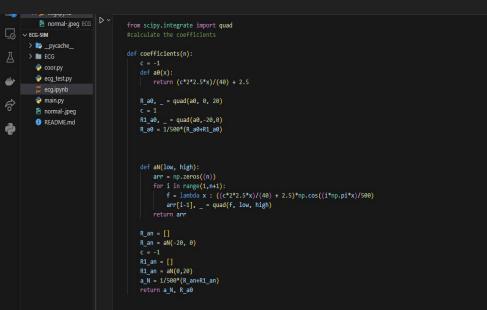
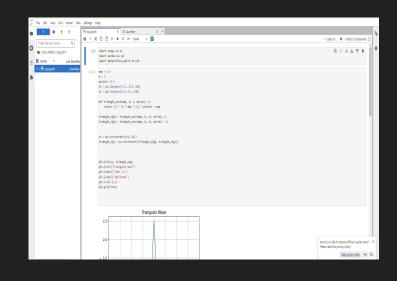

ECG Simulator Based on a Neural Network Trained With Real Patient Data

By Raul Verduzco | Salvatore Gutierrez | Abisai Diaz

Data

- Created Dataset
 - Ex: normal sinus rhythm, bradycardia, tachycardia, Vfib ...
 - Images with all six leads
 - P waves, QRS wave, and T waves

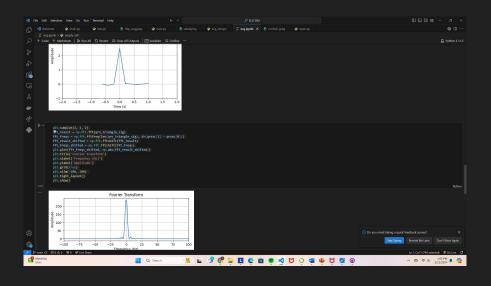

Data


- Ecg data from anonymous patients found online
- Google Scholar
 - Using google scholar for research and find ideas on how to solve our problem

		New PDF	Search ScienceDirect	Q	*
	Outline	concluded in Section 6.			
	Abstroct	2. Mathematical background of WebECG			l
	Keywords	A basic ECG signal consists of combination of P, Q, R, S, T and U waves as shown in Fig. 1.			l
	1. Introduction	Q, QRS, and S waves can be represented by triangular waveform whereas P, T and U can be represented by a <u>sinusoidal waveform</u> . An ECG signals can be generated the addition			
	2. Mathematical background of WebECG	of these waves. Since ECC signals are periodic, they can be represented by <u>Fourier series</u> . In WebSCF, Fourier series has been used for modelling the ECC signals by impiration of Karthik's study [14].			ļ
	3. System architecture and design steps of We				ļ
	4. Properties and usage of WebECG				ļ
	5. Assesment of WebECG				l
	6. Conclusion	$\wedge / \wedge $			ļ
	References				l
	Show full outline 🗸	PR QBS ST T			l
	Cited by (20)	· · · · · · · · · · · · · · · · · · ·			I
		Download : Download full-size image			ļ
	Figures (15)	Fig. 1. A basic ECG signal.			I
	À à 🔏 F				I
		2.1. Modelling of basic ECG signal with Fourier series			ļ
		Typical Fourier series is shown in Eq. (1), $f(x)$ represents instantaneous amplitude value of an ECG signal, a_0 is constant representing average amplitude value and ω is a variable			ļ
		representing the angular frequency of ECG signal defined as $\omega = 2\pi/T$. T stands for the			ļ
		period of ECG signal.			1
	Show 9 more figures 🗸	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega x) + b_n \sin(n\omega x)] $ (1)			
		The constants a_n and b_n are called <u>Fourier coefficient</u> . The calculation of a_0 , a_n and b_n are			
	Tables (1)	given by	FEEDBA	ACK 💬	

Tools

- Python with Jupyter Notebook or Visual Studio Code
- Github
- Numpy library for math calculations
 - np.cos (cosine wave), np.quad (integrate), etc.



Tools

• Desmos graph/Matplotlib

 \circ Using desmos graph (or matplot) to test our functions that reprevent

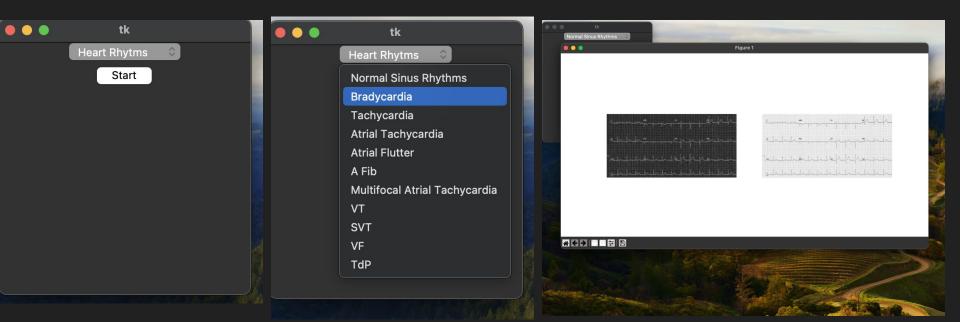
≡	signals 🔻 Save				
+	10 A	¢ «			
2	$f(x) = \frac{-2 \cdot 2.5 \cdot x}{.4} + 2.5 \left\{ 0 < x < \frac{.4}{2} \right\}$	×			
2	$f(x) = \frac{2 \cdot 2.5 \cdot x}{.4} + 2.5 \left\{ -\frac{0.4}{2} < x < 0 \right\}$	×			
2	$f(x) = \left(\frac{-2 \cdot .1 \cdot (x + .25)}{.4} + .1\right)475 \left\{-1\right\}$	× ×			
*	$f(x) = \left(\frac{2 \cdot .1 \cdot (x + .25)}{.4} + .1\right)125 \left\{6\right\}$	6 < X			
•	$f(x) = \left(\frac{2 \cdot .05 \cdot (x - 1.3)}{.8} + .05\right)011 \left\{\frac{.8}{2}\right\}$	+ ×			
2	$f(x) = \left(\frac{-2 \cdot .05 \cdot (x+.1)}{.8} + .05\right)011 \left\{.2\right\}$	× <>	-3	-2.5	
7		×		-2.0	
8					
<u> </u>					

Other Tools

• Math

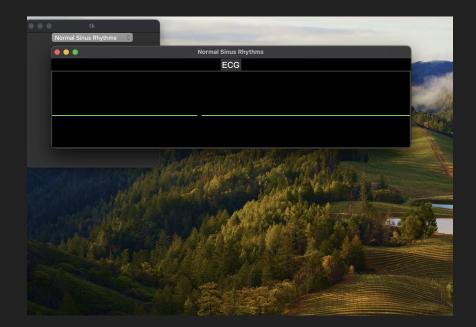
• Basic Understanding of calculus concepts like integrating

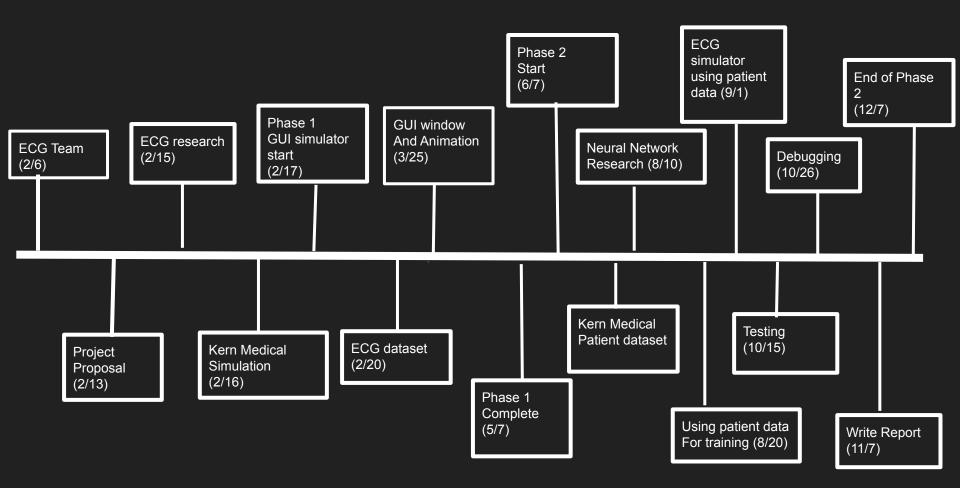
• Other


$$f(x) = \left\{egin{array}{c} \left(rac{-bax}{l}+a
ight) & ext{if} \ \left(0 < x < rac{l}{b}
ight) \ \left(rac{bax}{l}+a
ight) & ext{if} \ \left(-rac{l}{b} < x < 0
ight) \end{array}
ight\}$$

$$egin{aligned} A_0 &= rac{1}{P} \int_P s(x) \, dx \ A_n &= rac{2}{P} \int_P s(x) \cos \Big(2 \pi rac{n}{P} x \Big) \, dx \qquad ext{ for } n \geq 1 \ B_n &= rac{2}{P} \int_P s(x) \sin \Big(2 \pi rac{n}{P} x \Big) dx, \qquad ext{ for } n \geq 1 \end{aligned}$$

$$s_{_N}(x) = A_0 + \sum_{n=1}^N \left(A_n \cos\Bigl(2\pi rac{n}{P} x\Bigr) + B_n \sin\Bigl(2\pi rac{n}{P} x\Bigr)
ight)$$


GUI


- Python with tkinter for the gui development
- ECG window using tkinter

Phase 1

- Create functions that represent the waves
- Create multiple periods
- Animation for ECG
- ECG pattern
- Heart rate and other

