Finite Automata Vs RE
Example 1: Regular Expressions to NFA

- Find NFA for \((ab \cup a)^*\)
- Start with NFAs for strings of just a and b
- Concatenate NFAs with \(\varepsilon\) to get ab
- Next union with new start state
- Lastly star previous NFA by connecting accept states to start state.
Example 2: Regular Expressions to NFA

- Find NFA for \((a \cup b)^*aba\)
- Start with NFAs for \(a\) and \(b\)
- Union with new start state
- Star by connecting accepts with start state
- Concatenate multiple times for \(aba\)
- Concatenate from all accept states to \(aba\)
Theorem

- Theorem: If \(L \) is a regular language, then there is a regular expression \(R \) with \(L = L(R) \).
 - Theorem shows relationship from opposite direction
 - Allows a finite automate to be converted to a regular expression

Generalized nondeterministic finite automaton (GNFA)

- NFAs with any regular expressions as transition arrows instead of just the alphabet and \(\varepsilon \)
 - \(\delta(q_i, q_j) = R \)
 - Can read a block of symbols instead of just individual symbols

Formal definition changes from NFA

- \(q_0 = q\text{start}, q_k = q\text{accept}, q\text{start} \neq q\text{accept} \)
- For every pair of states starting from \(q\text{start} \) to \(q\text{accept} \) we get a regular expression
 - \(R = \) set of all regular expressions over the alphabet
 - Regular expressions can be combined
GNFA Restrictions

- For convenience, require GNFA to always have the following conditions:
 1. Start state has transition arrows going to every other state but no arrows coming in from any other state.
 2. Only a single accept state
 1. Arrows from every other state
 2. No arrows going to any other state
 3. Must be different from start state. (not a single state FA)
 3. All other states must be arrows going to each other
 1. Must also have a loop to itself.
Formal Definition for GNFA

- A GNFA can be formally defined as a 5-tuple \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\), where:
 - \(Q\) is a finite set of states
 - \(\Sigma\) is a finite set (alphabet) of input symbols
 - \(\delta: (Q-\{q_{\text{accept}}\}) \times (Q-\{q_{\text{start}}\}) \rightarrow R\) is the transition function
 - \(R\) is the collection of all regular expressions over the alphabet \(\Sigma\)
 - Transition any state except accept state to any state except start state is made by any regular expression
 - \(q_{\text{start}}\) is the start state
 - \(q_{\text{accept}}\) is the accept state
DFA to GNFA
- Add a new start state with an ϵ arrow to the old start state
- Add a new accept state with an ϵ arrow from the old accept state
- Replace arrows with multiple labels or multiple directed arrows between the same nodes with a single arrow labelled with the union of the previous labels
- Add arrows labelled with \emptyset between states without arrows.
 - Does not change language because \emptyset can never be used.

Reduce k-state GNFA to k-1 states
- Repeat until $k = 2$
 - Single arrow from start state to accept state

Transition arrow label is the **regular expression**.
Reducing Number of States for GNFA

- Select a state to remove that is **not** the q_{start} or q_{accept}
 - Remove state and consolidate transition arrows pass through removed state
 - Combine regular expressions of consolidated transition arrows
- To remove a state x, consider every pair of other states, y and z, including $y=z$
- New label for edge (y,z) is the union of two expressions:
 - What was there before, and
 - One for paths through (just) x

\[
\begin{align*}
\text{If } y \neq z: & & \\
X \quad & \quad \text{we get:} & \quad R \cup S \cup T \quad \text{keep:} & \\
S \quad & \quad \text{y} & \quad R \cup S \cup T \quad \text{y} \end{align*}
\]

\[
\begin{align*}
\text{If } y = z: & & \\
X \quad & \quad \text{y} & \quad X & \quad y
\end{align*}
\]
Proof of Theorem

Theorem: If L is a regular language, then there is a regular expression R with $L = L(R)$

Proof

For each NFA M, define a regular expression R with $L(R) = L(M)$

Show with an example:

Convert to a special form with only one final state, no incoming arrows to start state, no outgoing arrows from final state
Proof of Theorem Continued

Now remove states one at a time (any order), replacing labels of edges with more complicated regular expressions.

First remove z:

- New label ba^* describes all strings that can move the machine from state y to state q_f, visiting (just) z any number of times.
Proof of Theorem Continued

- Next remove x:

 - New label b^*a describes all strings that can move the machine from q_0 to y, visiting (just) x any number of times.
 - New label $a \cup bb^*a$ describes all strings that can move the machine from y to y, visiting (just) x any number of times.
Last, remove y:

New label describes all strings that can move the machine from q_0 to q_f, visiting (just) y any number of times.

This final label is the equivalent regular expression.
Example: 2 State DFA to Regular Expression

- Add new states
- Remove state original states one at a time
 - Example removes 2 then 1
Example: 3 State DFA to Regular Expression

- Add new states
- Remove state 1
- Remove state 2
- Remove state 3