Regular Expressions
Regular Expressions

- Aka regex, regexp, rational expression
 - Sequence of characters that define a search pattern
 - Usually used to find operations on strings or for input validation

- Use previously described regular operations to build up expressions describing languages
 - The output value of a regular expression is a language
 - \((0 \cup 1)^* = \)
 - language consisting of all strings starting with a 0 or a 1
 - followed by any number of zeros
Regular Expressions Formal Definition

- **Formal Definition** for Regular Expressions
- R is a regular expression over alphabet Σ if R is one of the following:
 1. $a = \text{any symbol in an alphabet } \Sigma$
 2. $\varepsilon = \text{any empty string}$
 3. $\emptyset = \text{empty set i.e., empty language}$
 4. $(R_1 \cup R_2) = \text{Union}$
 - R_1 and R_2 are smaller regular expressions
 5. $(R_1 \circ R_2) = \text{Concatenation}$
 6. $(R_1^*) = \text{Star Operation}$

- **Order of Precedence**
 - * (star) highest
 - Then \circ (concatenation)
 - \cup (union)
Languages from Regular Expressions

- Procedure for denoting a regular language from a given regular expression
 - **Simplify** expressions
 - Star operations provide all possible combinations of elements **including** the empty set
 - Identify any **substrings** that cannot be removed

- **Example 1**
 - Given Regular Expression: \((0 \cup 1)\varepsilon^* \cup 0\)
 - Denotes language \(\{0,1\}^* \cup \{0\} = \{0,1\}^* = \text{All Strings}\)

- **Example 2**
 - Given Regular Expression: \((0 \cup 1)^* 111(0 \cup 1)^*\)
 - Denotes language \(\{0,1\}^* \{111\}\{0,1\}^* = \text{All strings with substring 111}\)
Regular Expressions from Language

- Procedure for specifying a regular expression from a given regular language
 - Identify required substring
 - Place in between star strings
 - Star strings must not negate a constraint of the language
 - Special notation $R^+ = R^* \cup \varepsilon = R^*$

- Example 1
 - Given language $L = \text{strings over } \{0,1\} \text{ with odd number of 1s}$
 - Associated Regular Expression: $0^* 10^* (0^* 10^* 10^*)^*$

- Example 2
 - Given language $L = \text{strings with substring } 01 \text{ or } 10$
 - Associated Regular Expression: $(0 \cup 1)^* 01 (0 \cup 1)^* \cup (0 \cup 1)^* 10 (0 \cup 1)^*$
 - Abbreviated Regular Expression: $\Sigma^* 01 \Sigma^* \cup \Sigma^* 10 \Sigma^*$
No Complements

- **Previous Example**
 - Given language $L = \text{strings with substring 01 or 10}$
 - Associated Regular Expression: $(0 \cup 1)^* 01 (0 \cup 1)^* \cup (0 \cup 1)^* 10 (0 \cup 1)^*$
 - Abbreviated Regular Expression: $\Sigma^* 01 \Sigma^* \cup \Sigma^* 10 \Sigma^*$

- **Example 1**
 - Given language $L = \text{strings with neither substring 01 or 10}$
 - Can’t perform a simple complement operation, must write out expression
 - Strings that are all 0’s or 1’s
 - Associated Regular Expression: $0^* \cup 1^*$

- **Example 2**
 - Given language $L = \text{strings with no more than two consecutive 0s or 1s}$
 - Would be easy if we could write a complement but can’t
 - Must write out expression: Alternate one or two of 0’s or 1’s
 - Associated Regular Expression: $(\varepsilon \cup 1 \cup 11)((0 \cup 00)(1 \cup 11))^* (\varepsilon \cup 0 \cup 00)$
Uses for Regular Expressions

- Regular expressions commonly used to specify syntax
 - For (portions of) programming languages
 - Editors
 - Command languages like UNIX shell

- Example: Decimal Numbers

\[
DD^* . D^* \cup D^* . DD^*
\]

- Where D is the alphabet \{0, 1, \ldots, 9\}
- Need a digit either before or after the decimal point
Languages Denoted by Regular Expressions

- If a language can be expressed by a regular expression, it is a regular (FA-recognizable) language.

- Regular expressions will have an equivalent finite automata.
 - Kleene’s Theorem
Proof Theorem 1

Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata

- Theorem allows us to convert R to a finite automata

Proof

- For each R, define an NFA M with L(M)=L(R)
- Proceed by induction on the structure of R (formal definition):
 - Show for the three base cases (a, ε, ∅)
 - Show how to construct NFAs for more complex expressions from NFAs for their subexpressions

Case 1: R = a
- L(R) = {a}, accepts only a

Case 2: R = ε
- L(R) = {ε}, accepts only ε
Proof Theorem 1

- Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata.

Proof

- Case 3: R = ∅
 - L(R) = ∅, accepts nothing

- Case 4: R = R₁ ∪ R₂
 - M₁ recognizes L(R₁)
 - M₂ recognizes L(R₂)

- Same construction we used to show regular languages are closed under union
Theorem 1: If R is a regular expression, then L(R) is a regular language recognized by a finite automata.

Proof

Case 5: R = R₁ \circ R₂
- M₁ recognizes L(R₁)
- M₂ recognizes L(R₂)

Same construction we used to show regular languages are closed under star.
Proof Theorem 1

• Theorem 1: If R is a regular expression, then $L(R)$ is a regular language recognized by a finite automata

• Proof
 • Case 6: $R = (R_1)^*$
 • M_1 recognizes $L(R_1)$

 • Same construction we used to show regular languages are closed under star