition, room

and board is $2500 per semester for in-state students and $3500 per

semester for out-of-state students. Write a program that prompts the user

for their residential status (i.e., in-state or out-of-state) and whether they

require room and board (Y or N). The program should then compute and

output their bill for that semester.

Use the sample output below:

Sample Run 1:

Please input "I" if you are in-state or "O" if you are out-of-state:

I

Please input "Y" if you require room and board and "N" if you do not:

N

Your total bill for this semester is $3000

Sample Run 2:

Please input "I" if you are in-state or "O" if you are out-of-state:

O

Please input "Y" if you require room and board and "N" if you do not:

Y

Your total bill for this semester is $8000

