NFA vs DFA
Nondeterministic FA vs Deterministic FA

- NFA can be easier to construct
 - NFA diagrams are usually smaller than DFA
 - NFA states may be easier to understand

- NFA and DFA can recognize the same languages
 - If a language is DFA-recognizable it is also NFA-recognizable and vice versa.
 - Two machines are equivalent if they recognize the same language.

- Theorem: Every NFA has an equivalent DFA
 - NFA can always be converted into DFA
 - DFA may have many more states
NFA vs DFA

- NFAs and DFAs have same power
 - NFAs can be “simpler” than equivalent DFAs

- Example: L = Strings having substring 101
 - NFA “guesses” by following a path that goes through those states
 - Easier to see the required 101 pattern
Let A be the language consisting of binary strings with a 1 in the 3rd position from the end.

NFA that recognizes A

DFA that recognizes A
Example: NFA to DFA

- Convert NFA M_1 to DFA M_2
- List all possible states M_2
 - Powerset $P(Q)$ where $Q = \{a,b,c\}$
 - $P(Q) = \{\{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$
 - Each set is now a state
- Determine start and accept states of M_2
 - $q_0 = \{a\}$ and any state with c is an accept state.
- Determine the transition function of M_2
 - $\delta(p, a) =$ set of all states that are reachable from p by traveling along edge with symbol a in M_1
 - p maybe multiple states in a
 - Draw new node and edge in diagram or note in transition table
- Remove/ignore unreachable elements in $P(Q)$
Example 2: NFA to DFA

• NFA N with $Q_N = \{1, 2, 3\}$

• Corresponding states for DFA D
 • $Q_D = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

• Determine start state $E\{1\}$
 • $E\{\{a\}\} = \{\text{set of all states that are reachable from } a \text{ by traveling along } \varepsilon\text{-arrows, plus } a \text{ itself}\}$
 • Start state: $\{1,3\}$

• Determine accept states
 • $F_D = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$
Example 2: NFA to DFA

- Determine D’s transition function with table or diagram

- Remove all unreachable states
Alternative Method: NFA to DFA

1. Create NFA state table from the given NFA

2. Create a blank DFA state table under possible input alphabets for the equivalent DFA

3. Mark the start state of DFA $q_0 = E[q]$ as current state
 - $q +$ states after ε-transitions

4. Find the set of all NFA states that are reachable from the current DFA state

5. Each time we generate a new DFA state under the input alphabet return to step 5

6. When no new edges can be created
 - Draw diagram and mark all reachable accept states
Alternative Method: NFA to DFA

- Step 1: Create state table from given NFA diagram

<table>
<thead>
<tr>
<th>NFA: q</th>
<th>δ(q,o)</th>
<th>δ(q,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>{a,b,c,d,e}</td>
<td>{d,e}</td>
</tr>
<tr>
<td>b</td>
<td>{c}</td>
<td>{e}</td>
</tr>
<tr>
<td>c</td>
<td>Ø</td>
<td>{b}</td>
</tr>
<tr>
<td>d</td>
<td>{e}</td>
<td>Ø</td>
</tr>
<tr>
<td>e</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>
Alternative Method: NFA to DFA

- Steps 2-5: Create DFA table, start state, find all transitions

<table>
<thead>
<tr>
<th>DFA: q</th>
<th>$\delta(q,0)$</th>
<th>$\delta(q,1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a}$</td>
<td>${a,b,c,d,e}$</td>
<td>${d,e}$</td>
</tr>
<tr>
<td>${a,b,c,d,e}$</td>
<td>${a,b,c,d,e}$</td>
<td>${b,d,e}$</td>
</tr>
<tr>
<td>${d,e}$</td>
<td>${e}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${b,d,e}$</td>
<td>${c,e}$</td>
<td>${e}$</td>
</tr>
<tr>
<td>${e}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${c,e}$</td>
<td>\emptyset</td>
<td>${b}$</td>
</tr>
<tr>
<td>${b}$</td>
<td>${c}$</td>
<td>${e}$</td>
</tr>
<tr>
<td>${c}$</td>
<td>\emptyset</td>
<td>${b}$</td>
</tr>
</tbody>
</table>
Alternative Method: NFA to DFA

Steps 6: Draw transition diagram and mark accept states

<table>
<thead>
<tr>
<th>DFA: q</th>
<th>$\delta(q,0)$</th>
<th>$\delta(q,1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>{a,b,c,d,e}</td>
<td>{d,e}</td>
</tr>
<tr>
<td>{a,b,c,d,e}</td>
<td>{a,b,c,d,e}</td>
<td>{b,d,e}</td>
</tr>
<tr>
<td>{d,e}</td>
<td>{e}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{b,d,e}</td>
<td>{c,e}</td>
<td>{e}</td>
</tr>
<tr>
<td>{e}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{c,e}</td>
<td>\emptyset</td>
<td>{b}</td>
</tr>
<tr>
<td>{b}</td>
<td>{c}</td>
<td>{e}</td>
</tr>
<tr>
<td>{c}</td>
<td>\emptyset</td>
<td>{b}</td>
</tr>
</tbody>
</table>
DFA Closure under Concatenation

• Example
 • \(\Sigma = \{0,1\}, L_1 = \Sigma^*, L_2 = \{0\}\{0\}^* \) (just zeros, at least one)
 • \(L_1L_2 = \) Strings that end with a block of at least one 0

 • \(M_1: \)
 • \(M_2: \)

• How to combine?
 • Need to “guess” when to shift to \(M_2 \)
 • Leads to our next model, Nondeterministic Finite Automata
 • FAs that can guess
 • Closure under star operation is an extension of this.
NFA Closure under Concatenation

- \(L_3 = L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2 \} \)

- Start with NFAs \(M_1 \) and \(M_2 \):
 - Start state of \(M_1 \) is now the start of \(M_3 \)
 - Connect \(\varepsilon \)-transitions from all \(M_1 \) accept states to \(M_2 \) start state
 - Accept states of \(M_1 \) become non-accept states
 - \(M_3 \) accepts are \(M_2 \) accept states
NFA Closure under Concatenation

- $L_1 = \{0,1\}^*$
 - Any string

- $L_2 = \{0\}\{0\}^*$
 - String of all zeros
 - At least 1 zero

- $L_3 = \{0,1\}^*\{0\}\{0\}^*$
 - String ends in a zero block with at least one zero
NFA Closure Under Concatenation

- Could not show with DFA

- \(L = \{0,1\}^*\{0\}\{0\}^* \)
 - Strings that consist of a 0 between
 - a binary string of any length and
 - a 0 string of any length.

- NFA can guess when the critical 0 occurs
Closure under Star Operation

- **Star Operation**
 - \(L^* = \{ x | x = y_1y_2 \ldots y_k \text{ for some } k \geq 0, \text{ every } y \in L \} \)
 - Advanced form of concatenation plus \(\varepsilon \)

- **Proof**
 - Start with FA \(M_1 \)
 - Create NFA \(M_2 \)
 - \(L(M_2) = L(M_1)^* \)
 - New start state for \(\varepsilon \)
 - Connect accept states to new start state
Closure under Star Operation

- Example
 - $\Sigma = \{ 0, 1 \}$
 - $L_1 = \{ 01, 10 \}$
 - $(L_1)^* =$ even-length strings where each pair consists of a 0 and a 1

- M_1:

- Construct M_2:
DFA Closure under Union

- **Theorem:** FA-recognizable languages are close under union

- **DFA proof**
 - Start with 2 DFAs
 - Create 3rd DFA by running the original to in parallel
 - If either reaches an accepting state, accept

- **Example:**
 - M_1: Substring 01
 - M_2: Odd number of 1s
 - M_3: 1
NFA Closure under Union

- **NFA proof**
 - Start with 2 NFAs
 - Create 3rd by adding a new start state and ε arrows connecting to the 2 original NFAs

- **Note:** NFAs don't help with Intersection

- **Theorem:** FA-recognizable languages are closed under union.
- **New Proof:**
 - Start with NFAs M_1 and M_2.
 - Get another NFA, M_3, with $L(M_3) = L(M_1) \cup L(M_2)$. Use final states from M_1 and M_2.

 ![Diagram](image)