
Section 1.2



Nondeterministic FA vs Deterministic FA
 NFA can be easier to construct

 NFA diagrams are usually smaller than DFA
 NFA states may be easier to understand

 NFA and DFA can recognize the same languages
 If a language is DFA-recognizable it is also NFA-recognizable and vice versa.
 Two machines are equivalent if they recognize the same language.

 Theorem: Every NFA has an equivalent DFA
 NFA can always be converted into DFA
 DFA may have many more states



NFA vs DFA
 NFAs and DFAs have same power

 NFAs can be “simpler” than 
equivalent DFAs

 Example: L = Strings having 
substring 101

 NFA “guesses” by following a path 
that goes through those states
 Easier to see the required 101  pattern



NFA vs DFA diagram
 Let A be the language consisting of binary strings with a 

 1 in the 3rd position from the end

 NFA that recognizes A

 DFA that recognizes A



Example: NFA to DFA
 Convert NFA M1 to DFA M2

 List all possible states M2
 Powerset P(Q) where Q = {a,b,c}
 P(Q) = { {}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

 Each set is now a state

 Determine start and accept states of M2
 q0 = {a} and any state with c is an accept state.

 Determine the transition function of M2
 δ(p, a) = set of all states that are reachable from p by traveling along 

edge with symbol a in M1
 p maybe multiple states in a

 Draw new node and edge in diagram or note in transition table

 Remove/ignore unreachable elements in P(Q)

M1

M2

Presenter Notes
Presentation Notes
q = any set state in power set P(Q)
a = element of alphabet



Example 2: NFA to DFA
 NFA N with QN = { 1, 2, 3 }

 Corresponding states for DFA D
 QD = { {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }.

 Determine start state E{1}
 E({a}) = set of all states that are reachable from a by traveling along 

ε-arrows, plus a itself
 Start state: {1,3}

 Determine accept states
 FD = { {1}, {1,2}, {1,3}, {1,2,3} }



Example 2: NFA to DFA
 Determine D’s transition function with table or diagram

 Remove all unreachable states



Alternative Method: NFA to DFA
1. Create NFA state table from the given NFA

2. Create a blank DFA state table under possible input alphabets for the equivalent DFA

3. Mark the start state of DFA q0 = E[q] as current state
 q + states after ε-transitions

4. Find the set of all NFA states that are reachable from the current DFA state

5. Each time we generate a new DFA state under the input alphabet return to step 5

6. When no new edges can be created
 Draw diagram and mark all reachable accept states



Alternative Method: NFA to DFA

 Step 1: Create state table from given NFA diagram

NFA: q δ(q,0) δ(q,1)
a {a,b,c,d,e} {d,e}
b {c} {e}
c ∅ {b}
d {e} ∅
e ∅ ∅



Alternative Method: NFA to DFA
 Steps 2-5: Create DFA table, start state, find all transitions

DFA: q δ(q,0) δ(q,1)
{a} {a,b,c,d,e} {d,e}

{a,b,c,d,e} {a,b,c,d,e} {b,d,e}
{d,e} {e} ∅

{b,d,e} {c,e} {e}
{e} ∅ ∅

{c,e} ∅ {b}
{b} {c} {e}
{c} ∅ {b}



Alternative Method: NFA to DFA
 Steps 6: Draw transition diagram and mark accept states

DFA: q δ(q,0) δ(q,1)
{a} {a,b,c,d,e} {d,e}

{a,b,c,d,e} {a,b,c,d,e} {b,d,e}
{d,e} {e} ∅

{b,d,e} {c,e} {e}
{e} ∅ ∅

{c,e} ∅ {b}
{b} {c} {e}
{c} ∅ {b}



DFA Closure under Concatenation 
 Example

 Σ = {0,1}, L1 = Σ*, L2 = {0}{0}* (just zeros, at least one)
 L1L2 = Strings that end with a block of at least one 0

 M1: M2:

 How to combine?
 Need to “guess” when to shift to M2

 Leads to our next model, Nondeterministic Finite Automata
 FAs that can guess

 Closure under star operation is an extension of this.

Presenter Notes
Presentation Notes
{0}*  = set with any number of zeros, including empty string



NFA Closure under Concatenation
 𝐿𝐿3 = 𝐿𝐿1 ∘ 𝐿𝐿2 = {𝑥𝑥𝑥𝑥|𝑥𝑥 ∈ 𝐿𝐿1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 ∈ 𝐿𝐿2}

 Start with NFAs M1 and M2

 Start state of M1 is now the start of M3

 Connect ε–transitions from all M1 accept states to M2 start state
 Accept states of M1 become non-accept states
 M3 accepts are M2 accept states



NFA Closure under Concatenation
 L1 = {0,1}*

 Any string

 L2 = {0}{0}*
 String of all zeros
 At least 1 zero

 L3 = {0,1}*{0}{0}*
 String ends in a zero block with at least one zero



NFA Closure Under Concatenation

 Could not show with DFA

 L = {0,1}*{0}{0}*
 Strings that consist of a 0 between
 a binary string of any length and
 a 0 string of any length.

 NFA can guess when the critical 0 occurs



 Star Operation
 𝐿𝐿 ∗= {𝑥𝑥|𝑥𝑥 = 𝑦𝑦1𝑦𝑦2 …𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘 ≥ 0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐿𝐿}
 Advanced form of concatenation plus ε

 Proof
 Start with FA M1

 Create NFA M2
 L(M2) = L(M1)*

 New start state for ε
 Connect accept states to new start state

Closure under Star Operation



Closure under Star Operation
 Example 

 Σ={ 0, 1 }
 L1 = { 01, 10 }
 (L1)* = even-length strings where each pair consists of a 0 and a 1



DFA Closure under Union
 Theorem: FA-

recognizable languages 
are close under union

 DFA proof
 Start with 2 DFAs
 Create 3rd DFA by 

running the original to 
in parallel

 If either reaches an 
accepting state, accept

Presenter Notes
Presentation Notes
NFA: Can simplify union closure



NFA Closure under Union

 NFA proof
 Start with 2 NFAs
 Create 3rd by adding a new start 

state and ε arrows connecting 
to the 2 original NFAs

 Note: NFAs don’t help with 
Intersection 
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