
Section 3.3



Definition of Algorithm
 Algorithm, aka procedures, recipes

 Collection of simple instructions for carrying out a task
 Existed for ancient mathematics (finding prime numbers, greatest common divisors)
 Was not properly defined until the 20th century

 Hilbert’s Problems
 In 1900, David Hilbert gave an address to the International Congress of Mathematicians 

in Paris
 Identified 23 problems

 10th problem was on algorithms



Polynomials

 Polynomial
 Sum of terms

 Each term is a product of variables and constants (coefficients)

 A root of a polynomial is an assignment of variable values that produces a polynomial 
value of zero
 If all values are integers, then it is an integral root

 10th problem
 Devise an “algorithm” that tests whether a polynomial has an integral root
 Hilbert assumed it was possible to find, however this problem is algorithmically 

unsolvable
 Proving an algorithm does not exist requires a definition for algorithms



Church-Turing Thesis
 Church-Turing Thesis aka computability thesis

 Alonzo Church and Alan Turing, 1936
 States a function is computable with an algorithm iff it is computable by a Turing 

machine

 The 10th problem was finally shown to have no algorithm in 1970 by Yuri Matijasevic

 Redefine problem
 Let L = {p|p is a polynomial with an integral root}
 Problem becomes if L is decidable



L is not decidable
 TM M recognizes L:

 M = “On input <p>: where p is a polynomial over the variable x.
 1. Evaluate p with x set successively to 0,1,-1,2,-2,…
 Accept if any p(x) = 0

 If p has a root, M will find it
 If it does not, M will run forever

 Can convert M to a decider D, if we can find bounds to x.
 Will always halt if bounds exists.
 However, these bounds do not exist.

 M cannot convert to D, L is not decidable, algorithm does not exist by Church-Turing thesis, 
10th problem is not solvable.



Descriptions of TM
 Future chapters will not necessarily need detailed descriptions of TM.

 Multiple ways to describe TMs
 Formal Description

 All details related to TM and described previously by 7-tuple
 Lowest-level

 Implementation Description
 English descriptions of transitions and configurations
 Mid-level

 High-level Description
 Just describes algorithm, not implementation details (no details on how TM functions)



High-Level Notation
 Every TM receives a string as an input.

 If we want to input some other kind of object, it MUST be represented by a string.

 If we encode objects into a string, we use the following notation
 O is encode the string <O>
 O1,O2,…,On is encoded as < O1,O2,…,On >

 We assume that the TM is able to properly encode the objects as strings


	Church-Turing Thesis
	Definition of Algorithm
	Polynomials
	Church-Turing Thesis
	L is not decidable
	Descriptions of TM
	High-Level Notation

