

PURPOSE 1. To introduce object-oriented programming

 2. To introduce the concept of classes

 3. To introduce the concept of constructors and destructors

 4. To introduce arrays of objects

PROCEDURE 1. Students should read Chapter 13 of the text.

 2. Students should read the Pre-lab Reading Assignment before coming to lab.

 3. Students should complete the Pre-lab Writing Assignment before coming to lab.

 4. In the lab, students should complete labs assigned to them by the instructor.

L E S S O N S E T

13

Introduction to Classes

243

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment Chapter 13 of text 20 min. 244

Pre-lab Writing Assignment Pre-lab reading 10 min. 260

LESSON 13A

Lab 13.1

Square as a Class

Basic understanding of

10 min.

261

 structures and classes
Lab 13.2

Circles as a Class

Completion of Pre-lab

40 min.

263

 Reading Assignment

LESSON 13B

Lab 13.3

Arrays as Data Members

Understanding of private

20 min.

265

of Classes data members of

classes and files

Lab 13.4

Arrays of Objects

Understanding of

20 min.

267

 classes

Lab 13.5

Student Generated Code

Completion of all the

30 min.

269

Assignments previous labs

244 LESSON SET 13 Introduction to Classes

P R E - L A B R E A D I N G A S S I G N M E N T

Introduction to Object-Oriented Programming

Up until now, we have been using the procedural programming method for writ-

ing all our programs. A procedural program has data stored in a collection of vari-

ables (or structures) and has a set of functions that perform certain operations.

The functions and data are treated as separate entities. Although operational,

this method has some serious drawbacks when applied to very large real-world

situations. Even though procedural programs can be modularized (broken into

several functions), in a large complex program the number of functions can

become overwhelming and difficult to modify or extend. This can create a lev-

el of complexity that is difficult to understand.

Object-Oriented Programming (OOP) mimics real world applications by

introducing classes which act as prototypes for objects. Objects are similar to

nouns which can simulate persons, places, or things that exist in the real world.

OOP enhances code reuse ability (use of existing code or classes) so time is not

used on “reinventing the wheel.”

Classes and objects are often confused with one another; however, there is

a subtle but important difference explained by the following example. A plaster

of Paris mold consists of the design of a particular figurine. When the plaster is

poured into the mold and hardened, we have the creation of the figurine itself.

A class is analogous to the mold, for it holds the definition of an object. The

object is analogous to the figurine, for it is an instance of the class. Classes and

structures are very similar in their construction. Object-oriented programming is

not learned in one lesson. This lab gives a brief introduction into this most impor-

tant concept of programming.

A class is a prototype (template) for a set of objects. An object can be

described as a single instance of a class in much the same way that a variable is

a single instance of a particular data type. Just as several figurines can be made

from one mold, many objects can be created from the same class. A class con-

sists of a name (its identity), its member data which describes what it is and its

member functions which describe what it does.1 Member data are analogous to

nouns since they act as entities. Member functions are analogous to verbs in that

they describe actions. A class is an abstract data type (ADT) which is a user

defined data type that combines a collection of variables and operations. For

example, a rectangle, in order to be defined, must have a length and width. In

practical terms we describe these as its member data (length, width). We also

describe a set of member functions that gives and returns values to and from the

member data as well as perform certain actions such as finding the rectangle’s

perimeter and area. Since many objects can be created from the same class, each

object must have its own set of member data.

As noted earlier, a class is similar to a structure except that classes encapsulate

(contain) functions as well as data.2 Functions and data items are usually designated

1 In other object-oriented languages member functions are called methods and member data

are called attributes.
2 Although structures can contain functions, they usually do not, whereas classes always

contain them

Pre-lab Reading Assignment 245

as either private or public which indicates what can access them. Data and func-

tions that are defined as public can be directly accessed by code outside the

class, while functions and data defined as private can be accessed only by func-

tions belonging to the class. Usually, classes make data members private and

require outside access to them through member functions that are defined as

public. Member functions are thus usually defined as public and member

data as private.

The following example shows how a rectangle class can be defined in C++:

#include <iostream>

using namespace std;

// Class declaration (header file)

class Rectangle // Rectangle is the name of the class (its identity).

{

public:

// The following are labeled as public.

// Usually member functions are defined public

// and are used to describe what the class can do.

void setLength(float side_l);

// This member function receives the length of the

// Rectangle object that calls it and places that value in

// the member data called length.

void setWidth(float side_w);

// This member function receives the width of the Rectangle

// object that calls it and places the value in the member

// data called width.

float getLength();

// This member function returns the length of the Rectangle

// object that calls it.

float getWidth();

// This member function returns the width of the Rectangle

// object that calls it.

double findArea();

// This member function finds the area of the Rectangle object

// that calls it.

double findPerimeter();

// This member function finds the perimeter of the Rectangle

// object that calls it.

continues

246 LESSON SET 13 Introduction to Classes

private:

// The following are labeled as private.

// Member data are usually declared private so they can

// ONLY be accessed by functions that belong to the class.

// Member data describe the attributes of the class

float length;

float width;

};

This example has six member functions. It has two member functions for each

private member data: setLength and getLength for the member data length

and setWidth and getWidth for the member data width. It is often the case that

a class will have both a set and a get member function for each of its private data

members. A set member function receives a value from the calling object and

places that value into the corresponding private member data. A get member

function returns the value of the corresponding private member data to the object

that calls it. In addition to set and get member functions, classes usually have oth-

er member functions that perform certain actions such as finding area and perime-

ter in the Rectangle class.

Client and Implementation Files

It is not necessary for someone to understand how a television remote control

works in order to use the remote to change the stations or the volume. The user

of the remote could be called a client that only knows how to use the remote

to accomplish a certain task. The details of how the remote control performs

the task are not necessary for the user to operate the remote. Likewise, an auto-

mobile is a complex mechanical machine with a simple interface that allows

users without any (or very little) mechanical knowledge to start, drive, and use

it for a variety of functions. Drivers do not need to know what goes on under the

hood. In the same way, a program that uses Rectangle does not need to know

the details of how its member functions perform their operations. The use of an

object (an instance of a class) is thus separated into two parts: the interface

(client file) which calls the functions and the implementation which contains

the details of how the functions accomplish their task.

An object not only combines data and functions, but also restricts other parts

of the program from accessing member data and the inner workings of member

functions. Having programs or users access only certain parts of an object is

called data hiding. The fact that the internal data and inner workings can be hid-

den from users makes the object more accessible to a greater number of programs.

Just like an automobile or a remote control, a piece of commercial software

is usually a complex entity developed by many individuals. OOP (Object-Oriented

Programming) allows programmers to create objects with hidden complex logic

that have simple interfaces which are easily understood and used. This allows

more sophisticated programs to be developed. Interfacing is a major concern

for software developers.

Pre-lab Reading Assignment 247

User of an object Public

Interface Private Internal Data

(length, width)

Implementation of the member functions

Types of Objects

Objects are either general purpose or application-specific. General purpose

objects are designed to create a specific data type such as currency or date. They

are also designed to perform common tasks such as input verification and graph-

ical output. Application-specific objects are created as a specific limited operation

for some organization or task. A student class, for example, may be created for

an educational institution.

Implementations of Classes in C++

The class declaration is usually placed in the global section of a program or in a

special file (called a header file). As noted earlier, the class declaration acts very

much like a prototype or data type for an object. An object is defined much like

a variable except that it uses the class name as the data type. This definition cre-

ates an instance (actual occurrence) of the class. Implementation of the mem-

ber functions of a class are given either after the main function of the program

or in a separate file called the implementation file. Use of the object is usual-

ly in the main function, other specialized functions, or in a separate program file

called the client file.3

Creation and Use of Objects

Rectangle, previously described, is a class (prototype) and not an object (an

actual instance of the class). Objects are defined in the client file, main, or oth-

er functions just as variables are defined:

Rectangle box1,box2;

box1 and box2 are objects of class Rectangle.

box1 has its own length and width that are possibly different from the length

and width of box2.

To access a member function (method) of an object, we use the dot operator, just

as we do to access data members of structures. The name of the object is given first,

followed by the dot operator and then the name of the member function.

The following example shows a complete main function (or client file) that

defines and uses objects which call member functions.

int main()

{

Rectangle box1; // box1 is defined as an object of Rectangle class

Rectangle box2; // box2 is defined as another Rectangle class object

3 More will be given on header, implementation, and client files later in the lesson.

248 LESSON SET 13 Introduction to Classes

box1.setLength(20); // This instruction has the object box1 calling the

// setLength member function which sets the member data

// length associated with box1 to the value of 20

box1.setWidth(5);

box2.setLength(9.5);// This instruction has the object box2 calling the

// setLength member function which sets the member data

// length associated with box2 to the value of 9.5

box2.setWidth(8.5);

cout << "The length of box1 is " << box1.getLength() << endl;

cout << "The width of box1 is " << box1.getWidth() << endl;

cout << "The area of box1 is " << box1.findArea() << endl;

cout << "The perimeter of box1 is " << box1.findPerimeter() << endl;

cout << "The length of box2 is " << box2.getLength() << endl;

cout << "The width of box2 is " << box2.getWidth() << endl;

cout << "The area of box2 is " << box2.findArea() << endl;

cout << "The perimeter of box2 is " << box2.findPerimeter() << endl;

return 0;

}

Since findArea and findPerimeter must have length and width before they

can do the calculation, an object must call setLength and setWidth first. The user

must remember to initialize both length and width by calling both set functions.

It is not good programming practice to assume that a user will do the necessary

initialization. Constructors (discussed later) solve this problem.

Implementation of Member Functions

As previously noted, the implementation of the member function can be hidden

from the users (clients) of the objects. However, they must be implemented by

someone, somewhere. The following shows the implementation of the Rectangle

member functions.

//***

// setLength

//

// task: This member function of the class Rectangle receives

// the length of the Rectangle object that calls it and

// places that value in the member data called length.

// data in: the length of the rectangle

// data out: none

//

//**

Pre-lab Reading Assignment 249

void Rectangle::setLength(float side_l)

{

length = side_l;

}

//***

// setWidth

//

// task: This member function of the class Rectangle receives the

// the width of the Rectangle object that calls it and

// places that value in the member data called width.

// data in: the width of the rectangle

// data out: none

//

//**

void Rectangle::setWidth(float side_w)

{

width = side_w;

}

//***

// getLength

//

// task: This member function of the class Rectangle returns

// the length of the Rectangle object that calls it.

// data in: none

// data returned: length

//

//**

float Rectangle::getLength()

{

return length;

}

//***

// getWidth

//

// task: This member function of the class Rectangle returns

// the width of the Rectangle object that calls it.

// data in: none

// data returned: width

//

//**

continues

250 LESSON SET 13 Introduction to Classes

float Rectangle:: getWidth()

{

return width;

}

//***

// findArea

//

// task: This member function of the class Rectangle

// calculates the area of the object that calls it.

// data in: none (uses the values of member data length &

// width)

// data returned: area

//

//**

double Rectangle::findArea()

{

return length * width;

}

//***

// findPerimeter

//

// task: This member function of the class Rectangle

// calculates the perimeter of the object that calls it

// data in: none (uses the values of member data length &

// width)

// data returned: perimeter

//

//**

double Rectangle::findPerimeter()

{

return ((2 * length) + (2 * width));

}

Notice that in the heading of each member function the name of the function is pre-

ceded by the name of the class to which it is a member followed by a double

colon. In the above example each name is preceded by Rectangle::. This is nec-

essary to indicate in which class the function is a member. There can be more

than one function with the same name associated with different classes. The :: sym-

bol is called the scope operator. It acts as an indicator of the class association.

Usually classes are declared in a header file, while member functions are

stored in an implementation file and objects are defined and used in a client

file. These files are often bound together in a project. Various development envi-

ronments have different means of creating and storing related files in a project.

All could be located in three different sections of the same file.

Pre-lab Reading Assignment 251

Complete Program

The following code shows the class declaration, member functions (methods),

implementations and use (client) of the Rectangle class:

#include <iostream>

using namespace std;

//

// Class declaration (header file)

class Rectangle // Rectangle is the name of the class

{

public:

// The member functions are labeled as public.

void setLength(float side_l);

// This member function receives the length of the

// Rectangle object that calls it and places that value in

// the member data called length.

void setWidth(float side_w);

// This member function receives the width of the Rectangle

// object that calls it and places the value in the member

// data called width.

float getLength();

// This member function returns the length of the Rectangle

// object that calls it.

float getWidth();

// This member function returns the width of the Rectangle

// object that calls it.

double findArea();

// This member function finds the area of the rectangle object

// that calls it.

double findPerimeter();

// This member function finds the perimeter of the rectangle

// object that calls it.

private:

// The following are labeled as private.

// Member data are usually declared private so they can

// ONLY be accessed by functions that belong to the class.

// Member data describe the attributes of the class

continues

252 LESSON SET 13 Introduction to Classes

float length;

float width;

};

//

// Client file

int main()

{

Rectangle box1; // box1 is defined as an object of Rectangle class

Rectangle box2; // box2 is defined as another Rectangle class object

box1.setLength(20); // This instruction has the object box1 calling the

// setLength member function which sets the member

// data length associated with box1 to the value

// of 20

box1.setWidth(5);

box2.setLength(30.5); // This instruction has the object box2 calling the

// setLength member function which sets the member

// data length associated with box2 to the value

// of 30.5

box2.setWidth(8.5);

cout << "The length of box1 is " << box1.getLength() << endl;

cout << "The width of box1 is " << box1.getWidth() << endl;

cout << "The area of box1 is " << box1.findArea() << endl;

cout << "The perimeter of box1 is " << box1.findPerimeter() << endl;

cout << "The length of box2 is " << box2.getLength() << endl;

cout << "The width of box2 is " << box2.getWidth() << endl;

cout << "The area of box2 is " << box2.findArea() << endl;

cout << "The perimeter of box2 is " << box2.findPerimeter() << endl;

return 0;

}

//

// Implementation file

//***

// setLength

//

// task: This member function of the class Rectangle receives the

// the length of the Rectangle object that calls it and

// places that value in the member data called length.

// data in: the length of the rectangle

// data out: none

//

//**

Pre-lab Reading Assignment 253

void Rectangle::setLength(float side_l)

{

length = side_l;

}

//***

// setWidth

//

// task: This member function of the class Rectangle receives the

// the width of the Rectangle object that calls it and

// places that value in the member data called width.

// data in: the width of the rectangle

// data out: none

//

//**

void Rectangle::setWidth(float side_w)

{

width = side_w;

}

//***

// getLength

//

// task: This member function of the class Rectangle returns

// the length of the Rectangle object that calls it.

// data in: none

// data returned: length

//

//**

float Rectangle::getLength()

{

return length;

}

//***

// getWidth

//

// task: This member function of the class Rectangle returns

// the width of the Rectangle object that calls it.

// data in: none

// data returned: width

//

//**

continues

254 LESSON SET 13 Introduction to Classes

float Rectangle::getWidth()

{

return width;

}

//***

// findArea

//

// task: This member function of the class Rectangle

// calculates the area of the object that calls it.

// data in: none (uses the values of member data length &

// width)

// data returned: area

//

//**

double Rectangle::findArea()

{

return length * width;

}

//***

// findPerimeter

//

// task: This member function of the class Rectangle

// calculates the perimeter of the object that calls it.

// data in: none (uses the values of member data length & width)

// data returned: perimeter

//

//**

double Rectangle::findPerimeter()

{

return ((2 * length) + (2 * width));

}

Inline Member Functions

Sometimes the implementation of member functions is so simple that they can be

defined inside a class declaration. Such functions are called inline member func-

tions. In the Rectangle class, findArea and findPerimeter are so simple that

they can be defined in the class declaration as follows:

double findArea(){ return length * width; }

double findPerimeter() { return 2 * length + 2 * width; }

Pre-lab Reading Assignment 255

Introduction to Constructors

As noted earlier, the methods (member functions) findArea and findPerimeter

must have the length and width before they can do any calculation. The user

must remember to initialize both length and width by calling both of these func-

tions. What happens if the user forgets? Suppose we call findArea without first

calling both setLength and setWidth. The function will try to find the area of a

rectangle that has no length or width. Thus, the creator of a class should never

rely on the user to initialize essential data.

C++ provides a mechanism, called a constructor, to guarantee the initial-

ization of an object. A constructor is a member function that is implicitly invoked

whenever a class instance is created (whenever an object is defined). A constructor

is unique from other member functions in two ways:

1. It has the same name as the class itself.

2. It does not have a data type (or the word void) in front of it. The only

purpose of the constructor is to initialize an object’s member data.

The following shows the Rectangle class using two constructors that set the val-

ues of length and width.

class Rectangle

{

public:

Rectangle(float side_l, float side_w);

// Constructor allowing a user to input the length and width

Rectangle();

// Constructor using default values for both length and width

void setLength(float side_l);

void setWidth(float side_w);

float getLength();

float getWidth();

double findArea();

double findPerimeter() ;

private:

float length;

float width;

};

This class includes two constructors, differentiated by their parameter lists. Recall

from Lesson Set 6.2 that two or more functions can have the same name as long

as their parameters differ in quantity or data type. The parameter-less construc-

tor (the second constructor in the above example) is the default constructor.

Like all member functions, constructors are defined in the implementation file (or

function definition section of a program). The reason for a default constructor is

explained in the next section.

256 LESSON SET 13 Introduction to Classes

Constructor Definitions

The function definitions of the two constructors for the Rectangle class are as follows:

Rectangle::Rectangle(float side_l, float side_w)

{

length = side_l;

width = side_w;

}

Rectangle::Rectangle()

{

length = 1;

width = 1;

}

The first constructor allows the user to input a value for both length and width

at the same time that the object is defined (shown later in the lab). The second

constructor (the default constructor) sets both length and width to 1 whenever

the object is defined. Actually they could be set to anything that the creator of the

class wants to use as a default for an object of the class that is not initialized by

the user. With the use of these constructors, every object of class Rectangle will

have a value for both length and width. We still keep the two member functions

setLength and setWidth to allow the user to change the values of length and

width. We could create a third constructor that has just one parameter which

gives the value of length and uses the default value for width. If we create this

third constructor, however, we can not create a fourth constructor that gives the

value of width and use the default value for length. Why? We would have two

member functions with the same name and an identical parameter list in both data

type and number.

Invoking a Constructor

Although a constructor is a member function, it is never invoked (called) using

the dot notation. It is invoked when an object is defined.

Example: Rectangle box1(12,6);

Rectangle box2;

In this example, box1 is an object of Rectangle class that has length set to 12

and width set to 6. Since it has two parameters, box1 activates the constructor that

has two parameters. The object box2 is defined with both length and width set

to 1. Since box2 has no parameters, it activates the default constructor.

Destructors

A destructor is a member function that is automatically called to destroy an

object. Just like constructors, a destructor has the same name as the class; how-

ever, it is preceded by a tilde (~). Destructors are used to free up memory when

the object is no longer needed. The destructor is automatically called when an

object of the class goes out of scope. This occurs when the function (such as main),

where the object is defined, ends. The following example shows how construc-

tors and destructors operate.

Pre-lab Reading Assignment 257

Example:

#include <iostream>

using namespace std;

class Demo

{

public:

Demo(); // Default constructor

~Demo(); // Destructor

};

int main()

{

Demo demoObj; // demoObj is defined and invokes

// the default constructor that

// prints the message “The constructor has

// been invoked”

cout << "The program is now running" << endl;

return 0;

}

// Now that the main program is over, the object demoObj is no

// longer active. The destructor is invoked and the message

// "The destructor has been invoked" is printed.

//***

// The Default Constructor Demo

// Notice that constructors do not have to set member data

// This constructor prints a message that the constructor

// has been invoked.

//***

Demo::Demo()

{

cout << "The constructor has been invoked" << endl;

}

//***

// The Destructor Demo

// Notice that destructors do not have to print anything but

// this destructor prints the message "The destructor has been

// invoked." The primary purpose of destructors is to free

// memory space once an object is no longer needed.

//**

Demo::~Demo()

{

cout << "The destructor has been invoked" << endl;

}

258 LESSON SET 13 Introduction to Classes

What order do you think the three cout statements will be executed?

Note that a class can have only one default constructor and one destructor.

Arrays of Objects

Arrays can also contain objects of a class. For example, we could have an array

of Rectangle objects.

Example:

Rectangle box[4]; // box is defined as an array of Rectangle objects

This statement makes an array of 4 elements, each consisting of an object of the

Rectangle class.

Since this class has a default constructor, the default values are assigned to

each element (object) of the array. The length and width for each of the objects

in the box array are equal to 1 since these are the default values assigned by the

default constructor.

The following program demonstrates the use of an array of objects:

#include <iostream>

using namespace std;

class Rectangle

{

public:

// Constructor allowing a user to input the length and width

Rectangle(float side_l, float side_w);

Rectangle(); // Default constructor

~Rectangle(); // Destructor

void setLength(float side_l);

void setWidth(float side_w);

float getLength();

float getWidth();

double findArea();

double findPerimeter() ;

private:

float length;

float width;

};

const int NUMBEROFOBJECTS = 4;

int main()

{

Pre-lab Reading Assignment 259

Rectangle box[NUMBEROFOBJECTS]; // Box is defined as an array of

// Rectangle objects

for (int pos = 0; pos < NUMBEROFOBJECTS; pos++)

{

cout << "Information for box number " << pos + 1 << endl << endl;

cout << "The length of the box is " << box[pos].getLength()

<< endl;

cout << "The width of the box is " << box[pos].getWidth() << endl;

cout << "The area of the box is " << box[pos].findArea() << endl;

cout << "The perimeter of the box is " << box[pos].findPerimeter()

<< endl << endl;

}

return 0;

}

void Rectangle::setLength(float side_l)

{

length = side_l;

}

void Rectangle::setWidth(float side_w)

{

width = side_w;

}

float Rectangle::getLength()

{

return length;

}

float Rectangle:: getWidth()

{

return width;

}

double Rectangle::findArea()

{

return length * width;

}

double Rectangle::findPerimeter()

{

continues

260 LESSON SET 13 Introduction to Classes

return ((2 * length) + (2 * width));

}

Rectangle::Rectangle(float side_l, float side_w)

{

length = side_l;

width = side_w;

}

Rectangle::Rectangle()

{

length = 1;

width = 1;

}

Rectangle::~Rectangle()

{

}

The output will be the same for each box because each has been initialized to the

default values for length and width.

PRE-LAB WRITING ASSIGNMENT

Fill–in-the-Blank Questions

1. A(n) is used in C++ to guarantee the initialization of

a class instance.

2. A constructor has the name as the class itself.

3. Member functions are sometimes called in other object-

oriented languages.

4. A(n) is a member function that is automatically

called to destroy an object.

5. To access a particular member function, the code must list the object name

and the name of the function separated from each other by a

 .

6. A constructor has no parameters.

7. A precedes the destructor name in the declaration.

8. A(n) member function has its implementation

given in the class declaration.

9. In an array of objects, if the default constructor is invoked, then it is applied

to object in the array.

10. A constructor is a member function that is invoked

whenever a class instance is created.

Lesson 13A 261

L E S S O N 1 3 A

Lab 13.1 Squares as a Class

Retrieve program square.cpp from the Lab 13 folder. The code is as follows:

// This program declares the Square class and uses member functions to find

// the perimeter and area of the square

#include <iostream>

using namespace std;

// FILL IN THE CODE TO DECLARE A CLASS CALLED Square. TO DO THIS SEE

// THE IMPLEMENTATION SECTION.

int main()

{

Square box; // box is defined as an object of the Square class

float size; // size contains the length of a side of the square

// FILL IN THE CLIENT CODE THAT WILL ASK THE USER FOR THE LENGTH OF THE

// SIDE OF THE SQUARE. (This is stored in size)

// FILL IN THE CODE THAT CALLS SetSide.

// FILL IN THE CODE THAT WILL RETURN THE AREA FROM A CALL TO A FUNCTION

// AND PRINT OUT THE AREA TO THE SCREEN.

// FILL IN THE CODE THAT WILL RETURN THE PERIMETER FROM A CALL TO A

// FUNCTION AND PRINT OUT THAT VALUE TO THE SCREEN.

return 0;

}

//

//Implementation section Member function implementation

//**

// setSide

//

// task: This procedure takes the length of a side and

// places it in the appropriate member data

// data in: length of a side

//***

void Square::setSide(float length)

{

side = length;

}

continues

262 LESSON SET 13 Introduction to Classes

//**

// findArea

//

// task: This finds the area of a square

// data in: none (uses value of data member side)

// data returned: area of square

//***

float Square::findArea()

{

return side * side;

}

//**

// findPerimeter

//

// task: This finds the perimeter of a square

// data in: none (uses value of data member side)

// data returned: perimeter of square

//***

float Square::findPerimeter()

{

return 4 * side;

}

Exercise 1: This program asks you to fill in the class declaration and client code

based on the implementation of the member functions. Fill in the code so

that the following input and output will be generated:

Please input the length of the side of the square

8

The area of the square is 64

The perimeter of the square is 32

Exercise 2: Add two constructors and a destructor to the class and create the

implementation of each. One constructor is the default constructor that sets

the side to 1. The other constructor will allow the user to initialize the side

at the definition of the object. The destructor does not have to do anything

but reclaim memory space. Create an object called box1 that gives the value

of 9 to the constructor at the definition. Add output statements so that the

following is printed in addition to what is printed in Exercise 1.

The area of box1 is 81

The perimeter of box1 is 36

Lesson 13A 263

Lab 13.2 Circles as a Class

Retrieve program circles.cpp from the Lab 13 folder. The code is as follows:

#include <iostream>

using namespace std;

//

// This program declares a class for a circle that will have

// member functions that set the center, find the area, find

// the circumference and display these attributes.

// The program as written does not allow the user to input data, but

// rather has the radii and center coordinates of the circles

// (spheres in the program) initialized at definition or set by a function.

//class declaration section (header file)

class Circles

{

public:

void setCenter(int x, int y);

double findArea();

double findCircumference();

void printCircleStats(); // This outputs the radius and center of the circle.

Circles (float r); // Constructor

Circles(); // Default constructor

private:

float radius;

int center_x;

int center_y;

};

const double PI = 3.14;

//Client section

int main()

{

Circles sphere(8);

sphere.setCenter(9,10);

sphere.printCircleStats();

cout << "The area of the circle is " << sphere.findArea() << endl;

cout << "The circumference of the circle is "

<< sphere.findCircumference() << endl;

return 0;

}

//

continues

264 LESSON SET 13 Introduction to Classes

//Implementation section Member function implementation

Circles::Circles()

{

radius = 1;

}

// Fill in the code to implement the non-default constructor

// Fill in the code to implement the findArea member function

// Fill in the code to implement the findCircumference member function

void Circles::printCircleStats()

// This procedure prints out the radius and center coordinates of the circle

// object that calls it.

{

cout << "The radius of the circle is " << radius << endl;

cout << "The center of the circle is (" << center_x

<< "'" << center_y << ")" << endl;

}

void Circles::setCenter(int x, int y)

// This procedure will take the coordinates of the center of the circle from

// the user and place them in the appropriate member data.

{

center_x = x;

center_y = y;

}

Exercise 1: Alter the code so that setting the center of the circle is also done

during the object definition. This means that the constructors will also take

care of this initialization. Make the default center at point (0, 0) and keep

the default radius as 1. Have sphere defined with initial values of 8 for the

radius and (9, 10) for the center. How does this affect existing functions

and code in the main function?

The following output should be produced:

The radius of the circle is 8

The center of the circle is (9, 10)

The area of the circle is 200.96

The circumference of the circle if 50.24

Exercise 2: There can be several constructors as long as they differ in number

of parameters or data type. Alter the program so that the user can enter

either just the radius, the radius and the center, or nothing at the time the

object is defined. Whatever the user does NOT include (radius or center)

must be initialized somewhere. There is no setRadius function and there

will no longer be a setCenter function. You can continue to assume that

the default radius is 1 and the default center is (0, 0). Alter the client

portion (main) of the program by defining an object sphere1, giving just

Lesson 13B 265

the radius of 2 and the default center, and sphere2 by giving neither the

radius nor the center (it uses all the default values). Be sure to print out

the vital statistics for these new objects (area and circumference).

In addition to the output in Exercise 1, the following output should be included:

The radius of the circle is 2

The center of the circle is (0, 0)

The area of the circle is 12.56

The circumference of the circle is 12.56

The radius of the circle is 1

The center of the circle is (0, 0)

The area of the circle is 3.14

The circumference of the circle is 6.28

Exercise 3: Alter the program you generated in Exercise 2 so that the user will

be allowed to enter either nothing, just the radius, just the center, or both

the center and radius at the time the object is defined. Add to the client

portion of the code an object called sphere3 that, when defined, will have

the center at (15, 16) and the default radius. Be sure to print out this new

object’s vital statistics (area and circumference).

In addition to the output in Exercise 1 and 2, the following output should be

printed:

The radius of the circle is 1

The center of the circle is (15, 16)

The area of the circle is 3.14

The circumference of the circle is 6.28

Exercise 4: Add a destructor to the code. It should print the message This

concludes the Circles class for each object that is destroyed. How many

times is this printed? Why?

L E S S O N 1 3 B

Lab 13.3 Arrays as Data Members of Classes

Retrieve program floatarray.cpp and temperatures.txt from the Lab 13 folder.

The code is as follows:

// This program reads floating point data from a data file and places those

// values into the private data member called values (a floating point array)

// of the FloatList class. Those values are then printed to the screen.

// The input is done by a member function called GetList. The output

// is done by a member function called PrintList. The amount of data read in

// is stored in the private data member called length. The member function

// GetList is called first so that length can be initialized to zero.

#include <iostream>

#include <fstream>

#include <iomanip>

continues

266 LESSON SET 13 Introduction to Classes

using namespace std;

const int MAX_LENGTH = 50; // MAX_LENGTH contains the maximum length of our list

class FloatList // Declares a class that contains an array of

// floating point numbers

{

public:

void getList(ifstream&); // Member function that gets data from a file

void printList() const; // Member function that prints data from that

// file to the screen.

FloatList(); // constructor that sets length to 0.

~FloatList(); // destructor

private:

int length; // Holds the number of elements in the array

float values[MAX_LENGTH]; // The array of values

};

int main()

{

ifstream tempData; // Defines a data file

// Fill in the code to define an object called list of the class FloatList

cout << fixed << showpoint;

cout << setprecision(2);

tempData.open("temperatures.txt");

// Fill in the code that calls the getList function.

// Fill in the code that calls the printList function.

return 0;

}

FloatList::FloatList()

{

// Fill in the code to complete this constructor that

// sets the private data member length to 0

}

// Fill in the entire code for the getList function

// The getList function reads the data values from a data file

// into the values array of the class FloatList

// Fill in the entire code for the printList function

// The printList function prints to the screen the data in

// the values array of the class FloatList

// Fill in the code for the implementation of the destructor

Lesson 13B 267

This program has an array of floating point numbers as a private data member

of a class. The data file contains floating point temperatures which are read by

a member function of the class and stored in the array.

Exercise 1: Why does the member function printList have a const after its

name but getList does not?

Exercise 2: Fill in the code so that the program reads in the data values from the

temperature file and prints them to the screen with the following output:

78.90

87.40

60.80

70.40

75.60

Exercise 3: Add code (member function, call and function implementation) to

print the average of the numbers to the screen so that the output will look

like the output from Exercise 2 plus the following:

The average temperature is 74.62

Lab 13.4 Arrays of Objects

Retrieve program inventory.cpp and inventory.dat from the Lab 13 folder.

The code is as follows:

#include <iostream>

#include <fstream>

using namespace std;

// This program declares a class called Inventory that has itemnNumber (which

// contains the id number of a product) and numOfItem (which contains the

// quantity on hand of the corresponding product)as private data members.

// The program will read these values from a file and store them in an

// array of objects (of type Inventory). It will then print these values

// to the screen.

// Example: Given the following data file:

// 986 8

// 432 24

// This program reads these values into an array of objects and prints the

// following:

// Item number 986 has 8 items in stock

// Item number 432 has 24 items in stock

const NUMOFPROD = 10; // This holds the number of products a store sells

class Inventory

{

public:

continues

268 LESSON SET 13 Introduction to Classes

void getId(int item); // This puts item in the private data member

// itemNumber of the object that calls it.

void getAmount(int num); // This puts num in the private data member

// numOfItem of the object that calls it.

void display(); // This prints to the screen

// the value of itemNumber and numOfItem of the

// object that calls it.

private:

int itemNumber; // This is an id number of the product

int numOfItem; // This is the number of items in stock

};

int main()

{

ifstream infile; // Input file to read values into array

infile.open("Inventory.dat");

// Fill in the code that defines an array of objects of class Inventory

// called products. The array should be of size NUMOFPROD

int pos; // loop counter

int id; // variable holding the id number

int total; // variable holding the total for each id number

// Fill in the code that will read inventory numbers and number of items

// from a file into the array of objects. There should be calls to both

// getId and getAmount member functions somewhere in this code.

// Example: products[pos].getId(id); will be somewhere in this code

// Fill in the code to print out the values (itemNumber and numOfItem) for

// each object in the array products.

// This should be done by calling the member function display within a loop

return 0;

}

// Write the implementations for all the member functions of the class.

Exercise 1: Complete the program by giving the code explained in the com-

mands in bold. The data file is as follows:

986 8

432 24

132 100

Lesson 13B 269

123 89

329 50

503 30

783 78

822 32

233 56

322 74

The output should be as follows:

Item number 986 has 8 items in stock

Item number 432 has 24 items in stock

Item number 132 has 100 items in stock

Item number 123 has 89 items in stock

Item number 329 has 50 items in stock

Item number 503 has 30 items in stock

Item number 783 has 78 items in stock

Item number 822 has 32 items in stock

Item number 233 has 56 items in stock

Item number 322 has 74 items in stock

LAB 13.5 Student Generated Code Assignments

Exercise 1: Give a C++ class declaration called SavingsAccount with the

following information:

Operations (Member Functions)

1. Open account (with an initial deposit). This is called to put initial values in

dollars and cents.

2. Make a deposit. A function that will add value to dollars and cents

3. Make a withdrawal. A function that will subtract values from dollars and

cents.

4. Show current balance. A function that will print dollars and cents.

Data (Member Data)

1. dollars

2. cents

Give the implementation code for all the member functions.

NOTE: You must perform normalization on cents. This means that if cents

is 100 or more, it must increment dollars by the appropriate amount.

Example: if cents is 234, then dollars must be increased by 2 and cents reduced

to 34.

Write code that will create an object called bank1. The code will then initially

place $200.50 in the account. The code will deposit $40.50 and then withdraw

$100.98. It will print out the final value of dollars and cents.

The following output should be produced:

Part 2: Change the program to allow the user to input the initial values, deposit

and withdrawal.

270 LESSON SET 13 Introduction to Classes

Example:

Exercise 2: Replace the initial member function by two constructors. One

constructor is the default constructor that sets both dollars and cents to 0.

The other constructor has 2 parameters that set dollars and cents to the

indicated values.

Have the code generate two objects: bank1 (which has its values set during

definition by the user) and bank2 that uses the default constructor. Have

the code input deposits and withdrawals for both bank1 and bank2.

