
Section 1.2

Nondeterministic FA vs Deterministic FA
 NFA can be easier to construct

 NFA diagrams are usually smaller than DFA
 NFA states may be easier to understand

 NFA and DFA can recognize the same languages
 If a language is DFA-recognizable it is also NFA-recognizable and vice versa.
 Two machines are equivalent if they recognize the same language.

 Theorem: Every NFA has an equivalent DFA
 NFA can always be converted into DFA
 DFA may have many more states

NFA vs DFA
 NFAs and DFAs have same power

 NFAs can be “simpler” than
equivalent DFAs

 Example: L = Strings having
substring 101

 NFA “guesses” by following a path
that goes through those states
 Easier to see the required 101 pattern

NFA vs DFA diagram
 Let A be the language consisting of binary strings with a

 1 in the 3rd position from the end

 NFA that recognizes A

 DFA that recognizes A

Example: NFA to DFA
 Convert NFA M1 to DFA M2

 List all possible states M2
 Powerset P(Q) where Q = {a,b,c}
 P(Q) = { {}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

 Each set is now a state

 Determine start and accept states of M2
 q0 = {a} and any state with c is an accept state.

 Determine the transition function of M2
 δ(p, a) = set of all states that are reachable from p by traveling along

edge with symbol a in M1
 p maybe multiple states in a

 Draw new node and edge in diagram or note in transition table

 Remove/ignore unreachable elements in P(Q)

M1

M2

Presenter Notes
Presentation Notes
q = any set state in power set P(Q)
a = element of alphabet

Example 2: NFA to DFA
 NFA N with QN = { 1, 2, 3 }

 Corresponding states for DFA D
 QD = { {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }.

 Determine start state E{1}
 E({a}) = set of all states that are reachable from a by traveling along

ε-arrows, plus a itself
 Start state: {1,3}

 Determine accept states
 FD = { {1}, {1,2}, {1,3}, {1,2,3} }

Example 2: NFA to DFA
 Determine D’s transition function with table or diagram

 Remove all unreachable states

Alternative Method: NFA to DFA
1. Create NFA state table from the given NFA

2. Create a blank DFA state table under possible input alphabets for the equivalent DFA

3. Mark the start state of DFA q0 = E[q] as current state
 q + states after ε-transitions

4. Find the set of all NFA states that are reachable from the current DFA state

5. Each time we generate a new DFA state under the input alphabet return to step 5

6. When no new edges can be created
 Draw diagram and mark all reachable accept states

Alternative Method: NFA to DFA

 Step 1: Create state table from given NFA diagram

NFA: q δ(q,0) δ(q,1)
a {a,b,c,d,e} {d,e}
b {c} {e}
c ∅ {b}
d {e} ∅
e ∅ ∅

Alternative Method: NFA to DFA
 Steps 2-5: Create DFA table, start state, find all transitions

DFA: q δ(q,0) δ(q,1)
{a} {a,b,c,d,e} {d,e}

{a,b,c,d,e} {a,b,c,d,e} {b,d,e}
{d,e} {e} ∅

{b,d,e} {c,e} {e}
{e} ∅ ∅

{c,e} ∅ {b}
{b} {c} {e}
{c} ∅ {b}

Alternative Method: NFA to DFA
 Steps 6: Draw transition diagram and mark accept states

DFA: q δ(q,0) δ(q,1)
{a} {a,b,c,d,e} {d,e}

{a,b,c,d,e} {a,b,c,d,e} {b,d,e}
{d,e} {e} ∅

{b,d,e} {c,e} {e}
{e} ∅ ∅

{c,e} ∅ {b}
{b} {c} {e}
{c} ∅ {b}

DFA Closure under Concatenation
 Example

 Σ = {0,1}, L1 = Σ*, L2 = {0}{0}* (just zeros, at least one)
 L1L2 = Strings that end with a block of at least one 0

 M1: M2:

 How to combine?
 Need to “guess” when to shift to M2

 Leads to our next model, Nondeterministic Finite Automata
 FAs that can guess

 Closure under star operation is an extension of this.

Presenter Notes
Presentation Notes
{0}* = set with any number of zeros, including empty string

NFA Closure under Concatenation
 𝐿𝐿3 = 𝐿𝐿1 ∘ 𝐿𝐿2 = {𝑥𝑥𝑥𝑥|𝑥𝑥 ∈ 𝐿𝐿1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 ∈ 𝐿𝐿2}

 Start with NFAs M1 and M2

 Start state of M1 is now the start of M3

 Connect ε–transitions from all M1 accept states to M2 start state
 Accept states of M1 become non-accept states
 M3 accepts are M2 accept states

NFA Closure under Concatenation
 L1 = {0,1}*

 Any string

 L2 = {0}{0}*
 String of all zeros
 At least 1 zero

 L3 = {0,1}*{0}{0}*
 String ends in a zero block with at least one zero

NFA Closure Under Concatenation

 Could not show with DFA

 L = {0,1}*{0}{0}*
 Strings that consist of a 0 between
 a binary string of any length and
 a 0 string of any length.

 NFA can guess when the critical 0 occurs

 Star Operation
 𝐿𝐿 ∗= {𝑥𝑥|𝑥𝑥 = 𝑦𝑦1𝑦𝑦2 …𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘 ≥ 0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐿𝐿}
 Advanced form of concatenation plus ε

 Proof
 Start with FA M1

 Create NFA M2
 L(M2) = L(M1)*

 New start state for ε
 Connect accept states to new start state

Closure under Star Operation

Closure under Star Operation
 Example

 Σ={ 0, 1 }
 L1 = { 01, 10 }
 (L1)* = even-length strings where each pair consists of a 0 and a 1

DFA Closure under Union
 Theorem: FA-

recognizable languages
are close under union

 DFA proof
 Start with 2 DFAs
 Create 3rd DFA by

running the original to
in parallel

 If either reaches an
accepting state, accept

Presenter Notes
Presentation Notes
NFA: Can simplify union closure

NFA Closure under Union

 NFA proof
 Start with 2 NFAs
 Create 3rd by adding a new start

state and ε arrows connecting
to the 2 original NFAs

 Note: NFAs don’t help with
Intersection

	NFA vs DFA
	Nondeterministic FA vs Deterministic FA
	NFA vs DFA
	NFA vs DFA diagram
	Example: NFA to DFA
	Example 2: NFA to DFA
	Example 2: NFA to DFA
	Alternative Method: NFA to DFA
	Alternative Method: NFA to DFA
	Alternative Method: NFA to DFA
	Alternative Method: NFA to DFA
	DFA Closure under Concatenation
	NFA Closure under Concatenation
	NFA Closure under Concatenation
	NFA Closure Under Concatenation
	Closure under Star Operation
	Closure under Star Operation
	DFA Closure under Union
	NFA Closure under Union

