Mathematical Review

Functions
Functions
Functions

- **Definition**: Let A and B be nonempty sets.
 - A function f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B.

- We write $f(a) = b$ if b is the unique element of B assigned by the function f to the element a of A.

- Functions are sometimes called **mappings** or **transformations**.
Functions

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.
- If $f(a) = b$,
 - then b is called the image of a under f.
 - a is called the preimage of b.
Functions

- The **range** of f is the set of all images of points in A under f.
 - We denote it by $f(A)$.

- Two functions are equal when
 1. they have the same **domain**
 2. the same **codomain**
 3. map each element of the domain to the **same element** of the codomain
Representing Functions

- Functions may be specified in different ways:
 - An explicit statement of the assignment.
 Students and grades example.
 - A formula.
 \(f(x) = x + 1 \)
 - A computer program.
 - A Java program that when given an integer \(n \), produces the \(n \)th Fibonacci Number
Questions

\(f(a) = ? \)

The image of \(d \) is ? \(z \)

The domain of \(f \) is ? \(A \)

The codomain of \(f \) is ? \(B \)

The preimage of \(y \) is ? \(b \)

\(f(A) = ? \) \(\{y,z\} \)

The preimage(s) of \(z \) is (are) ? \(\{a,c,d\} \)
Question on Functions and Sets

- If \(f : A \rightarrow B \), then

\[
f\{a,b,c,d\} \text{ is } \{y,z\} \\
f\{c,d\} \text{ is } \{z\}
\]
Definition: A function f is said to be **one-to-one**, or **injective**, if and only if $f(a) = f(b)$ implies that $a = b$ for all a and b in the domain of f.

- A function is said to be an **injection** if it is a one-to-one mapping.
Surjections

- **Definition**: A function \(f \) from \(A \) to \(B \) is called **onto** or **surjective**, if and only if for every element \(b \in B \) there is an element \(a \in A \) with \(f(a) = b \).

- A function \(f \) is called a **surjection** if it is **onto**.

![Diagram of surjections with elements a, b, c, d in A and x, y, z in B, showing surjective mappings.]
Bijections

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is *both* one-to-one and onto (surjective and injective).
Examples of Different Correspondences

(a) One-to-one, not onto

(b) Onto, not one-to-one

(c) One-to-one, and onto

(d) Neither one-to-one nor onto

(e) Not a function
Showing that f is one-to-one or onto

- **Example 1**: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by $f(a) = 3$, $f(b) = 2$, $f(c) = 1$, and $f(d) = 3$.
 - Is f an onto function?

- **Solution**: Yes, f is onto since all three elements of the codomain are images of elements in the domain.
 - If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

- **Example 2**: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

- **Solution**: No, f is not onto because there is no integer x with $x^2 = -1$ (negative integers), for example.
Inverse Functions

- **Definition:** Let f be a bijection from A to B.
 - Then the *inverse* of f, denoted f^{-1}, is the function from B to A defined as
 $$f^{-1}(y) = x \iff f(x) = y$$
 - No inverse exists unless f is a bijection.
Inverse Functions

\[f \] \hspace{2cm} \[f^{-1} \]

\begin{align*}
A & \xrightarrow{f} B \\
\text{a} & \rightarrow \text{v} \\
\text{b} & \rightarrow \text{w} \\
\text{c} & \rightarrow \text{x} \\
\text{d} & \rightarrow \text{y}
\end{align*}

\begin{align*}
A & \xleftarrow{f^{-1}} B \\
\text{a} & \leftarrow \text{v} \\
\text{b} & \leftarrow \text{w} \\
\text{c} & \leftarrow \text{x} \\
\text{d} & \leftarrow \text{y}
\end{align*}
Example 1: Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a) = 2$, $f(b) = 3$, and $f(c) = 1$.

- Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one and onto correspondence.

The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.
Questions

- **Example 2**: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that $f(x) = x + 1$.
 - Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one and onto correspondence.

The inverse function f^{-1} reverses the correspondence so $f^{-1}(y) = y - 1$.
Questions

• Example 3: Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = x^2$.
 • Is f invertible, and if so, what is its inverse?

Solution: The function f is not invertible because it is not one-to-one.
Composition

- **Definition**: Let two functions \(f \): \(B \rightarrow C \), \(g \): \(A \rightarrow B \).
- The **composition** of \(f \) with \(g \), denoted \(f \circ g \) is the function from \(A \) to \(C \) defined by
 \[
 f \circ g(x) = f(g(x))
 \]
Composition

\[A \xrightarrow{g} B \xrightarrow{f} C \]

\[A \xrightarrow{f \circ g} C \]
Composition

Example 1: If \(f(x) = x^2 \) and \(g(x) = 2x + 1 \), then

\[
f(g(x)) = (2x + 1)^2
\]

and

\[
g(f(x)) = 2x^2 + 1
\]
Graphs of Functions

- Let f be a function from the set A to the set B.
- The **graph** of the function f is the set of ordered pairs \{$(a,b) \mid a \in A$ and $f(a) = b$\}.

Graph of $f(n) = 2n + 1$ from \mathbb{Z} to \mathbb{Z}

Graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z}