
Section 1.2



Summary
 Nondeterministic Finite Automata
 View FA as tree graph
 NFA vs DFA
 Closure under concatenation using NFA
 Closure under star using NFA



Deterministic Finite Automata
 All the previous examples are deterministic

computation
 At every state, there is at most 1 edge related to a 

particular input symbol
 One path for each input

 Nondeterministic computation
 Several choices may exist for the next state at 

any point
 Every deterministic FA (DFA) is a 

nondeterministic FA (NFA)
 Not Vice Versa



Nondeterministic Finite Automata
 DFA can be generalized by adding nondeterminism

 Allow several alternative computations on the same 
input string

 Two changes:
1. Allow transition function, δ(q,a), to specify more 

than one successor state:

2. Add ε-transitions (empty strings)
 Transitions made “for free”, without “consuming” any input 

symbols.



How NFAs compute
 Since transitions of states is unknown, parallel processing of multiple copies of the 

NFA is necessary
 Can be considered in multiple states at once at every input symbol.

 Follow allowed arrows in any possible way
 “Consumes” the designated input symbols at after each arrow
 New paths are followed after every split

 All paths run in parallel
 If there is no arrow for the next input symbol, path is terminated.

 Optionally follow any ε-arrow at any time, without “consuming” any input.
 Creates another path

 Accepts a string if some allowed sequence of transitions on that string leads to an 
accepting state.



 An NFA can be formally defined as a 5-tuple 
(Q,Σ,δ,q0,F), where:
 Q is a finite set of states
 Σ is a finite set (alphabet) of input symbols

 δ: Q x Σε→ P(Q) is the transition function 

 q0 ∈ Q, is the start state
 F ⊆ Q, set of accept states

Formal Definition of an NFA

 P(Q): powerset of Q
 The set of all subsets of Q
 Can be in multiple states at once

 How many states in P(Q)?

 Example:
 Q = {a,b,c}
 P(Q) = { {}, {a}, {b}, {c}, {a,b}, 

{a,c}, {b,c}, {a,b,c} }

Presenter Notes
Presentation Notes
Can reduce definition of an NFA to a DFA

Transition function states that we may end up in any state in a set of states



Formal Definition of Computation for NFA

 δ*(q,w) = States that can be reached from q by following string w

 String w is accepted if 𝛿𝛿∗(𝑞𝑞, 𝑤𝑤) ∩ 𝐹𝐹 ≠ ∅
 F = set of accept states
 At least one of the possible end states is an accepting state

 Rejected otherwise

 𝐿𝐿 𝑀𝑀 = {𝑤𝑤|𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑀𝑀}
 Language recognized by NFA M



NFA Example 1

 ε is now a column

 Now being mapped to sets of states

 Example
 Q = {a,b,c}
 Σ = {0,1}
 δ: Q x Σε→ P(Q) is the transition 

function 
 q0 = a, is the start state
 F = {c}

0 1 ε

a {a,b} {a} ∅

b ∅ {c} ∅

c ∅ ∅ ∅



NFA Example 1
 L(M) = {w | w ends with 01}

 M accepts exactly the strings in this set

 Example Input String
 Computations for input word w = 101:

 Many Combinations, some listed below

 Since c is an accepting state, M accepts 101

0 1 ε

a {a,b} {a} ∅

b ∅ {c} ∅

c ∅ ∅ ∅

Input 
Word w 1 0 1

Path 1 a a a

Path 2 a b c



NFA Example 1
 Computations for input word w = 0010:

 Possible states after 0 input: {a,b}
 After another 0: {a,b}
 After 1: {a,c}

 After the 1 input, state is either c or a.
 Since 0 cannot be consumed at c, 

 Path is terminated
 After final 0: {a,b}

 Neither a nor b are accepting states
 M does not accept 0010

 𝑎𝑎 0
→{𝑎𝑎, 𝑏𝑏} 0

→{𝑎𝑎, 𝑏𝑏} 1
→{𝑎𝑎, 𝑐𝑐} 0

→ {𝑎𝑎, 𝑏𝑏}

0 1 ε

a {a,b} {a} ∅

b ∅ {c} ∅

c ∅ ∅ ∅



NFA Example 2
0 1 ε

a {a} {a} {b,e}

b {c} ∅ ∅

c ∅ {d} ∅

d ∅ ∅ ∅

e ∅ {f} ∅

f {g} ∅ ∅

g ∅ ∅ ∅



NFA Example 2
 L(M)={ w | w ends with 01 or 10 }
 Computations for w = 0010

 Possible states after no input: {a,b,e}
 After 0: {a,b,e,c} 
 After 0: {a,b,e,c}
 After 1: {a,b,e,d,f}
 After 0: {a,b,e,c,g}
 Since g is an accepting state

 M accepts 0010

 𝑎𝑎, 𝑏𝑏, 𝑒𝑒 0
→{𝑎𝑎, 𝑏𝑏, 𝑒𝑒, 𝑐𝑐} 0

→{𝑎𝑎, 𝑏𝑏, 𝑒𝑒, 𝑐𝑐} 1
→{𝑎𝑎, 𝑏𝑏, 𝑒𝑒, 𝑑𝑑, 𝑓𝑓} 0

→ {𝑎𝑎, 𝑏𝑏, 𝑒𝑒, 𝑐𝑐, 𝑔𝑔}

 Path to accepting state

 𝑎𝑎 0
→𝑎𝑎 0

→𝑎𝑎 ε
→𝑒𝑒 1

→𝑓𝑓 0
→𝑔𝑔



Viewing Computations as a Tree
 Every input string of a NFA can 

be viewed as a Tree

 Sample input string: 010110



Viewing Computations as a Tree

 Input w = 01
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