

PURPOSE 1. To learn input and formatted output statements

 2. To learn data type conversions (coercion and casting)

 3. To work with constants and mathematical functions

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

L E S S O N S E T

3

Expressions, Input, Output and
Data Type Conversions

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 26

Pre-lab Writing Assignment Pre-lab reading 10 min. 32

LESSON 3A

Lab 3.1
Working with the cin Confidence in 15 min. 33
Statement use of data types
Lab 3.2
Formatting Output Basic understanding 15 min. 35
 of cout and
 formatted output
Lab 3.3
Arithmetic Operations and Understanding of 20 min. 36
Math Functions pre-defined functions
 pow and sqrt

LESSON 3B

Lab 3.4
Working with Type Casting Understanding of 20 min. 37
 type casting (implicit
 and explicit data
 conversion)
 continues

25

26 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

Lab 3.5

Student Generated Code Understanding of all 30 min. 39

Assignments concepts covered in

this section.

P R E - L A B R E A D I N G A S S I G N M E N T

Review of the cout Statement

The cout statement invokes an output stream, which is a sequence of characters

to be displayed to the screen.

Example: cout << "Hi there";

The insertion operator << inserts the string of characters Hi there into the

output stream that goes to the screen. The cout statement can be thought of as

an ostream (output stream) data type.

Input Instructions

Just as the cout statement transfers data from the computer to the “outside”

world, the cin statement transfers data into the computer from the keyboard.

Example: cin >> grade;

The extraction operator >> extracts an item from the input stream. In this case,

since grade is an integer, this instruction will wait for an integer to be entered at

the keyboard and then will place that number in the memory location called

grade.

Just as cout is of type ostream, cin is considered to be an istream (input

stream) data type. In order to use cin and cout in a C++ program, the #include

<iostream> directive should be included in the header. The >> extraction oper-

ator also serves as a separator between input variables, allowing more than one

memory location to be loaded with a single cin instruction. The values read

must be the same data type as their corresponding variables, although a floating

point variable could receive an integer since the conversion will be made auto-

matically. Conversion is discussed later in this lesson.

Example: float rate;

float hours;

cin >> rate >> hours;

The cin statement will wait for two floating point numbers (separated by at least

one blank space) to be input from the keyboard. The first will be stored in rate

and the second in hours.

Pre-lab Reading Assignment 27

There is one problem with the example above; it does not indicate to the user

for what data the cin statement is waiting. Remember that the cin statement is

expecting data from the user at the keyboard. For this reason, every cin statement

should be preceded by a cout statement that indicates to the user the data to be

input. Such a cout statement is called a prompt.

Example:

float rate, hours;

float grosspay;

// More than one variable can be defined

// in a statement. Multiple variables are

// separated by a comma.

cout << "Please input the pay rate per hour"

<< " and then the number of hours worked" << endl;

cin >> rate >> hours;

grosspay = rate * hours; // finds the grosspay

cout << endl << "The rate is = " << rate << endl;

cout << "The number of hours = " << hours << endl;

cout << "The gross pay = " << grosspay << endl;

When cin is reading numeric data, whitespace (blank spaces or unseen control

characters) preceding the number are ignored and the read continues until a

non-numeric character is encountered.

Strings

It is often useful to store a string, such as a name, in a variable. Since the char

data type holds only a single character, we must define a variable that is able to hold

a whole sequence of characters. One way to do this is through an array of char-

acters, often referred to as a C-string in C++. When using this method to define a

string, the programmer must indicate how many characters it can hold. The last char-

acter must be reserved for the end-of-string character ‘\0’ which marks the end

of the string. In Example 2 below, the variable name can hold up to 11 characters

even though the size of the array indicates 12. The extra character is reserved for

the end-of-string marker. Arrays of characters are discussed in a later chapter. For

now we can define a variable to be a string object: Example 1 below.

Example 1 (using a string object) Example 2 (using a C-string)

string name; char name[12]

cout << "What is your name"; cout << "What is your name";

cin >> name; cin >> name;

cout << "Hi " << name << endl; cout << "Hi " << name << endl;

Although Example 1 will work, we often do not use cin >> to read in strings.

This is because of the way it handles whitespace (blank spaces, tabs, line breaks,

etc.). When cin >> is reading numeric data, leading whitespace is ignored and the

read continues until a non-numeric character is encountered. As one might expect,

cin >> is a logical choice for reading numeric data. However, when cin >> is read-

ing into a variable defined as a string, it skips leading whitespaces but stops if a

blank space is encountered within the string. Names that have a space in it such

28 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

as Mary Lou, would not be read into one variable using cin >>. We can get

around this restriction by using special functions for reading whole lines of input.

The getline function allows us to input characters into a string object. In Example

1 above we could read a name like Mary Lou into the name variable with the

statement

getline(cin, name);

The first word in the parentheses is an indication of “where” the data is

coming from. In this case it is coming from the keyboard so we use cin. Data

could come from other sources such as files (discussed later in this chapter) in

which case the name of the file would be used instead of cin. The second

word in parentheses is the name of the variable that will “receive” the string

(name in this case).

When using C-strings, we can read whole lines of input using cin.getline

(string_name, length), where length specifies the number of characters the C-

string can hold. In Example 2 above, we could read a name like Mary Lou into

the name variable with the statement

cin.getline(name,12);

This allows a maximum of 11 characters to be read in and stored in name,

reserving a space for the ‘\0’ end-of-string character.

Summar y of storing and inputting strings

cin >> name; Skips leading whitespaces

Stops at the first trailing whitespace which is not

consumed (ie. the whitespace is not placed in

name)

cin.getline(name,12); Does not skip leading whitespaces

Stops when either 11 characters are read or when

an end-of-line ‘\n’ character is encountered (which

is not consumed)

Formatted Output

Example:

C++ has special instructions that allow the user to control output attributes such

as spacing, decimal point precision, data formatting and other features.

cout << fixed // This displays the output in decimal

// format rather than scientific notation.

cout << showpoint; // This forces all floating-point output to

// show a decimal point, even if the values

// are whole numbers

cout << setprecision(2); // This rounds all floating-point numbers

// to 2 decimal places

Pre-lab Reading Assignment 29

The order in which these stream manipulators appear does not matter. In fact,

the above statements could have been written as one instruction:

cout << setprecision(2) << fixed << showpoint;

Spacing is handled by an indication of the width of the field that the number, char-

acter, or string is to be placed. It can be done with the cout.width(n); where

n is the width size. However it is more commonly done by the setw(n) within

a cout statement. The #include <iomanip> directive must be included in the

header (global section) for features such as setprecision() and setw().

Example: float price = 9.5;

float rate = 8.76;

cout << setw(10) << price << setw(7) << rate;

The above statements will print the following:

There are seven blank spaces before 9.5 and three blank spaces between the num-

bers. The numbers are right justified. The computer memory stores this as follows:

 9 . 5 8 . 7 6

Note: So far we have used endl for a new line of output. '\n' is an escape

sequence which can be used as a character in a string to accomplish the same

thing.

Example: Both of the following will do the same thing.

cout << "Hi there\n"; cout << "Hi there" << endl;

Expressions

Recall from Lesson Set 2 that the assignment statement consists of two parts: a vari-

able on the left and an expression on the right. The expression is converted to

one value that is placed in the memory location corresponding to the variable on

the left. These expressions can consist of variables, constants and literals combined

with various operators. It is important to remember the mathematical precedence

rules which are applied when solving these expressions.

Precedence Rules of Arithmetic Operators

1. Anything grouped in parentheses is top priority

2. Unary negation (example: –8)

3. Multiplication, Division and Modulus * / %

4. Addition and Subtraction + –

Example: (8 * 4/2 + 9 - 4/2 + 6 * (4+3))

(8 * 4/2 + 9 - 4/2 + 6 * 7)

(32 /2 + 9 - 4/2 + 6 * 7)

(16 + 9 - 4/2 + 6 * 7)

(16 + 9 - 2 + 6 * 7)

(16 + 9 - 2 + 42)

(25 - 2 + 42)

(23 + 42) = 65

30 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

Converting Algebraic Expressions to C++

One of the challenges of learning a new computer language is the task of chang-

ing algebraic expressions to their equivalent computer instructions.

Example: 4y(3-2)y+7

How would this algebraic expression be implemented in C++?

4 * y * (3-2) * y + 7

Other expressions are a bit more challenging. Consider the quadratic formula:

–b ± b2 – 4ac

2a

We need to know how C++ handles functions such as the square root and squar-

ing functions.

There are several predefined math library routines that are contained in the

cmath library. In order to use these we must have the #include <cmath> direc-

tive in the header.

Exponents in C++ are handled by the pow(number,exp) function, where num-

ber indicates the base and exp is the exponent. For example,

23 would be written as pow(2,3)

59 would be written as pow(5,9)

Square roots are handled by sqrt(n). For example,

9 would be written as sqrt(9)

Look at the following C++ statements and try to determine what they are doing.

formula1 = (-b + sqrt(pow(b,2) -(4 * a * c))) / (2 * a);

formula2 = (-b - sqrt(pow(b,2) -(4 * a * c))) / (2 * a);

(These are the roots from the quadratic formula in C++ format.)

Data Type Conversions

Recall the discussion of data types from Lesson Set 2. Whenever an integer and

a floating point variable or constant are mixed in an operation, the integer is

changed temporarily to its equivalent floating point. This automatic conversion

is called implicit type coercion.

Consider the following:

int count;

count = 7.8;

We are trying to put a floating point number into an integer memory location. This

is like trying to stuff a package into a mailbox that is only large enough to con-

tain letters. Something has to give. In C++ the floating point is truncated (the entire

fractional component is cut off) and, thus, we have loss of information.

Type conversions can be made explicit (by the programmer) by using the

following general format: static_cast<DataType>(Value). This is called type cast-

ing or type conversion.

Pre-lab Reading Assignment 31

Example:

int count;

float sum;

count = 10.89; // Float to integer This is Type coercion

// 10 is stored in count

count = static_cast<int>(10.89); // Also float to integer; however this is

// type casting

If two integers are divided, the result is an integer that is truncated. This can

create unexpected results.

Example: int num_As = 10;

int totalgrade = 50;

float percent_As;

percent_As = num_As / totalgrade;

In this problem we would expect percent_As to be .20 since 10/50 is .20.

However since both num_As and totalgrade are integers, the result is integer

division which gives a truncated number. In this case it is 0. Whenever a

smaller integer value is divided by a larger integer value the result will always

be 0. We can correct this problem by type casting.

percent_As = static_cast<float>(num_As)/totalgrade;

Although the variable num_As itself remains an integer, the type cast causes the

divide operation to use a copy of the num_As value which has been converted to

a float. A float is thus being divided by the integer totalGrade and the result

(through type coercion) will be a floating-point number.

32 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. What is the final value (in C++) of the following expression?

(5 - 16 / 2 * 3 + (3 + 2 / 2) - 5)

2. How would the following expression be written in C++?

2x + 34

3. Implicit conversion is also known as data type .

4. Explicit type conversion is also known as type .

5. List the preprocessor directive that must be included for cin and cout to
be used in a C++ program.

6. Blank spaces or unseen control characters in a data file are referred to as
 .

7. The << in a cout statement is called the operator.

8. The #include< > is needed for formatted output.

 9. The '\n' is a special character that .

Lesson 3A 33

L E S S O N 3 A

LAB 3.1 Working with the cin Statement

Bring in the program bill.cpp from the Lab 3 folder. The code is listed below:

// This program will read in the quantity of a particular item and its price.

// It will then print out the total price.

// The input will come from the keyboard and the output will go to

// the screen.

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

int quantity; // contains the amount of items purchased

float itemPrice; // contains the price of each item

float totalBill; // contains the total bill.

cout << setprecision(2) << fixed << showpoint; // formatted output

cout << "Please input the number of items bought" << endl;

// Fill in the input statement to bring in the quantity.

// Fill in the prompt to ask for the price.

// Fill in the input statement to bring in the price of each item.

// Fill in the assignment statement to determine the total bill.

// Fill in the output statement to print total bill,

// with a label to the screen.

return 0;

}

Exercise 1: Complete the program so that a sample run inputting 22 for the

number of items bought and 10.98 for the price of each item will produce

the results below.

Sample run of the program.

34 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

Exercise 2: Once you have the program working, change the instruction:

cout << setprecision (2) << fixed << showpoint;

to

cout << setprecision(2) << showpoint;

Rerun the program with the same data given in Exercise 1 above and record

your results. What do you think the fixed attribute in the cout statement

does?

Exercise 3: Now put the fixed attribute back in and change the instruction to

make the precision 4. Rerun the program with the same data given in

Exercise 1 and record your results. What do you think the setprecision()

attribute in the cout statement does?

The attribute showpoint forces all floating point output to show a decimal

point even if the values are whole numbers. In some environments this is

done automatically.

(optional)

Exercise 4: Add the following directive to the program: #include <string>

in the header. Alter the program so that the program first asks for

the name of the product (which can be read into a string object)

so that the following sample run of the program will appear.

Please input the name of the item

Milk

Please input the number of items bought

4

Please input the price of each item

1.97

The item that you bought is Milk

The total bill is $7.88

Now altar the program, if you have not already done so, so that

the name of an item could include a space within its string.

Please input the name of the item

Chocolate Ice Cream

Please input the number of items bought

4

Please input the price of each item

1.97

The item that you bought is Chocolate Ice Cream

The total bill is $7.88

Lesson 3A 35

LAB 3.2 Formatting Output

Look at the following table:

Assume that from the left margin, the price takes up fifteen spaces. We could say

that the numbers are right justified in a 15-width space. Starting where the price

ends, the next field (quantity) takes up twelve spaces. We can use the formatted

output from Lab 3.1 and the statement setw(n) where n is some integer to

indi- cate the width to produce such tables.

Bring in the program tabledata.cpp from the Lab 3 folder. The code is as follows:

// This program will bring in two prices and two quantities of items

// from the keyboard and print those numbers in a formatted chart.

//PLACE YOUR NAME HERE

#include <iostream>

#include // Fill in the code to bring in the library for

// formatted output.

using namespace std;

int main()

{

float price1, price2; // The price of 2 items

int quantity1, quantity2; // The quantity of 2 items

cout << setprecision(2) << fixed << showpoint;

cout << "Please input the price and quantity of the first item" << endl;

// Fill in the input statement that reads in price1 and

// quantity1 from the keyboard.

// Fill in the prompt for the second price and quantity.

// Fill in the input statement that reads in price2 and

// quantity2 from the keyboard.

cout << setw(15) << "PRICE" << setw(12) << "QUANTITY\n\n";

// Fill in the output statement that prints the first price

// and quantity. Be sure to use setw() statements.

// Fill in the output statement that prints the second price

// and quantity.

return 0;

}

36 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

Exercise 1: Finish the code above by filling in the blanks and the instructions

necessary to execute the following sample run. Note that two or more data

items can be input at one time by having at least one blank space between

them before hitting the enter key.

LAB 3.3 Arithmetic Operations and Math Functions

Bring in the program righttrig.cpp from the Lab 3 folder. The code is as follows:

// This program will input the value of two sides of a right triangle and then

// determine the size of the hypotenuse.

// PLACE YOUR NAME HERE

#include <iostream>

#include <cmath> // needed for math functions like sqrt()

using namespace std;

int main()

{

float a,b; // the smaller two sides of the triangle

float hyp; // the hypotenuse calculated by the program

cout << "Please input the value of the two sides" << endl;

cin >> a >> b;

// Fill in the assignment statement that determines the hypotenuse

cout << "The sides of the right triangle are " << a << " and " << b << endl;

cout << "The hypotenuse is " << hyp << endl;

return 0;

}

The formula for finding the hypotenuse is hyp = a2 + b2.

Lesson 3B 37

How can this be implemented in C++? Hint: You will use two pre-defined

math functions (one of them twice) learned in this lesson. One of them

will be “inside” the other.

Exercise 1: Fill in the missing statement so that the following sample run is

implemented:

Exercise 2: Alter the program so that the sample run now looks like the

following:

L E S S O N 3 B

Note: This is not a trivial change. You must include another directive as

well as use the formatted features discussed in the earlier labs of this

lesson. Notice that the change is made only to the value of the hypotenuse

and not to the values of 9 and 3.

LAB 3.4 Working with Type Casting

Bring in the program batavg.cpp from the Lab 3 folder. The code follows.

// This program will determine the batting average of a player.

// The number of hits and at bats are set internally in the program.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

const int AT_BAT = 421;

const int HITS = 123;

int main()

{

int batAvg;

batAvg = HITS / AT_BAT // an assignment statement

cout << "The batting average is " << batAvg << endl; // output the result

return 0;

}

38 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

Exercise 1: Run this program and record the results. The batting average

is .

Exercise 2: There is a logic error in this program centering around data types.

Does changing the data type of batavg from int to float solve the prob-

lem? Make that change and run the program again and record the result.

The batting average is .

Exercise 3: Continue to work with this program until you get the correct result.

The correct result should be 0.292162. Do not change the data type of

the two named constants. Instead, use a typecast to solve the problem.

Lesson 3B 39

LAB 3.5 Student Generated Code Assignments

Option 1: Write a program that will read in 3 grades from the keyboard and

will print the average (to 2 decimal places) of those grades to the screen. It

should include good prompts and labeled output. Use the examples from

the earlier labs to help you. You will want to begin with a design. The

Lesson Set 1 Pre-lab Reading Assignment gave an introduction for a design

similar to this problem. Notice in the sample run that the answer is stored

in fixed point notation with two decimal points of precision.

Sample run:

Option 2: The Woody furniture company sells the following three styles of chairs:

Style Price Per Chair

American Colonial $ 85.00

Modern $ 57.50

French Classical $127.75

Write a program that will input the amount of chairs sold for each style. It

will print the total dollar sales of each style as well as the total sales of all

chairs in fixed point notation with two decimal places.

Sample run:

40 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

Option 3: Write a program that will input total sales (sales plus tax) that a

business generates for a particular month. The program will also input the

state and local sales tax percentage. It will output the total sales plus the

state tax and local tax to be paid. The output should be in fixed notation

with 2 decimal places.

Sample run:

