Summary

- Formal Languages
- Finite Automata
- Languages they recognize
- Examples
- Operations on Languages
Natural Languages

- **Natural Languages**
 - Spoken languages such as English, French, German, Spanish...
 - Sentences can be broken down into two parts
 - Semantics
 - Meaning of a sentence
 - Syntax
 - Form of a sentence
 - Specifies if a sentence is valid
 - Valid: “the frog writes neatly”
 - Invalid: “swims quickly mathematics”
 - Extremely complicated and difficult to specify all rules of syntax.
 - Syntax may be inconsistent

- Natural languages are not suited for computers
 - Must develop **formal languages** which have well-defined rules of syntax.
Formal Language Terms

- **Alphabet**
 - Any nonempty finite set
 - Members are called *symbols* of the alphabet
 - Usually designated by capital Greek letters ($\Delta, \Sigma, \Pi, ...$)
 - $\Sigma_1 = \{0, 1\}$
 - $\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$
- **String**
 - Finite sequence of symbols from an alphabet
 - Empty strings specified by ε
 - $\Gamma = \{0, 1, x, y, z\}$
- **Language**
 - Set of strings
 - Can be sorted in either
 - **Lexicographic Order**
 - Same as dictionary order
 - **Shortlex (string) Order**
 - Sorted by string length than alphabetical order
Finite Automata

- **Finite Automata (FAs)**
 - A model for computation which works well for devices with limited memory
 - One of the simplest types of machines that can recognize patterns (strings).

- Designed to:
 - Accept some input strings
 - Moves through states and either accepts or rejects the string
 - Recognize a language, which is the set of strings it accepts.

- One machine for strings of all length for a given formal language.
Finite Automata to Control Devices

- **Automatic Swinging Door Controller**
 - Two States: “OPEN”, ”CLOSE”
 - Four Input Signals from pads:
 - “FRONT” – person standing on front pad
 - “REAR” – person standing on rear pad
 - “BOTH” – people on standing on both pads
 - “NEITHER” – no one on either pads

![State Diagram](image)

<table>
<thead>
<tr>
<th>State Transition Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>CLOSED</td>
</tr>
<tr>
<td>OPEN</td>
</tr>
</tbody>
</table>
Finite Automata Diagram

- Directed Multigraph

- String (word) is received at the **start state**
 - Accepted if transitions end at an **accept state**
 - String is rejected as a valid input if not

- Conventions:
 - Start state
 - Accept state
 - Transition from a to b on input symbol 1. Allow self-loops

An FA diagram, machine M
Example 1

- **Language, L**
 - Any set of strings over some alphabet

- **L(M), language recognized by M:**
 - \{w \mid w is accepted by finite automata M\}

- **Regular aka FA-recognizable**
 - A language that is recognized by some finite automaton

- What is L(M) for Example 1?

Example computation:
- Input word w: 1 0 1 1 0 1 1 1 0
- States: a b a b c a b c d d

We say that M accepts w, since w leads to d, an accepting state.
Language of Finite Automata M

- Only strings of containing a substring of 111 ends at an accept state
- $L(M)$ is the set of all strings that contain a 111 substring
- $\{0,1\}^*$ specifies set of all strings that contain symbols 0 and 1

$L(M) = \{w \in \{0,1\}^* \mid w \text{ contains 111 as a substring}\}$
Formal Definition of an FA

- An FA can be formally defined as a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where:
 - \(Q\) is a finite set of states
 - \(\Sigma\) is a finite set (alphabet) of input symbols
 - \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function
 - \(q_0 \in Q\), is the start state
 - \(F \subseteq Q\), set of accept states
Formal Definition of Example 1

- List all possible states
 - $Q = \{a, b, c, d\}$

- List all symbols in the alphabet
 - $\Sigma = \{0, 1\}$

- Specify state transition function with diagram or table
 - δ by table:
 - Rows represent current state
 - Columns current signal
 - Elements represent new state being mapped to.

- Specify start state
 - $q_0 = a$

- List all accept states
 - $F = \{d\}$
Example 2: Different Substring

- Design an FA M with $L(M) = \{w \in \{0,1\}^* | w \text{ contains } 101 \text{ as a substring} \}$
Example 3: Trap State

- $L(M) = \{w \in \{0,1\}^* | w$ doesn’t contain either 00 or 11 as a substring$\}$

- State d is a **trap state**
 - A nonaccepting state that can’t leave
 - String is rejected as it is impossible to be accepted
 - Sometime some arrows are omitted
 - By convention, they go to a trap state
Example 4: Building Diagram

- \(L(M) = \{w \in \{0,1\}^* | \text{all nonempty blocks of 1s in } w \text{ have odd length} \} \)
 - E.g., \(\varepsilon, 100111000011111 \), or any number of zeros
 - Initial zeros don’t matter, so start with:

- Then 1 also leads to an accepting state, but it should be a different one, to “remember” that the string ends in one 1
Example 4: Building Diagram

L(M) = \{w \in \{0,1\}^* | \text{all nonempty blocks of 1s in } w \text{ have odd length} \}

From b:
- 0 can return to a, which can represent either \(\epsilon \), or any string that is OK so far and ends with 0
- 1 should go to a new nonaccepting state, meaning “the string ends with two 1s”

Note: c isn’t a trap state
- We can accept some extensions
Example 4: Building Diagram

- \(L(M) = \{ w \in \{0,1\}^* | \text{all nonempty blocks of 1s in } w \text{ have odd length} \} \)

- From c:
 - 1 can lead back to b, since future acceptance decisions are the same if the string so far ends with any odd number of 1s
 - Reinterpret b as meaning "ends with an odd number of 1s"
 - Reinterpret c as "ends with an even number of 1s"
 - 0 means we must reject the current string and all extensions
Example 4: Building Diagram

- $L(M) = \{ w \in \{0,1\}^* \mid \text{all nonempty blocks of 1s in } w \text{ have odd length} \}$

- Meanings of states:
 - **a**: Either ϵ, or contains no bad block (even block of 1s followed by 0) so far and ends with 0
 - **b**: No bad block so far, and ends with odd number of 1s
 - **c**: No bad block so far, and ends with even number of 1s
 - **d**: Contains a bad block
Example 5

- \(L(M) = EQ = \{ w \in \{0,1\}^* | w \text{ contains an equal number of zeros and ones} \} \)

- No FA recognizes this language
 - Not a regular language

- Reasoning
 - Machine must “remember” how many zeros and ones it has seen, or at least the difference between these numbers
 - Since these numbers (and the difference) could be anything, there can’t be enough states to keep track
 - So the machine will sometimes get confused and give a wrong answer