

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 176

Pre-lab Writing Assignment Pre-lab reading 10 min. 186

LESSON 10A

Lab 10.1

Character Testing and String

Pre-lab reading

15 min.

187

Validation
Lab 10.2

Case Conversion

Basic fundamental

5 min.

190

 instructions
Lab 10.3

L E S S O N S E T

10

Characters and Strings

PURPOSE 1. To demonstrate the unique characteristics of character data

 2. To view strings as an array of characters

 3. To show how to input and output strings

 4. To work with string functions

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to the lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

 3. In the lab, students should complete labs assigned to them by the instructor.

Using getline() & get() Basic knowledge of 30 min. 192

character arrays

LESSON 10B

Lab 10.4

String Functions—strcat Basic knowledge of 15 min. 193

character arrays

Lab 10.5

Student Generated Code Basic knowledge of 35 min. 193

Assignments character arrays

175

176 LESSON 10 Characters and Strings

P R E - L A B R E A D I N G A S S I G N M E N T

Character Functions

C++ provides numerous functions for character testing. These functions will test

a single character and return either a non-zero value (true) or zero (false). For exam-

ple, isdigit tests a character to see if it is one of the digits between 0 and 9.

So isdigit(7) returns a non-zero value whereas isdigit(y) and

isdigit($)both return 0. We will not list all the character functions here. A

complete list may be found in the text. The following program demonstrates

some of the others. Note that the cctype header file must be included to use

the character functions.

Sample Program 10.1:

// This program utilizes several functions for character testing

#include <iostream>

#include <cctype>

using namespace std;

int main()

{

char input;

cout << "Please Enter Any Character:" << endl;

cin >> input;

cout << "The character entered is " << input << endl << endl;

cout << "The ASCII code for " << input << " is " << int(input)

<< endl;

if (isalpha(input)) // tests to see if character is a letter

{

cout << "The character is a letter" << endl;

if (islower(input)) // tests to see if letter is lower case

cout << "The letter is lower case" << endl;

if (isupper(input)) // tests to see if letter is upper case

cout << "The letter is upper case" << endl;

}

else if (isdigit(input)) // tests to see if character is a digit

cout << "The character you entered is a digit" << endl;

else

cout << "The character entered is not a letter nor a digit"

<< endl;

return 0;

}

In Lab 10.1 you will see a more practical application of character testing functions.

Pre-lab Reading Assignment 177

Character Case Conversion

The C++ library provides the toupper and tolower functions for converting the

case of a character. toupper returns the uppercase equivalent for a letter and

tolower returns the lower case equivalent. For example, cout <<

tolower('F'); causes an f to be displayed on the screen. If the letter is already

lowercase, then tolower will return the value unchanged. Likewise, any non-

letter argument is returned unchanged by tolower. It should be clear to you now

what toupper does to a given character.

While the toupper and tolower functions are conceptually quite simple, they

may not appear to be very useful. However, the following program shows that

they do have beneficial applications.

Sample Program 10.2:

// This program shows how the toupper and tolower functions can be

// applied in a C++ program

#include <iostream>

#include <cctype>

#include <iomanip>

using namespace std;

int main()

{

int week, total, dollars;

float average;

char choice;

cout << showpoint << fixed << setprecision(2);

do

{

total = 0;

for(week = 1; week <= 4; week++)

{

cout << "How much (to the nearest dollar) did you"

<< " spend on food during week " << week

<< " ?:" << endl;

cin >> dollars;

total = total + dollars;

}

average = total / 4.0;

cout << "Your weekly food bill over the chosen month is $"

<< average << endl << endl;

do

{

cout << "Would you like to find the average for "

<< "another month?";

continues

178 LESSON 10 Characters and Strings

cout << endl << "Enter Y or N" << endl;

cin >> choice;

} while(toupper(choice) != 'Y' && toupper(choice) != 'N');

} while (toupper(choice) == 'Y');

return 0;

}

This program prompts the user to input weekly food costs, to the nearest dollar

(an integer) for a four-week period. The average weekly total for that month is

output. Then the user is asked whether they want to repeat the calculation for a

different month. The flow of this program is controlled by a do-while loop. The

condition toupper(choice) == 'Y' allows the user to enter 'Y' or 'y' for yes.

This makes the program more user friendly than if we just allowed 'Y'. Note the

second do-while loop near the end of the program. This loop also utilizes toupper.

Can you determine the purpose of this second loop? How would the execution

of the program be affected if we removed this loop (but left in the lines between

the curly brackets)?

String Constants

We have already talked about the character data type which includes letters, dig-

its, and other special symbols such as $ and @. Often we need to put characters

together to form strings. For example, the price “$1.99” and the phrase “one for

the road!” are both strings of characters. The phrase contains blank space char-

acters in addition to letters and an exclamation mark. In C++ a string is treated

as a sequence of characters stored in consecutive memory locations. The end of

the string in memory is marked by the null character \0. Do not confuse the

null character with a sequence of two characters (i.e., \ and 0). The null char-

acter is actually an escape sequence. Its ASCII code is 0. For example, the phrase

above is stored in computer memory as

o n e f o r t h e r o a d ! \0

A string constant is a string enclosed in double quotation marks. For example,

“Learn C++”

“What time is it?”

“Code Word 7dF#c&Q”

are all string constants. When they are stored in the computer’s memory, the

null character is automatically appended. The string “Please enter a digit” is

stored as

P l e a s e e n t e r a d i g i t \0

When a string constant is used in C++, it is the memory address that is actually

accessed. In the statement

cout << "Please enter a digit";

the memory address is passed to the cout object. cout then displays the con-

secutive characters until the null character is reached.

Pre-lab Reading Assignment 179

Storing Strings in Arrays

Often we need to access parts of a string rather than the whole string. For

instance, we may want to alter characters in a string or even compare two strings.

If this is the case, then a string constant is not what we need. Rather, a charac-

ter array is the appropriate choice. When using character arrays, enough space

to hold the null character must be allocated. For example:

char last[10];

This code defines a 10-element character array called last. However, this array

can hold no more than 9 non-null characters since a space is reserved for the null

character. Consider the following:

char last[10];

cout << "Please enter your last name using no more than 9 letters";

cin >> last;

If the user enters Symon, then the following will be the contents of the last array:

S y m o n \0

Recall that the computer actually sees last as the beginning address of the array.

There is a problem that can arise when using the cin object on a character array.

cin does not “know” that last has only 10 elements. If the user enters

Newmanouskous after the prompt, then cin will write past the end of the array. We

can get around this problem by using the getline function. If we use

cin.getline(last,10)

then the computer knows that the maximum length of the string, including the

null character, is 10. Consequently, cin will read until the user hits ENTER or until

9 characters have been read, whichever occurs first. Once the string is in the

array, it can be processed character by character. In this next section we will see

a program that uses cin.getline().

Librar y Functions for Strings

The C++ library provides many functions for testing and manipulating strings. For

example, to determine the length of a given string one can use the strlen func-

tion. The syntax is shown in the following code:

char line[40] = "A New Day";

int length;

length = strlen(line);

Here strlen(line)returns the length of the string including white spaces but not

the null character at the end. So the value of length is 9. Note this is smaller than

the size of the actual array holding the string.

To see why we even need a function such as strlen, consider the problem

of reading in a string and then writing it backwards. If we only allowed strings

of a fixed size, say length 29 for example, then the task would be easy. We sim-

ply read the string into an array of size 30 or more. Then write the 28th entry fol-

lowed by the 27th entry and so on, until we reach the 0th entry. However, what

if we wish to allow the user to input strings of different lengths? Now it is unclear

where the end of the string is. Of course, we could search the array until we find

180 LESSON 10 Characters and Strings

the null character and then figure out what position it is in. But this is precisely

what the strlen function does for us. Sample Program 10.3 is a complete pro-

gram that performs the desired task.

Sample Program 10.3:

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char line[50];

int length,count = 0;

cout << "Enter a sentence of no more than 49 characters:\n";

cin.getline(line,50);

length = strlen(line); // strlen returns the length of the

// string currently stored in line

cout << "The sentence entered read backwards is:\n";

for(count = length-1; count >= 0; count--)

{

cout << line[count];

}

cout << endl;

return 0;

}

Sample Run 1:

Sample Run 2:

Another useful function for strings is strcat, which concatenates two strings.

strcat(string1,string2)attaches the contents of string2 to the end of string1.

The programmer must make sure that the array containing string1 is large

enough to hold the concatenation of the two strings plus the null character.

Pre-lab Reading Assignment 181

Consider the following code:

char string1[25] = "Total Eclipse "; // note the space after the second

// word - strcat does not insert a

// space. The programmer must do this.

char string2[11] = "of the Sun";

cout << string1 << endl;

cout << string2 << endl;

strcat(string1,string2);

cout << string1 << endl;

These statements produce the following output:

What would have happened if we had defined string1 to be a character array

of size 20?

There are several other string functions such as strcpy (copies the second

string to the first string), strcmp (compares two strings to see if they are the

same or, if not, which string is alphabetically greater than the other), and strstr

(looks for the occurrence of a string inside of another string). Note that C-string

functions require the cstring header file. For more details on these string func-

tions and the others, see the text.

The get and ignore functions

There are several ways of inputting strings. We could use the standard >> extrac-

tion operator for a character array or string class object. However, we know that

using cin >> skips any leading whitespace (blanks, newlines). It will also stop

at the first trailing whitespace character. So, for example, the name “John Wayne”

cannot be read as a single string using cin >> because of a blank space between

the first and last names. We have already seen the getline function which does

allow blank spaces to be read and stored. In this section we will introduce the

get and ignore functions, which are also useful for string processing.

The get function reads in the next character in the input stream, including

whitespace. The syntax is

cin.get(ch);

Once this function call is made, the next character in the input stream is stored

in the variable ch. So if we want to input

$ X

we can use the following:

cin.get(firstChar);

cin.get(ch);

cin.get(secondChar);

where firstChar, ch, and secondChar are all character variables. Note that after the

second call to the get function, the blank character is stored in the variable ch.

182 LESSON 10 Characters and Strings

The get function, like the getline function, can also be used to read strings. In

this case we need two parameters:

cin.get(strName, numChar+1);

Here strName is a string variable and the integer expression numChar+1 gives

the number of characters that may be read into strName.

Both the getline and the get functions do not skip leading whitespace char-

acters. The get statement above brings in the next input characters until it either

has read numChar+1 characters or it reaches the newline character \n. However,

the newline character is not stored in strName. The null character is then append-

ed to the end of the string. Since the newline character is not consumed (not read

by the get function), it remains part of the input characters yet to be read.

Example:

char strName[21];

cin.get(strName,21);

Now suppose we input

John Wayne

Then “John Wayne” is stored in strName. Next input

My favorite westerns star John Wayne

In this case the string “My favorite westerns” is stored in strName.

We often work with records from a file that contain character data followed

by numeric data. Look at the following data which has a name, hours worked,

and pay rate for each record stored on a separate line.

Pay Roll Data

John Brown

7

12.50

Mary Lou Smith 12 15.70

Dominic DeFino 8 15.50

Since names often have imbedded blank spaces, we can use the get function to

read them. We then use an integer variable to store the number of hours and a

floating point variable to store the pay rate. At the end of each line is the ‘\n’ char-

acter. Note that the end of line character is not consumed by reading the pay rate

and, in fact, is the next character to be read when reading the second name

from the file. This creates problems. Whenever we need to read through characters

in the input stream without storing them, we can use the ignore function. This

function has two arguments, the first is an integer expression and the second is

a character expression. For example, the call

cin.ignore(80,'\n');

says to skip over the next 80 input characters but stop if a newline character is

read. The newline character is consumed by the ignore function. This use of

ignore is often employed to find the end of the current input line.

Pre-lab Reading Assignment 183

The following program will read the sample pay roll data from a file called

payRoll.dat and show the result to the screen. Note that the input file must have

names that are no longer than 15 characters and the first 15 positions of each line

are reserved for the name. The numeric data must be after the 15th position in

each line.

Sample Program 10.4:

#include <fstream>

#include <iostream>

using namespace std;

const int MAXNAME = 15;

int main()

{

ifstream inData;

inData.open("payRoll.dat");

char name[MAXNAME+1];

int hoursWorked;

float payRate;

inData.get(name,MAXNAME+1); // prime the read

while (inData)

{

inData >> hoursWorked;

inData >> payRate;

cout << name << endl;

cout << "Hours Worked " << hoursWorked << endl;

cout << "Pay Rate " << payRate << " per hour"

<< endl << endl;

inData.ignore(80,'\n');

// This will ignore up to 80 characters but will

// stop (ignoring) when it reads the \n which is

// consumed.

inData.get(name,MAXNAME+1);

}

return 0;

}

184 LESSON 10 Characters and Strings

Summary of types of input for strings:

cin >> strName; // skips leading whitespace. Stops at the first

// trailing whitespace (which is not consumed)

cin.get(strName, 21); // does not skip leading whitespace

// stops when either 20 characters are read or

// '\n' is encountered (which is not consumed)

cin.ignore(200,'\n'); // ignores at most 200 characters but stops if

// newline (which is consumed) is encountered

Pointers and Strings

Pointers can be very useful for writing string processing functions. If one needs

to process a certain string, the beginning address can be passed with a pointer

variable. The length of the string does not even need to be known since the

computer will start processing using the address and continue through the string

until the null character is encountered.

Sample Program 10.5 below reads in a string of no more than 50 characters

and then counts the number of letters, digits, and whitespace characters in

the string. Notice the use of the pointer strPtr, which points to the string

being processed. The three functions countLetters, countDigits, and

countWhiteSpace all perform basically the same task—the while loop is exe-

cuted until strPtr points to the null character marking the end of the string. In

the countLetters function, characters are tested to see if they are letters. The

if(isalpha(*strPtr))statement determines if the character pointed at by strPtr

is a letter. If so, then the counter occurs is incremented by one. After the char-

acter has been tested, strPtr is incremented by one to test the next character. The

other two functions are analogous.

Sample Program 10.5:

#include <iostream>

#include <cctype>

using namespace std;

//function prototypes

int countLetters(char*);

int countDigits(char*);

int countWhiteSpace(char*);

int main()

{

int numLetters, numDigits, numWhiteSpace;

char inputString[51];

cout <<"Enter a string of no more than 50 characters: "

<< endl << endl;

Pre-lab Reading Assignment 185

cin.getline(inputString,51);

numLetters = countLetters(inputString);

numDigits = countDigits(inputString);

numWhiteSpace = countWhiteSpace(inputString);

cout << "The number of letters in the entered string is "

<< numLetters << endl;

cout << "The number of digits in the entered string is "

<< numDigits << endl;

cout << "The number of white spaces in the entered string is "

<< numWhiteSpace << endl;

return 0;

}

//***

// countLetters

//

// task: This function counts the number of letters

// (both capital and lower case) in the string

// data in: pointer that points to an array of characters

// data returned: number of letters in the array of characters

//

//***

int countLetters(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0') // loop is executed as long as

// the pointer strPtr does not point

// to the null character which

// marks the end of the string

{

if (isalpha(*strPtr)) // isalpha determines if

// the character is a letter

occurs++;

strPtr++;

}

return occurs;

}

//***

// countDigits

//

// task: This function counts the number of digits

// in the string

// data in: pointer that points to an array of characters

// data returned: number of digits in the array of characters

//

//***

continues

186 LESSON 10 Characters and Strings

int countDigits(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isdigit(*strPtr)) // isdigit determines if

// the character is a digit

occurs++;

strPtr++;

}

return occurs;

}

//***

// countWhiteSpace

//

// task: This function counts the number of whitespace

// characters in the string

// data in: pointer that points to an array of characters

// data returned: number of whitespaces in the array of

// characters

//

//***

int countWhiteSpace(char *strPtr) // this function counts the

 // number of whitespace characters.

 // These include, space, newline,

 // vertical tab, and tab

{
int occurs = 0;

while(*strPtr != '\0')

{

if (isspace(*strPtr)) // isspace determines if

// the character is a

// whitespace character

occurs++;

strPtr++;

}

return occurs;

}

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The code cout << toupper('b'); causes a to be dis-

played on the screen.

2. The data type returned by isalpha('g') is .

Lesson 10A 187

3. After the assignment statement result = isdigit('$'), result has the

value .

4. The code cout << tolower('#'); causes a to be dis-

played on the screen.

5. The end of a string is marked in computer memory by the .

6. In cin.getline(name,25), the 25 indicates that the user can input at most

 characters into name.

7. Consider the following:

char message[35] = "Like tears in the rain";

int length;

length = strlen(message);

Then the value of length is .

8. Consider the code

char string1[30] = "In the Garden";

char string2[15] = "of Eden";

strcat(string1,string2);

cout << string1;

The output for this is .

9. The header file must be included to access the islower

and isspace character functions.

10. In C++, a string constant must be enclosed in whereas a

character constant must be enclosed in .

L E S S O N 1 0

LAB 10.1 Character Testing and String Validation

The American Equities investment company offers a wide range of investment

opportunities ranging from mutual funds to bonds. Investors can check the val-

ue of their portfolio from the American Equities’ web page. Information about

personal portfolios is protected via encryption and can only be accessed using

a password. The American Equities company requires that a password consist of

8 characters, 5 of which must be letters and the other 3 digits. The letters and dig-

its can be arranged in any order. For example,

rt56AA7q

123actyN

1Lo0Dwa9

myNUM741

are all valid passwords. However, the following are all invalid:

the476NEw // It contains more than 8 characters (also more than 5

// letters)

be68moon // It contains less than 3 digits.

$retrn99 // It contains only 2 digits and has an invalid character (‘$’)

188 LESSON 10 Characters and Strings

American Equities needs a program for their web page that determines whether or

not an entered password is valid. The program american_equities.cpp from the

Lab 10 folder performs this task. The code is the following:

// This program tests a password for the American Equities

// web page to see if the format is correct

// Place Your Name Here

#include <iostream>

#include <cctype>

#include <cstring>

using namespace std;

//function prototypes

bool testPassWord(char[]);

int countLetters(char*);

int countDigits(char*);

int main()

{

char passWord[20];

cout << "Enter a password consisting of exactly 5 "

<< "letters and 3 digits:" << endl;

cin.getline(passWord,20);

if (testPassWord(passWord))

cout << "Please wait - your password is being verified" << endl;

else

{

}

cout << "Invalid password. Please enter a password "

<< "with exactly 5 letters and 3 digits" << endl;

cout << "For example, my37RuN9 is valid" << endl;

// Fill in the code that will call countLetters and

// countDigits and will print to the screen both the number of

// letters and digits contained in the password.

return 0;

}

Lesson 10A 189

//**

// testPassWord

//

// task: determines if the word in the

// character array passed to it, contains

// exactly 5 letters and 3 digits.

// data in: a word contained in a character array

// data returned: true if the word contains 5 letters & 3

// digits, false otherwise

//

//**

bool testPassWord(char custPass[])

{

int numLetters, numDigits, length;

length = strlen(custPass);

numLetters = countLetters(custPass);

numDigits = countDigits(custPass);

if (numLetters == 5 && numDigits == 3 && length == 8)

return true;

else

return false;

}

// the next 2 functions are from Sample Program 10.5

//**

// countLetters

//

// task: counts the number of letters (both

// capital and lower case)in the string

// data in: a string

// data returned: the number of letters in the string

//

//**

int countLetters(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isalpha(*strPtr))

occurs++;

strPtr++;

}

return occurs;

}

continues

190 LESSON 10 Characters and Strings

//**

// countDigits

//

// task: counts the number of digits in the string

// data in: a string

// data returned: the number of digits in the string

//

//**

int countDigits(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isdigit(*strPtr)) // isdigit determines if

// the character is a digit

occurs++;

strPtr++;

}

return occurs;

}

Exercise 1: Fill in the code in bold and then run the program several times

with both valid and invalid passwords. Read through the program and

make sure you understand the logic of the code.

Exercise 2: Alter the program so that a valid password consists of 10 charac-

ters, 6 of which must be digits and the other 4 letters.

Exercise 3: Adjust your program from Exercise 2 so that only lower case

letters are allowed for valid passwords.

LAB 10.2 Case Conversion

Bring in case_convert.cpp from the Lab 10 folder. Note that this is Sample

Program 10.2. The code is the following:

// This program shows how the toupper and tolower functions can be

// applied in a C++ program

// PLACE YOUR NAME HERE

#include <iostream>

#include <cctype>

#include <iomanip>

using namespace std;

int main()

{

int week, total, dollars;

float average;

char choice;

Lesson 10A 191

cout << showpoint << fixed << setprecision(2);

do

{

total = 0;

for(week = 1; week <= 4; week++)

{

cout << "How much (to the nearest dollar) did you"

<< " spend on food during week " << week

<< " ?:" << endl;

cin >> dollars;

total = total + dollars;

}

average = total / 4.0;

cout << "Your weekly food bill over the chosen month is $"

<< average << endl << endl;

do

{

cout << "Would you like to find the average for "

<< "another month?";

cout << endl << "Enter Y or N" << endl;

cin >> choice;

} while(toupper(choice) != 'Y' && toupper(choice) != 'N');

} while (toupper(choice) == 'Y');

return 0;

}

Exercise 1: Run the program several times with various inputs.

Exercise 2: Notice the following do-while loop which appears near the end of

the program:

do

{

cout << "Would you like to find the average for another month?";

cout << endl << "Enter Y or N" << endl;

cin >> choice;

} while(toupper(choice) != 'Y' && toupper(choice) != 'N');

How would the execution of the program be different if we removed this

loop? Try removing the loop but leave the following lines in the program:

cout << "Would you like to find the average for another month?";

cout << endl << "Enter Y or N" << endl;

cin >> choice;

Record what happens when you run the new version of the program.

Exercise 3: Alter program case_convert.cpp so that it performs the same task

but uses tolower rather than toupper.

192 LESSON 10 Characters and Strings

LAB 10.3 Using getline() & get()

Exercise 1: Write a short program called readata.cpp that defines a character

array last which contains 10 characters. Prompt the user to enter their last

name using no more than 9 characters. The program should then read the

name into last and then output the name back to the screen with an

appropriate message. Do not use the getline() or get functions!

Exercise 2: Once the program in Exercise 1 is complete, run the program and

enter the name Newmanouskous at the prompt. What, if anything,

happens? (Note that the results could vary depending on your system).

Exercise 3: Re-write the program above using the getline() function (and

only allowing 9 characters to be input). As before, use the character array

last consisting of 10 elements. Run your new program and enter

Newmanouskous at the prompt. What is the output?

Exercise 4: Bring in program grades.cpp and grades.txt from the Lab 10

folder. Fill in the code in bold so that the data is properly read from

grades.txt. and the desired output to the screen is as follows:

OUTPUT TO SCREEN DATA FILE

Adara Starr has a(n) 94 average Adara Starr 94

David Starr has a(n) 91 average David Starr 91

Sophia Starr has a(n) 94 average Sophia Starr 94

Maria Starr has a(n) 91 average Maria Starr 91

Danielle DeFino has a(n) 94 average Danielle DeFino 94

Dominic DeFino has a(n) 98 average Dominic DeFino 98

McKenna DeFino has a(n) 92 average McKenna DeFino 92

Taylor McIntire has a(n) 99 average Taylor McIntire 99

Torrie McIntire has a(n) 91 average Torrie McIntire 91

Emily Garrett has a(n) 97 average Emily Garrett 97

Lauren Garrett has a(n) 92 average Lauren Garrett 92

Marlene Starr has a(n) 83 average Marlene Starr 83

Donald DeFino has a(n) 73 average Donald DeFino 73

The code of grades.cpp is as follows:

#include <fstream>

#include <iostream>

using namespace std;

// PLACE YOUR NAME HERE

const int MAXNAME = 20;

int main()

{

ifstream inData;

inData.open("grades.txt");

char name[MAXNAME + 1]; // holds student name

float average; // holds student average

Lesson 10B 193

inData.get(name,MAXNAME+1);

while (inData)

{

inData >> average;

// Fill in the code to print out name and

// student average

// Fill in the code to complete the while

// loop so that the rest of the student

// names and average are read in properly

}

return 0;

}

LAB 10.4 String Functions—strcat

Consider the following code:

char string1[25] ="Total Eclipse ";

char string2[11] = "of the Sun";

cout << string1 << endl;

cout << string2 << endl;

strcat(string1,string2);

cout << string1 << endl;

Exercise 1: Write a complete program including the above code that outputs

the concatenation of string1 and string2. Run the program and record

the result.

Exercise 2: Alter the program in Exercise 1 so that string1 contains 20 charac-

ters rather than 25. Run the program. What happens?

LAB 10.5 Student Generated Code Assignments

Exercise 1: A palindrome is a string of characters that reads the same for-

wards as backwards. For example, the following are both palindromes:

1457887541 madam

Write a program that prompts the user to input a string of a size 50 characters or

less. Your program should then determine whether or not the entered string is a

palindrome. A message should be displayed to the user informing them whether

or not their string is a palindrome.

Exercise 2: The strcmp(string1,string2) function compares string1 to

string2. It is a value returning function that returns a negative integer if

string1 < string2, 0 if string1 == string2, and a positive integer if

string1 > string2. Write a program that reads two names (last name first

followed by a comma followed by the first name) and then prints them in

alphabetical order. The two names should be stored in separate character

arrays holding a maximum of 25 characters each. Use the strcmp() func-

tion to make the comparison of the two names. Remember that 'a' < 'b',

'b' < 'c', etc. Be sure to include the proper header file to use strcmp().

194 LESSON 10 Characters and Strings

Sample Run 1:

Please input the first name

Brown, George

Please input the second name

Adams, Sally

The names are as follows:

Adams, Sally

Brown, George

Sample Run 2:

Please input the first name

Brown, George

Please input the second name

Brown, George

The names are as follows:

Brown, George

Brown, George

The names are the same

Exercise 3: (Optional) Write a program that determines how many consonants

are in an entered string of 50 characters or less. Output the entered string

and the number of consonants in the string.

