
Section 4.2



Algorithmically Unsolvable Problems
 Many problems are unsolvable by computers

 Many tasks that seem simple, may be computationally impossible

 Previously, we have used TM to show that a problem is solvable

 Encode a problem as a language

 If a TM is created that can decide the language, it is solvable.

 Now we introduce techniques to show that a problem is unsolvable.



An Undecidable Problem
 Problem: Is it possible to determine whether a Turing Machine accepts a given input string?

 Formulate this problem as a language ATM = {<M,w>|M is a TM and M accepts w}.

 This language is recognizable by creating a TM that simulates M
 U = “On input <M,w>, where M is a TM and w is a string:

 1. Simulate M on input w
 2. If M enters an accept state, accept.  If it enters a reject state, reject.

 U loops if M loops
 Not guaranteed to halt, therefore is not a decider

 U is a Universal Turing Machine
 A TM that is capable of simulating any other TM



Correspondence
 In order to show that not every problem is computable

 Assume that for every unique problem, a unique TM must be created to solve it

 This means the set of all problems, Sp, must be the same size of the set of all 
Turing Machines, STM

 Both sets are infinite but one may be larger than the other

 For sets to be the same size, there must be a correspondence (bijective) between 
every element in each set.

 One-to-one (injective)

 Onto (surjective)



Countable Set
 If a set has a correspondence to the set of natural numbers N, that set is said 

to be countable

 If we cannot find a correspondence to N, then the set is uncountable

 Uncountable sets are larger than countable sets.



Example: Countable Set
 Show that the set of even numbers, E, is countable

 Show correspondence between E and N

 f(n) = 2n

 E is countable

n f(n)

1 2

2 4

3 6

… …



Example: Uncountable Set
 Show that the set of real numbers, R, is uncountable

 Procedure
 Systematically construct a list for R

 The index of each element in the list corresponds to an element in N

 Find an element, x, in R that is cannot be the list
 Diagonalization method

 Choose the digits for x so that x ≠ f(n) for any n

 For the following list, choose a number that is different from 
the diagonal
 Uses each digit to mismatch the corresponding element
 For x ≠ f(1), 1st digit must be different
 For x ≠ f(n), nth digit must be different

 x = 0.4641…

n f(n)

1 3.14159…

2 55.55555…

3 0.12345…

4 0.50000…

… …



Uncountable Number of Languages
 Since there are problems related to real numbers, the set of all problems Sp is 

uncountable

 The set of all TMs STM can be listed and is countable

 This means is Sp larger than STM 

 and that there are problems without a corresponding TM



Example: An Undecidable Language
 Problem: Is it possible to determine whether a TM accepts a given input string?

 Formulate this problem as a language ATM = {<M,w>|M is a TM and M accepts w}.
 Assume that ATM is decidable and obtain a contradiction

 Create a decider H for ATM :

𝐻 < 𝑀, 𝑤 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 𝑤

 Create a TM D with H as a subroutine
 D = “On input <M>, where M is a TM:

1. Run H on input <M,<M>>.

2. Output the opposite of what H outputs.  That is, if H accepts, reject; and if H rejects, accept.”



Example: An Undecidable Language
 Is it possible to determine whether a Turing Machine accepts a given input string?

 Formulate this problem as a language ATM = {<M,w>|M is a TM and M accepts w}.
 Assume that ATM is decidable and obtain a contradiction

 Create a decider H for ATM :

𝐻 < 𝑀, 𝑤 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 𝑤

 Create a TM D to simulate diagonalization with H as a subroutine. 
 D does the opposite what M does when it receives itself as an input

 D = “On input <M>, where M is a TM:
1. Run H on input <M,<M>>.

2. Output the opposite of what H outputs.  That is, if H accepts, reject; and if H rejects, accept.”



Example: An Undecidable Language
 D always does the opposite

𝐷 < 𝑀 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 < 𝑀 >
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 < 𝑀 > 

 If D receives itself, then 

𝐷 < 𝐷 > = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝐷 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 < 𝐷 >
𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝐷 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 < 𝐷 > 

 This is a contradiction, and we can use diagonalization to see this



Example: An Undecidable Language
 Create a table of TMs and their encode versions:

 Output of H:

 Since D itself is a TM it will be on the list and will be the opposite of the diagonals

 When we reach (D,<D>), we get a contradiction

 This means that such a TM does not exist

 ATM is undecidable
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