
Section 1.4



Summary
 Nonregular Languages
 Prove that certain languages cannot be recognized by any finite 

automaton
 Pumping Lemma



Regular vs Nonregular Languages

 Regular languages 
 Correspond to problems that can be solved with finite memory

 i.e. finite states 

 Nonregular languages 
 Correspond to problems that cannot be solved with finite memory
 May need to remember one of infinitely many symbols
 Requires infinite memory



Example of a Nonregular Language
 L = { anbn | n ≥ 0 }

 Because of n, we need the same number of a’s and b’s
 {ε, ab, aabb, aaabbb, aaaabbbb, … }

 If an and am (n ≠ m) end up in the same state, anbn and ambn end up in the same state
 DFA will either accept a string not in the language (ambn) or reject a string in the language (anbn)
 This means for every n, we need a separate state

 n is not limited, machine must track unlimited number possible states
 Finite automata have a finite number of states and can not recognize this language

 Nonregular Language

Presenter Notes
Presentation Notes
Must count a’s and b’s to match
	DFAs counted by introducing states
	n is not limited = infinite states



Must Prove Infinite Memory is Required
 Languages may not require infinite memory even though it seems so

 Example
 D = { w|w has an equal number of occurrences of 01 and 10 as substrings }

 Seems to require the need for counting occurrences
 However, can be described by the following regular expression

 (1+0*1+)*∪(0+1*0+)*
 D is a regular language

 Easy to prove a language is regular
 Create a finite automata that recognizes it
 Create a regular expression to describe language

 Harder to prove a language is nonregular
 Must use other proof methods such as contradictions.

Presenter Notes
Presentation Notes
Before claiming that a language is nonregular, it is important to prove it
	some languages may seem to be nonregular, even when a finite automata can be created for it



Methods to Prove Irregularity 
 Proof by contraction of a property that is required by a regular language

 3 properties are required for a regular language
1. Closure of language under regular operations (i.e. union, intersection, complement, 

star…)

2. Pumping Lemma

3. Myhill-Nerode Theorem (won’t be on exams)
1. Strings x and y are distinguishable by language L if some string z exists whereby exactly one 

of the strings xz or yz belongs to L
2. Let X be a set of strings where every 2 district strings are distinguishable.
3. Let the index of L be the maximum number of elements in X
4. The theorem states that L is regular iff it has a finite index

1. In addition, the index is equal to the size of the smallest DFA that recognizes it.



Pumping Lemma
 Pumping Lemma

 If A is a regular language, then there is a number p (the pumping length) where if s 
is any string in A of length at least p, then s may be divided into three pieces, s = xyz, 
satisfying the following conditions:
 For each 𝑖𝑖 ≥ 0, 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ∈ 𝐴𝐴
 |𝑦𝑦| > 0, and
 |𝑥𝑥𝑥𝑥| ≤ 𝑝𝑝

 p is usually chosen as the number of states in a DFA.
 If there are no strings in A that are at least length p, then pumping lemma holds.

 Used to show the irregularity of a language
 Regular languages always satisfy the pumping lemma
 Opposite is not true

 If pumping lemma holds, it does not mean the language is regular



Pumping Lemma Proof

 M is a DFA that recognizes language A.
 Let p = |Q| (the number of states in M)
 Any string at least of length p can be broken into xyz parts

 Given string s of at least length p
 If s is length n, it transitions into n+1 states
 n+1 is greater than p

 By the pigeonhole principle, some states are repeated

Presenter Notes
Presentation Notes
q9 is repeated



Pumping Lemma Proof
 If q9 is the state that repeats, s can be divided into xyz with respect to q9

 x = substring before q9, z = substring after q9

 y = substring between q9 occurrences
 2nd condition holds because |y| ≥ 1 > 0

 This shows that the 1st condition of the pumping lemma is satisfied
 xyiz is a string of A

 No matter how many times we use y, it will be accepted because of z

 By the pigeonhole principle, a repeat must have happened by p+1
 Since y is the repeatable portion, 

|xy|≤p (3rd condition)



Pumping Lemma

 All strings longer than the pumping length, p, can be “pumped”
 Contains a section of the string that can be repeated any number of times to create 

new strings that are a part of the language

 All regular languages have the property stated by the pumping lemma
 If the language does not have the property, it is nonregular
 Can be used with proof by contradiction to show that a language is nonregular



Example 1
 Show that L = {0n1n|n≥0} is non-regular using pumping lemma

 Suppose there is a DFA for L with p states

 Find a word w and pump to get a contradiction

 Choose w = 0p1p

 Let w = xyz and pump to xyyz
 Contradiction by the following 3 cases

1. y is all zeros: xyyz has more zeros than ones and does not satisfy L’s conditions
2. y is all ones: xyyz has more ones
3. y is a mix of ones and zeros: xyyz contains a 1 before a 0 which makes the string not 

member of L



Example 2

 Show that L = {ss|s ∈ {0,1}*} is non-regular using pumping lemma

 Choose w = 0p 1 0p 1, p = number of states
 Because of condition 3 of the pumping lemma, |xy| ≤ p

 xy is all zeros
 Pumping y makes the string uneven dissatisfying the ss condition of L

 e.g. w = 00010001, x = 0, y= 00, z = 10001
 xyyz = 0000010001 ≠ ss



Example 3: Palindromes

 Show that L = {w∈{0,1}*|w=wreverse} is non-regular using pumping lemma

 Choose w = 0p 1 0p

 Since |xy| ≤ p, xy is all zeros
 Since |y| > 0, y has at least 1 zero
 xyyz is not a Palindrome

 e.g. w = 0001000, x =00, y= 0, z = 1000, xyyz = 00001000



Example 4
 Show that L = {w∈{0,1}*|w contains the same number of zeros and ones} 

is non-regular using pumping lemma

 Choose w = 0p1p

 Since |xy| ≤ p, xy is all zeros
 Since |y| > 0, y contains atleast 1 zero
 xyyz does not contain an equal number of ones and zeros
 e.g. w = 000111, x = 0, y = 00, z = 111, xyyz = 00000111



Example 5
 Show that L = {1n|n is a prime number} is non-regular using pumping lemma

 Choose w = 1n, with n ≥ p

 w = 1n = xyz = 1a1b1c

 Pumping y does not guarantee that xyiz will have a prime number of ones
 Contradiction



Example 6: pump down
 Show that L = {0i1j|i>j} is non-regular by pumping lemma

 Can’t pump up since i>j

 Choose w = 0p+1 1p

 Since |xy|<p, xy is all zeros
 Since |y|>0, y has atleast one zero
 Removing y will mean i≤j, contradiction
 e.g w = 0000111, x = 000, y = 0, z = 111 

 xyyz =00000111 is in L but 
 xz = 000111 isn’t



Answering Questions about FAs
 We can ask general questions about DFAs, NFAs, and regular expressions and try 

to answer them algorithmically, that is, by procedures that could be programmed 
in some ordinary programming language

 Represent the DFAs, etc., by strings in some standard way, e.g., tuples with some 
encoding of a transition table

 Sample questions:
 Acceptance: Does a given DFA M accept a given input string w?
 Non-emptiness: Does DFA M accept any strings at all?
 Totality: Does M accept all strings?
 Nonempty Intersection: Do L(M1) and L(M2) have any string in common?
 Subset: Is L(M1) a subset of L(M2)?
 Equivalence: Is L(M1) equal L(M2)? 
 Finiteness: Is L(M) a finite set?
 Optimality: Does M have the smallest number of states for a DFA that recognizes 

L(M)?
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