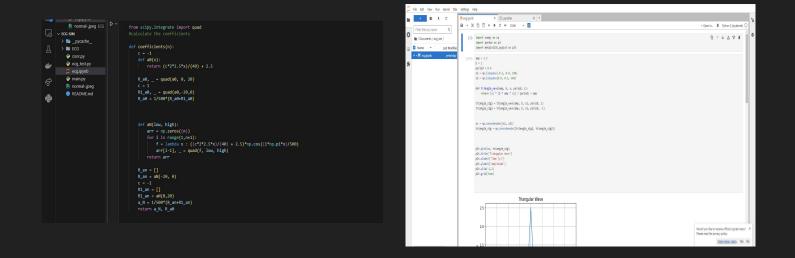

ECG Simulator Based on a Neural Network Trained With Real Patient Data

By Raul Verduzco | Salvatore Gutierrez | Abisai Diaz

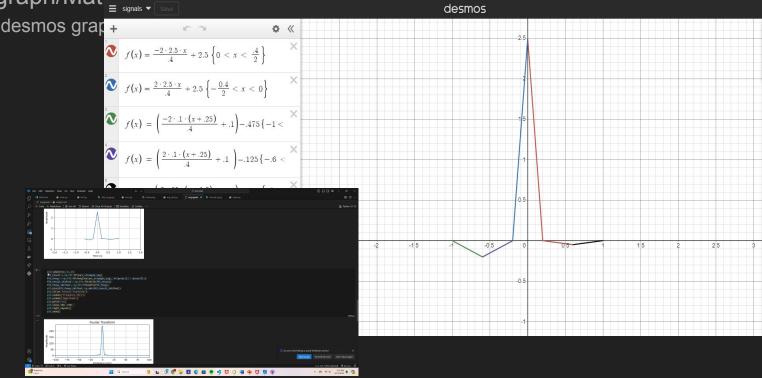
Data

- Created Dataset
 - Ex: normal sinus rhythm, bradycardia, tachycardia, Vfib ...
 - Images with all six leads
 - P waves, QRS wave, and T waves


Data

- Ecg data from anonymous patients found online
- Google Scholar
 - Using google scholar for research and find ideas on how to solve our problem

		New PDF	Search ScienceDirect	Q	*
	Outline	concluded in Section 6.			
	Abstroct	2. Mathematical background of WebECG			l
	Keywords	A basic ECG signal consists of combination of P, Q, R, S, T and U waves as shown in Fig. 1.			l
	1. Introduction	Q, QRS, and S waves can be represented by triangular waveform whereas P, T and U can be represented by a <u>sinusoidal waveform</u> . An ECG signals can be generated the addition			
	2. Mathematical background of WebECG	of these waves. Since ECG signals are periodic, they can be represented by Fourier series.			ļ
	3. System architecture and design steps of We	In WebECG, Fourier series has been used for modelling the ECG signals by inspiration of Karthik's study [14].			ļ
	4. Properties and usage of WebECG				ļ
	5. Assesment of WebECG				I
	6. Conclusion				ļ
	References				I
	Show full outline 🗸	P-R Q85 ST T OT			I
	Cited by (20)	· · · · · · · · · · · · · · · · · · ·			I
		Download : Download full-size image			ļ
	Figures (15)	Fig. 1. A basic ECG signal.			I
	À à 🔏 F				l
		2.1. Modelling of basic ECG signal with Fourier series			ļ
		Typical Fourier series is shown in Eq. (1), $f(x)$ represents instantaneous amplitude value of an ECG signal, a_0 is constant representing average amplitude value and ω is a variable			ļ
		representing the angular frequency of ECG signal defined as $\omega = 2\pi/T$. T stands for the			ļ
		period of ECG signal.			
	Show 9 more figures 🗸	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega x) + b_n \sin(n\omega x)] $ (1)			
		The constants a_n and b_n are called <u>Fourier coefficient</u> . The calculation of a_0 , a_n and b_n are			
	Tables (1)	given by	FEEDBA	ACK 💬	


Tools

- Python with Jupyter Notebook or Visual Studio Code
- Github
- Numpy library for math calculations
 - np.cos (cosine wave), np.quad (integrate), etc.

Tools

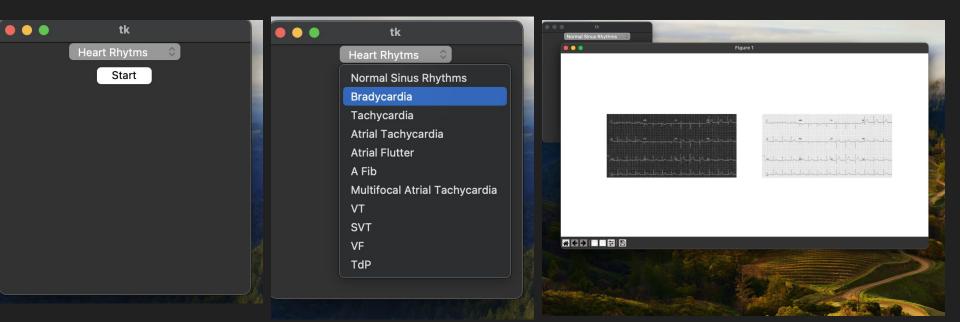
- Desmos graph/Mateletile lacksquare
 - Using desmos grar +

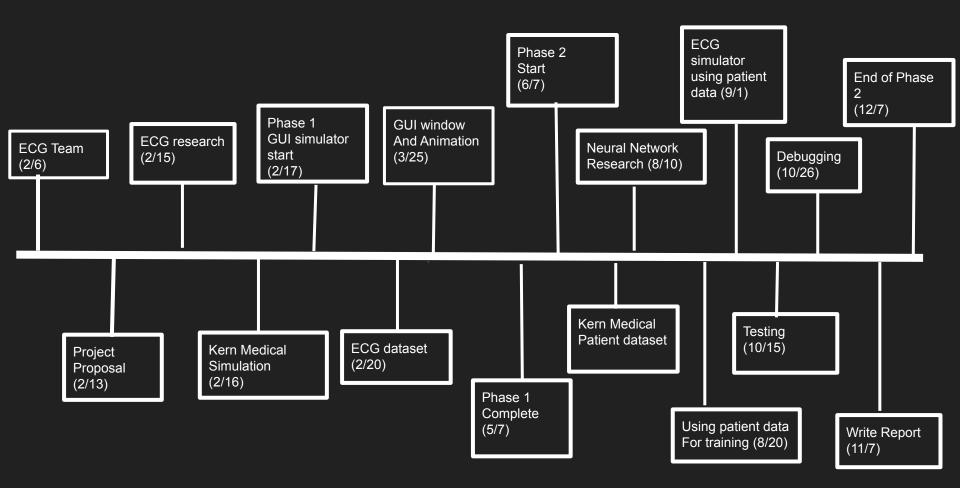
Other Tools

• Math

• Basic Understanding of calculus concepts like integrating

• Other


$$f(x) = \left\{egin{array}{c} \left(rac{-bax}{l} + a
ight) & ext{if } \left(0 < x < rac{l}{b}
ight) \ \left(rac{bax}{l} + a
ight) & ext{if } \left(-rac{l}{b} < x < 0
ight) \end{array}
ight\}$$


$$egin{aligned} A_0 &= rac{1}{P} \int_P s(x) \, dx \ A_n &= rac{2}{P} \int_P s(x) \cos \Bigl(2\pi rac{n}{P} x \Bigr) \, dx \qquad ext{ for } n \geq 1 \ B_n &= rac{2}{P} \int_P s(x) \sin \Bigl(2\pi rac{n}{P} x \Bigr) dx, \qquad ext{ for } n \geq 1 \end{aligned}$$

$$s_{_N}(x) = A_0 + \sum_{n=1}^N \left(A_n \cos\Bigl(2\pirac{n}{P}x\Bigr) + B_n \sin\Bigl(2\pirac{n}{P}x\Bigr)
ight) \, .$$

GUI

- Python with tkinter for the gui development
- ECG window using tkinter

Phase 1

- Create functions that represent the waves
- Create multiple periods
- Animation for ECG
- ECG pattern
- Heart rate and other

Updates

- Plotting the coordinates
- Normal Rhythm completed and fixed some bugs

Next Goals

- Improve our UI
- Add more heart rhythms
- Add the option to change parameters in the gui

