
Section 1.3

Presenter Notes
Presentation Notes

Regular Expressions
 Aka regex, regexp, rational expression

 Sequence of characters that define a search pattern
 Usually used to find operations on strings or for input validation

 Use previously described regular operations to build up expressions
describing languages
 The output value of a regular expression is a language

 (0∪1)0* =
 language consisting of all strings starting with a 0 or a 1
 followed by any number of zeros

Presenter Notes
Presentation Notes
In arithmetic, we can use arithmetic operations (+,-,x,/) to build up expressions such as (5+3)x4

Extend this concept to languages where we have expressions of symbols
	combine multiple expressions using regular operations

Regular expressions are an algebraic way to describe languages

Finite automata is a finite state machine that operates by taking in inputs and transitions between states

Regular language is the entire set of strings that are recognized by the finite automata

Regular expressions are used to denote regular languages
	they can represent regula rlanguages and operations on them succinctly

Regular Expressions Formal Definition
 Formal Definition for Regular Expressions
 R is a regular expression over alphabet Σ if R is one of the following:

1. a = any symbol in an alphabet Σ
2. ε = any empty string
3. ∅ = empty set i.e., empty language
4. (R1 ∪ R2) = Union

 R1 and R2 are smaller regular expressions
5. (R1 ∘ R2) = Concatenation
6. (R1

*) = Star Operation

 Order of Precedence
 * (star) highest
 Then ○ (concatenation)
 U (union)

Presenter Notes
Presentation Notes
A regular expression can represent any of the 6 following things

Languages from Regular Expressions
 Procedure for denoting a regular language from a given regular expression

 Simplify expressions
 Star operations provide all possible combinations of elements including the empty set
 Identify any substrings that cannot be removed

 Example 1
 Given Regular Expression: 0 ∪ 1 ε ∗∪ 0)
 Denotes language 0,1 ∗∪ 0 = 0,1 ∗= All Strings

 Example 2
 Given Regular Expression: 0 ∪ 1 ∗ 111 0 ∪ 1 ∗

 Denotes language 0,1 ∗ 111 0,1 ∗= All strings with substring 111

Presenter Notes
Presentation Notes
Common abbreviation
 0∪1 = Σ
 0∪1 ∗= Σ*

Regular Expressions from Language
 Procedure for specifying a regular expression from a given regular language

 Identify required substring
 Place in between star strings

 Star strings must not negate a constraint of the language
 Special notation R+ = R○R*, R+∪ε= R*

 Example 1
 Given language L = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 0,1 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 1𝑠𝑠
 Associated Regular Expression:0 ∗ 10 ∗ (0 ∗ 10 ∗ 10 ∗)*

 Example 2
 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 01 𝑜𝑜𝑜𝑜 10
 Associated Regular Expression: 0 ∪ 1 ∗ 01 0 ∪ 1 ∗∪ 0 ∪ 1 ∗ 10 0 ∪ 1 ∗

 Abbreviated Regular Expression: Σ ∗ 01 Σ ∗ ∪ Σ ∗ 10 Σ ∗

Presenter Notes
Presentation Notes
R+ = R plus

Example 1: Start with 1 one (0* 1 0*) then concatenate with even number of ones (0* 1 0* 1 0*)*

Example 2: Union of 2 languages
Common abbreviation
 0∪1 = Σ
 0∪1 ∗= Σ*

No Complements
 Previous Example

 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 01 𝑜𝑜𝑜𝑜 10
 Associated Regular Expression: 0 ∪ 1 ∗ 01 0 ∪ 1 ∗∪ 0 ∪ 1 ∗ 10 0 ∪ 1 ∗

 Abbreviated Regular Expression: Σ ∗ 01 Σ ∗ ∪ Σ ∗ 10 Σ ∗

 Example 1
 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 01 𝑜𝑜𝑜𝑜 10
 Can’t perform a simple complement operation, must write out expression

 Strings that are all 0’s or 1’s
 Associated Regular Expression: 0 ∗∪ 1 ∗

 Example 2
 Given language 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0𝑠𝑠 𝑜𝑜𝑜𝑜 1𝑠𝑠
 Would be easy if we could write a complement but can’t

 Must write out expression: Alternate one or two of 0’s or 1’s
 Associated Regular Expression: ε ∪ 1 ∪ 11 (0 ∪ 00 1 ∪ 11) ∗ ε ∪ 0 ∪ 00

Presenter Notes
Presentation Notes
Example 2:
Opposite is L = strings with at alteast 3 0s or 1s
	string with a substring of 000 or 111
	Σ*111 Σ* ∪ Σ*000 Σ*
	Can’t complement and must right out expression directly
alternate one or two of each

Uses for Regular Expressions
 Regular expressions commonly used to specify syntax

 For (portions of) programming languages
 Editors
 Command languages like UNIX shell

 Example: Decimal Numbers

𝐷𝐷𝐷𝐷 ∗. 𝐷𝐷 ∗ ∪ 𝐷𝐷 ∗. 𝐷𝐷𝐷𝐷 ∗

 Where D is the alphabet {0,1, … , 9}
 Need a digit either before or after the decimal point

Presenter Notes
Presentation Notes
3-digit number with decimal point

Languages Denoted by Regular Expressions

 If a language can be expressed by a regular expression, it is a regular
(FA-recognizable) language.

 Regular expressions will have an equivalent finite automata.
 Kleene’s Theorem

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language recognized

by a finite automata
 Theorem allows us to convert R to a finite automata

 Proof
 For each R, define an NFA M with L(M)=L(R)
 Proceed by induction on the structure of R (formal definition):

 Show for the three base cases (a, ε, ∅)
 Show how to construct NFAs for more complex expressions from NFAs for their subexpressions

 Case 1: R = a
 L(R) = {a}, accepts only a

 Case 2: R = ε
 L(R) = {ε}, accepts only ε

Presenter Notes
Presentation Notes
Formal definition of regular expression
a = any symbol in an alphabet Σ
ε = any empty string
∅ = empty set
(R1 ∪ R2) = Union
R1 and R2 are smaller regular expressions
(R1 ∘ R2) = Concatenation
(R1*) = Star Operation

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language

recognized by a finite automata
 Proof

 Case 3: R = ∅
 L(R) = ∅, accepts nothing

 Case 4: R = R1 ∪ R2
 M1 recognizes L(R1)
 M2 recognizes L(R2)

 Same construction we used to show regular languages are closed under union

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language

recognized by a finite automata

 Proof
 Case 5: R = R1 ∘ R2

 M1 recognizes L(R1)
 M2 recognizes L(R2)

 Same construction we used to show regular languages are closed under star

Proof Theorem 1
 Theorem 1: If R is a regular expression, then L(R) is a regular language

recognized by a finite automata

 Proof
 Case 6: R = (R1)*

 M1 recognizes L(R1)

 Same construction we used to show regular languages are closed under star

	Regular Expressions
	Regular Expressions
	Regular Expressions Formal Definition
	Languages from Regular Expressions
	Regular Expressions from Language
	No Complements
	Uses for Regular Expressions
	Languages Denoted by Regular Expressions
	Proof Theorem 1
	Proof Theorem 1
	Proof Theorem 1
	Proof Theorem 1

