Algorithm Analysis

Dr. Chengwei Lei
CEECS
California State University, Bakersfield
More Examples

- Prove $n^2 + 3n + \log n$ is in $O(n^2)$
- Need to find c and n_0 such that $n^2 + 3n + \log n \leq cn^2$ for $n \geq n_0$
- Proof:

 $n^2 + 3n + \log n \leq n^2 + 3n^2 + n$ for $n \geq 1$
 $\leq n^2 + 3n^2 + n^2$ for $n \geq 1$
 $\leq 5n^2$ for $n \geq 1$

 Therefore by definition $n^2 + 3n + \log n \in O(n^2)$.

 (Alternatively: $n^2 + 3n + \log n \leq n^2 + n^2 + n^2$ for $n \geq 10$
 $\leq 3n^2$ for $n \geq 10$)
More Examples

- Prove $n^2 + 3n + \log n$ is in $\Omega(n^2)$
- Want to find c and n_0 such that
 \[n^2 + 3n + \log n \geq cn^2 \text{ for } n \geq n_0 \]

\[n^2 + 3n + \log n \geq n^2 \text{ for } n \geq 1 \]

$n^2 + 3n + \log n = O(n^2)$ and $n^2 + 3n + \log n = \Omega(n^2)$

$\Rightarrow n^2 + 3n + \log n = \Theta(n^2)$
The definitions imply a constant \(n_0 \) beyond which they are satisfied. We do not care about small values of \(n \).
Using limits to compare orders of growth

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & c < 0 \\ \infty & c > 0 \end{cases} \]

- \(f(n) \in o(g(n)) \)
- \(f(n) \in O(g(n)) \)
- \(f(n) \in \Theta(g(n)) \)
- \(f(n) \in \Omega(g(n)) \)
- \(f(n) \in \omega(g(n)) \)
logarithms

- compare \(\log_2 n \) and \(\log_{10} n \)

- \(\log_a b = \log_c b / \log_c a \)

- \(\log_2 n = \log_{10} n / \log_{10} 2 \sim 3.3 \log_{10} n \)

- Therefore \(\lim(\log_2 n / \log_{10} n) = 3.3 \)

- \(\log_2 n = \Theta (\log_{10} n) \)
- Compare 2^n and 3^n

- $\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} (2/3)^n = 0$

- Therefore, $2^n \in o(3^n)$, and $3^n \in \omega(2^n)$

- How about 2^n and 2^{n+1}?

 $2^n / 2^{n+1} = \frac{1}{2}$, therefore $2^n = \Theta(2^{n+1})$
L’ Hopital’s rule

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f(n)'}{g(n)'}
\]

Condition:
If both \(\lim f(n) \) and \(\lim g(n) \) are \(\infty \) or 0

\(\Rightarrow \) You can apply this transformation as many times as you want, as long as the condition holds.
Compare \(n^{0.5} \) and \(\log n \)

\[\lim_{n \to \infty} \frac{n^{0.5}}{\log n} = ? \]

\((n^{0.5})' = 0.5 n^{-0.5} \)

\((\log n)' = 1 / n \)

\[\lim (n^{-0.5} / 1/n) = \lim (n^{0.5}) = \infty \]

Therefore, \(\log n \in o(n^{0.5}) \)

In fact, \(\log n \in o(n^\varepsilon) \), for any \(\varepsilon > 0 \)
Stirling’s formula

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi n^{n+1/2}} e^{-n} \]

\[n! \approx \text{(constant)} \ n^{n+1/2} e^{-n} \]
Compare 2^n and $n!$

Therefore, $2^n = o(n!)$

Compare n^n and $n!$

Therefore, $n^n = \omega(n!)$

How about $\log(n!)$?

\[
\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{c\sqrt{n}n^n}{2^n e^n} = \lim_{n \to \infty} c\sqrt{n} \left(\frac{n}{2e} \right)^n = \infty
\]

\[
\lim_{n \to \infty} \frac{n!}{n^n} = \lim_{n \to \infty} \frac{c\sqrt{n}n^n}{n^n e^n} = \lim_{n \to \infty} \frac{c\sqrt{n}}{e^n} = 0
\]
\[\log(n!) = \log \frac{c \sqrt{n n^n}}{e^n} = C + \log n^{n+1/2} - \log(e^n) \]

\[= C + n \log n + \frac{1}{2} \log n - n \]

\[= C + \frac{n}{2} \log n + \left(\frac{n}{2} \log n - n \right) + \frac{1}{2} \log n \]

\[= \Theta(n \log n) \]
More advanced dominance ranking

\[\begin{align*}
 n! & \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \\
 \log^2 n & \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1
\end{align*} \]
Asymptotic notations

- O: Big-Oh
- Ω: Big-Omega
- Θ: Theta
- o: Small-oh
- ω: Small-omega

Intuitively:

O is like \leq
o is like $<$
Ω is like \geq
ω is like $>$
Θ is like $=$