

L E S S O N S E T

2

Introduction to the C++
Programming Language

PURPOSE 1. To briefly introduce the C++ programming language

2. To show the use of memory in programming

3. To introduce variables and named constants

4. To introduce various data types:

a. Integer

b. Character

c. Floating point

d. Boolean

e. String

5. To introduce the assignment and cout statements

6. To demonstrate the use of arithmetic operators

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete Labs 2.1 through 2.4 in sequence. Your

instructor will give further instructions as to grading and completion of the lab.

Contents

Prerequisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 14

Pre-lab Writing Assignment Pre-lab reading 10 min. 19

Lesson 2A

Lab 2.1

Working with the cout

Pre-lab reading

20 min.

20

Statement
Lab 2.2

Working with Constants,

Understanding of

30 min.

21

Variables, and Arithmetic

Operators

variables and

operators

continues

13

14 LESSON SET 2 Introduction to the C++ Programming Language

Lesson 2B

Lab 2.3

Rectangle Area and Perimeter Understanding of 30 min. 22

basic components

of a program

Lab 2.4

Working with Characters Completion of 30 min. 22

and Strings labs 2.1–2.3

P R E - L A B R E A D I N G A S S I G N M E N T

The C++ Programming Language

Computer programming courses generally concentrate on program design that can

be applied to any number of programming languages on the market. It is imper-

ative, however, to apply that design to a particular language. This course uses C++,

a popular object-oriented language, for that purpose.

For now, we can think of a C++ program as consisting of two general divi-

sions: header and main. The header, or global section, gives preliminary

instructions to the compiler. It consists of comments that describe the purpose

of the program, as well as information on which library routines will be used by

the program.

// This program prints to the screen the words:

// PI = 3.14

// Radius = 4

// Circumference = 25.12

#include <iostream>

using namespace std;

const double PI = 3.14;

int main()

{

float radius;

radius = 4.0;

cout << "PI = " << PI << endl;

cout << "Radius = " << radius << endl;

cout << "Circumference = " << 2 * PI * radius << endl;

return 0;

}

Everything in bold (everything above the int main() statement) is considered the

header or global section. Everything else is the main section.

Pre-lab Reading Assignment 15

Comments are included in every program to document what a program

does and how it operates. These statements are ignored by the computer but are

most valuable to the programmers who must update or fix the program. In C++,

comments begin with // which is an indication to the compiler to ignore every-

thing from the // to the end of the line. Comments can also cross line boundaries

by beginning with /* and ending with */. Notice that the first three lines of the

previous program all begin with // and thus are comments. Those same lines could

also have been written as the following:

/* This program prints to the screen the words:

PI = 3.14

Radius = 4

Circumference = 25.12

*/

The next statement, the #include statement, indicates which library will be needed

by the program.

#include <iostream>

Recall from Lesson Set 1, that every program needs other modules attached so that

it may execute properly. Your instructor will generally tell you which libraries are

needed for each particular programming assignment; however, in time you will

learn this task for yourself.

Every C++ program has a main function which indicates the start of the

executable instructions. Every main must begin with a left brace { and end with

a right brace }. The statements inside those braces will be explained as we

progress through this lesson.

Memor y

Memory storage is the collection of locations where instructions and data that are

used by the program are temporarily stored. Recall from Lesson Set 1 that a com-

puter only understands a sequence of 1s and 0s. These are binary digits or bits

(BInary digiTs). Eight of these brought together are called a byte, which is the

most common unit of storage. These chunks of memory can be thought of as hotel

mailboxes at the registration desk. The size of each of those boxes indicates the

type of mail that can be stored there. A very small mailbox can only hold notes

or postcards. Larger mailboxes can hold letters, while even larger ones can hold

packages. Each mailbox is identified by a number or name of an occupant. We

have identified two very important attributes of these mailboxes: the name or num-

ber, which indicates the mailbox that is being referenced, and the size, which indi-

cates what type of “data” can be placed there.

Example: postcards Jim is an indication that the mailbox called Jim can only hold

postcards, while the statement packages Mary indicates that the mailbox called

Mary can hold large packages. Memory locations in a computer are identified by

the same two attributes: data type and name.

Much of programming is getting data to and from memory locations and thus it

is imperative that the programmer tell the computer the name and data type of

each memory location that he or she intends to use. In the sample program the

statement float radius does just that. float is a data type that indicates what

kind of data can be stored and radius is the name for that particular memory

location.

16 LESSON SET 2 Introduction to the C++ Programming Language

Variables and Constants

The ability to change or not change the data stored can be a third attribute of

these memory locations. Components of memory in which data values stored can

change during the execution of the program are called variables. These usually

should not be defined in the header or global section of the program. In our sam-

ple program, radius is defined in the main function. Components of memory in

which data values stored are initialized once and never changed during the exe-

cution of the program are called constants. They are often defined in the global

section and are preceded (in C++) by the word const. PI, in the sample program,

is an example of a named constant.

Identifiers in C++

Identifiers are used to name variables, constants and many other components of

a program. They consist exclusively of letters, digits and the underscore _ char-

acter. They cannot begin with a digit and cannot duplicate reserved words used

in C++ such as int or if. All characters in C++ are case sensitive; thus memory

locations called simple, Simple, and SIMPLE are three distinct locations. It has

become standard practice among programmers to make constants all uppercase

and variables predominantly lowercase characters.

The statement const double PI = 3.14; in our sample program is

contained in the global section. It defines a memory location called PI to be a

constant holding a double (a data type discussed shortly) value equal to 3.14

which will not change during the execution of the program.

The statement float radius; in the sample program is contained in the

main section. It defines a variable memory location called radius that holds a

float- ing point data type (type discussed shortly) which can be changed during the

exe- cution of the program.

Both of these statements are called definitions. They reserve by name

enough memory to hold the data type specified.

Variables, like constants, can be given an initial value when they are defined,

but that value is not permanent and can be altered. For example:

int count = 7;

// Defines a variable memory location called count that

// initially has the value of 7

count = count + 1; // count is now altered

Data Types

As noted earlier, computer memory is composed of locations identified by a data

type and a name (like the room number of a hotel mailbox). The data type indi-

cates what kind of data can be stored, thus setting the size of that location.

Integer Data Type

Integers are real numbers that do not contain any fractional component. They take

up less memory than numbers with fractional components. C++ has three data

types that are integers: short, int and long. The difference is strictly in the

amount of memory (bytes) they reserve: short reserving the least and long

reserving the most. Larger integers may need the long data type.

Pre-lab Reading Assignment 17

The following three statements define integer variables in C++:

short count;

int sum;

long total;

Floating Point Data Type

Character Data Type

Boolean Data Type

In computer science 3 = 3.0 is not a true statement. The number on the left is an

integer and the number on the right is a real, or floating point, number (a number

that has a fractional component). Although mathematically the two are equal, the

computer stores them as different data types. C++ uses both float and double

to indicate floating point numbers, with double using more memory than float.

The following two statements define floating point variables in C++.

float average;

double nationaldebt;

Character data includes the letters of the alphabet (upper and lower cases), the

digits 0–9 and special characters such as ! ? . , *. All these symbols combined are

called alphanumeric. Each character data is enclosed with single quotes to dis-

tinguish it from other data types. Thus '8' is different than 8. The first is a char-

acter while the second is an integer. The following statement defines a C++

character variable initialized to 'a'.

char letter = 'a';

The Boolean data type, named after the mathematician George Boole, allows only

two values: true or false, which are internally represented as 0 and non-zero,

respectively. The following statement defines a Boolean variable initialized to false.

bool found = false;

String Type: A variable defined to be character data can store only one charac-

ter in its memory location, which is not very useful for storing names. The string

class has become part of standard C++ and, although not a primitive type defined

by the language, it can be used as a type for storing several characters in a mem-

ory location. We must “include” the string library (#include <string>) in the pro-

gram header. The following statement defines a string initialized to “Daniel”:

string name = "Daniel"; Note that a string is enclosed in double (not single)

quotes. Thus the string "a" is not the same as the character 'a'.

Assignment Operator

Fundamental Instructions

The = symbol in C++ is called the assignment operator and is read “is assigned

the value of.” It assigns the variable on its left the value on its right. Although

this symbol looks like an equal sign, do not confuse it with equality. The left hand

side must always be a variable. For example, count = 8; is a legitimate statement

in C++, however 8 = count; generates a syntax error.

Most programming languages, including C++, consist of five fundamental instruc-

tions from which all code can be generated.

18 LESSON SET 2 Introduction to the C++ Programming Language

1. Assignment Statements: These statements place values in memory

locations. The left side of an assignment statement consists of one and

only one variable. The right side consists of an expression. An expression

can be any manipulation of literal numbers (actual numbers such as 7 or

38, etc.), or the contents of constants and/or variables, that will “boil

down” to one value. That value is placed in the memory location of the

variable on the left. C++ uses = as the separator between the left and right

side of the assignment statement. Those new to programming often get

this confused with equality; however = in C++ is not equality but rather

the symbol to indicate assignment. The = in C++ is read as “is assigned the

value of”.

Example:

int count;

int total;

total = 10; // 10 is a literal that is placed in the memory

// location called total

count = 3 + 4; // The right hand side of the statement is evaluated to

// 7. count is assigned the value of 7.

total = total + count; // The right hand side is evaluated 10 + 7,

// and 17 is placed in the memory location called

// total.

This last statement may seem a bit confusing. Starting with the right side, it

says to get the value that is in total (10 in this case), add it to the value

that is in count (7 in this case), and then store that combined sum (17) in

the memory location called total. Notice that total, which was initially

10, gets changed to 17.

2. Output Statements: These instructions send information from the computer

to the outside world. This information may be sent to the screen or to some

file. In C++ the cout << statement sends information to the screen. The

#include <iostream> directive must be in the header for cout to be used.

cout << total;

The above statement sends whatever value is stored in the variable total

to the screen. C++ uses the semicolon as a statement terminator.

We can output literal strings (such as “Hello”) by inclosing them in

double quotes.

The << operator acts as a separator for multiple outputs.

cout << "The value of total is " << total << endl;

The endl statement causes the cursor to be moved to the beginning of the

next line.

The remaining three fundamental instructions will be explained in

future labs.

Pre-lab Writing Assignment 19

3. Input Statements: These statements bring in data to the computer.

(Lesson Set 3)

4. Conditional Statements: These instructions test conditions to determine

which path of instructions to execute. (Lesson Set 4)

5. Loops: These instructions indicate a repetition of a series of instructions.

(Lesson Set 5)

Arithmetic Operators

Programming has the traditional arithmetic operators:

Operation C++ Symbol

addition +

subtraction -

multiplication *

division /

modulus %

Integer division occurs when both the numerator and denominator of a divide

operation are integers (or numbers stored in variables defined to be integers). The

result is always an integer because the decimal part is truncated or “chopped” from

the number. Thus 9/2 will give the answer 4 not 4.5! For this reason there are two

division operations for integer numbers. The modulus operator, (%) used only with

integers, gives the remainder of a division operation. 9/2 gives 4 while 9 % 2 gives

1 (the remainder of the division).

Example:

int count = 9;

int div = 2;

int remainder;

int quotient;

quotient = count / div; // quotient is assigned a 4

remainder = count % div; // remainder is assigned a 1

You should go back and review the sample program on the first page of the Pre-

lab Reading Assignment. By now you should understand most of the statements.

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. A is a memory location whose value cannot change

during the execution of the program.

2. is a data type that only holds numbers with no fractional

component.

3. is a data type that holds numbers with fractional

components.

4. is an arithmetic operator that gives the remainder of a

division problem.

20 LESSON SET 2 Introduction to the C++ Programming Language

5. cout << is an example of the fundamental instruction.

6. data types only have two values: true and false.

7. One byte consists of bits.

8. // or /* in C++ indicates the start of a .

9. A is a memory location whose value can change during

the execution of the program.

10. A can hold a sequence of characters such as a name.

L E S S O N 2 A

LAB 2.1 Working with the cout Statement

Exercise 1: Retrieve program name.cpp from the Lab 2 folder.

Fill in the code so that the program will do the following:

Write your first and last name on one line.

Write your address on the next line (recall the function of the endl statement).

Write your city, state and zip on the next line.

Write your telephone number on the next line.

Remember that to output a literal, such as “Hello”, you must use quotes.

Compile and run the program.

Example: Deano Beano

123 Markadella Lane

Fruitland, Md. 55503

489-555-5555

The code for name.cpp is as follows:

// This program will write the name, address and telephone

// number of the programmer.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

// Fill in this space to write your first and last name

// Fill in this space to write your address (on new line)

// Fill in this space to write you city, state and zip (on new line)

// Fill in this space to write your telephone number (on new line)

return 0;

}

Lesson 2A 21

Exercise 2: Change the program so that three blank lines separate the tele-

phone number from the address. Compile and run the program.

Exercise 3: Change the program so that the following (but with your name and

address) is printed. Try to get the spacing just like the example. Compile

and run the program.

LAB 2.2 Working with Constants, Variables and Arithmetic Operators

Exercise 1: Bring in the file circlearea.cpp from the Lab 2 folder.

The code of circlearea.cpp is as follows:

// This program will output the circumference and area

// of the circle with a given radius.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

const double PI = 3.14;

const double RADIUS = 5.4;

int main()

{

 area // definition of area of circle

float circumference; // definition of circumference

circumference = 2 * PI * RADIUS; // computes circumference

area = ; // computes area

// Fill in the code for the cout statement that will output (with description)

// the circumference

// Fill in the code for the cout statement that will output (with description)

// the area of the circle

return 0;

}

22 LESSON SET 2 Introduction to the C++ Programming Language

Exercise 2: Fill in the blanks and the cout statements so that the output will

produce the following:

Exercise 3: Change the data type of circumference from float to int. Run the

program and record the results.

The circumference of the circle is .

The area of the circle is .

Explain what happened to get the above results.

L E S S O N 2 B

LAB 2.3 Rectangle Area and Perimeter

Exercise 1: Using Lab 2.2 as an example, develop a program that will deter-

mine the area and perimeter of a rectangle. The length and width can be

given as constants. (LENGTH=8 WIDTH=3)

Exercise 2: Compile and run your program. Continue to work on it until you

get the following output.

LAB 2.4 Working with Characters and Strings

Exercise 1: Retrieve program stringchar.cpp from the Lab 2 folder. This

program illustrates the use of characters and strings. The char data type

allows only one character to be stored in its memory location. The string

data type (actually a class and not a true data type built into the language)

allows a sequence of characters to be stored in one memory location. The

code follows:

// This program demonstrates the use of characters and strings

// PLACE YOUR NAME HERE

#include <iostream>

#include <string>

using namespace std;

// Definition of constants

const string FAVORITESODA = "Dr. Dolittle"; // use double quotes for strings

const char BESTRATING = 'A'; // use single quotes for characters

int main()

{

Lesson 2B 23

char rating; // 2nd highest product rating

string favoriteSnack; // most preferred snack

int numberOfPeople; // the number of people in the survey

int topChoiceTotal; // the number of people who prefer the top choice

// Fill in the code to do the following:

// Assign the value of "crackers" to favoriteSnack

// Assign a grade of 'B' to rating

// Assign the number 250 to the numberOfPeople

// Assign the number 148 to the topChoiceTotal

// Fill in the blanks of the following:

cout << "The preferred soda is " << << endl;

cout << "The preferred snack is " << << endl;

cout << "Out of " << << " people "

<< << " chose these items!" << endl;

cout << "Each of these products were given a rating of " << ;

cout << " from our expert tasters" << endl;

cout << "The other products were rated no higher than a " << rating

<< endl;

return 0;

}

Exercise 2: Fill in the indicated code, then compile and run the program.

Continue to work on the program until you have no syntax, run-time, or

logic errors.

The output should look similar to the following:

The preferred soda is Dr. Dolittle

The preferred snack is crackers

Out of 250 people 148 chose these items!

Each of these products were given a rating of A from our expert tasters

The other products were rated no higher than a B

Exercise 3:

Is it possible to change the choice of FAVORITESODA by adding

code within the main module of the program? Why or why not?

Exercise 4: Is it possible to change the choice of favoriteSnack by adding code

within the program? Why or why not?

