Language Operations
Language Operations

- Operations that can be used to construct languages from other languages
- Since languages are sets, we can use set operations:
 - Union,
 - Intersection
 - Complement
 - Set difference
- Additional operations that strictly deal with strings
 - Concatenation
 - Star
- Example
 - $A = \{\text{good, bad}\}$
 - $B = \{\text{boy, girl}\}$
 - $A \cup B = \{\text{good, bad, boy, girl}\}$,
 - $A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$, and
 - $A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}\}$.
Closure of Regular Languages (FA-recognizable)

- The set of FA-recognizable languages is closed under all six string operations.
 - If we start with regular languages and apply the operations, a new regular language is created.
 - May not work with previous finite automata but will for some finite automata

- Theorem 1:
 - FA-recognizable languages are closed under complement

- Proof:
 - Start with a language L_1 over alphabet Σ, recognized by some FA, M_1
 - Produce another FA, M_2, with $L(M_2) = \Sigma^* - L(M_1)$.
 - Just interchange accepting and non-accepting states
 - The new language is recognized by a finite automata and is considered FA-recognizable
Complement of Example 1

- Theorem 1: FA-recognizable languages are closed under complement
- Proof: Interchange accepting and non-accepting states

Example: FA for \{ w \mid w \text{ does not contain 111} \}

- Start with FA for \{ w \mid w \text{ contains 111} \}:

- Only accepted strings with 111 substring
- Convert to complement language
Complement of Example 1

- Example: FA for \(\{ w \mid w \text{ does not contain } 111 \} \)
 - Interchange accepting and non-accepting states

- States a, b, and c become accept states
- State d becomes a non-accept state
- Only way to reach d is to have a string with a 111 substring.
 - New FA only recognizes strings that do not have a 111 substring
Closure under Intersection

- **Theorem 2**: FA-Recognizable languages are closed under intersection

- **Proof**
 - Start with FAs M_1 and M_2 for the same alphabet Σ
 - Get another FA, M_3, with $L(M_3) = L(M_1) \cap L(M_2)$

- **Reasoning**
 - Run M_1 and M_2 “in parallel” on the same input
 - If both reach accepting states, accept

- **Example**
 - $L(M_1)$: Contains substring 01
 - $L(M_2)$: Contains an odd number of ones
 - $L(M_3)$: Contains 01 and has an odd number of 1s
Closure under Intersection

- Run both “in parallel”
 - Only accept string if both accept

- Symbols combine to become new states
 - $\Sigma_1 = \{a,b,c\}$
 - $\Sigma_2 = \{d,e\}$
 - $\Sigma_3 = \{ad,ae,bd,be,cd,ce\}$

Example:

- M_1: Substring 01
- M_2: Odd number of 1s
- M_3:
Closure under Intersection

- New Formal Definition
 - $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1)$
 - $M_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, F_2)$

Define $M_3 = (Q_3, \Sigma_3, \delta_3, q_{03}, F_3)$, where
 - $Q_3 = Q_1 \times Q_2$
 - Cartesian Product, $\{ (q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
 - $\Sigma_3 = \{0,1\}$
 - $\delta_3((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
 - $q_{03} = (q_{01}, q_{02})$
 - $F_3 = F_1 \times F_2 = \{ (q_1, q_2) | q_1 \in F_1 \text{ and } q_2 \in F_2 \}$
Theorem 3: FA-Recognizable languages are closed under union

Proof

Similar to intersection
Start with FAs M_1 and M_2 for the same alphabet Σ
Get another FA, M_3, with $L(M_3) = L(M_1) \cup L(M_2)$

Reasoning
Run M_1 and M_2 “in parallel” on the same input
If either reach accepting states, accept

Example
$L(M_1)$: Contains substring 01
$L(M_2)$: Contains an odd number of ones
$L(M_3)$: Contains 01 or has an odd number of 1s
Closure under Union

- Run both “in parallel”
- Symbols combine to become new states
 - $\Sigma_1 = \{a,b,c\}$
 - $\Sigma_2 = \{d,e\}$
 - $\Sigma_3 = \{ad,ae,bd,be,cd,ce\}$
- New states = accept if ordered pair contains old accepting state

Example:

M_1: Substring 01

M_2: Odd number of 1s

M_3: 1
Closure under Union

- **New Formal Definition**
 - $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1)$
 - $M_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, F_2)$

- **Define $M_3 = (Q_3, \Sigma_3, \delta_3, q_{03}, F_3)$, where**
 - $Q_3 = Q_1 \times Q_2$
 - Cartesian Product, $\{ (q_1, q_2) : q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
 - $\Sigma_3 = \{0,1\}$
 - $\delta_3((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
 - $q_{03} = (q_{01}, q_{02})$
 - $F_3 = \{ (q_1, q_2) : q_1 \in F_1 \text{ or } q_2 \in F_2 \}$
Closure under Set Difference

- **Theorem 4**
 - FA-Recognizable languages are closed under set difference

- **Proof**
 - Similar proof to those for union and intersection
 - Accept if L_1 accepts and L_2 does not

- **Alternatively**
 - Since $L_1 - L_2$ is the same as $L_1 \cap (L_2)^c$, just apply Theorems 1 and 2

Closure under Concatenation

- **Theorem 5**: FA-Recognizable Languages are Closed under concatenation

- **Proof**
 - Start with FAs M_1 and M_2 for the same alphabet Σ
 - Get another FA, M_3, with
 - $L(M_3) = L(M_1) \circ L(M_2) = \{ x_1 x_2 \mid x_1 \in L(M_1) \text{ and } x_2 \in L(M_2) \}$

- **Reasoning**
 - Attach accepting states of M_1 somehow to the start state of M_2
 - Don't know when string is done with M_1 portion of M_3
 - Careful as string may go through accepting states of M_1 several times
Closure under Concatenation

- Example
 - $\Sigma = \{0,1\}$, $L_1 = \Sigma^*$, $L_2 = \{0\}\{0\}^*$ (just zeros, at least one)
 - $L_1L_2 = \text{Strings that end with a block of at least one } 0$

- M_1:

- M_2:

- How to combine?
 - Need to “guess” when to shift to M_2
 - Leads to our next model, Nondeterministic Finite Automata
 - FAs that can guess

- Closure under star operation is an extension of this.