Turing Machines Examples
Example 1

- Given TM M_2 that decides $A = \{ 0^{2^n} | n \geq 0 \}$
 - Language consists of strings of 0’s whose length is a power of 2

- $M_2 =$ “On input string w:
 1. Sweep left to right across the tape, crossing off every other 0
 2. If in stage 1 the tape contained a single 0, accept
 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject
 4. Return the head to the left-hand end of the tape
 5. Go to stage 1

- At each iteration of stage 1, the number of 0s is cut in half
 - Done by marking every other 0
 - Keeps track of number of 0s on each pass
Example 1

- Formal Definition, $M_2 = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
 - $Q = \{q_1, \ldots, q_5, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0\}$
 - $\Gamma = \{0, x, _\}$
 - We describe δ with a state diagram
 - The start, accept, and reject states are q_1, q_{accept}, and q_{reject}, respectively

- Notation: $a \rightarrow b, D$
 - $a = \text{symbol read on tape}$
 - $b = \text{symbol to be written on tape}$
 - May be left blank (does not alter tape)
 - $D = \text{direction the head moves}$
 - Shorthand for $\delta(q,a) = (r,b,D)$
Example 1

Transitions

- Begins by writing a blank on the leftmost 0
 - Marks the start of tape

- State 2, checks if # of 0s is correct
 - If input = 0, marks x, moves right, go to q₃
 - If input = x, moves right
 - If input = ˽, moves right, go to q_{accept}

- State 3, intermediate transition
 - If input = 0, moves right, go to q₄
 - If input = x, moves right
 - If input = ˽, moves left, go to q₅
Example 1

- Transitions
 - State 4, checks if # of 0s is **incorrect**
 - If input = 0, moves right, marks x, go to q₃
 - If input = x, moves right
 - If input = ω, moves right, go to q₃
 - State 5, moves head back to left side
 - If input = 0, moves left
 - If input = x, moves left
 - If input = ω, moves right, go to q₂
Example 1

- Sample input: 0000
- Start configuration: q_10000
Example 2

- TM of previous lecture which decides the language $B = \{w#w \mid w \in \{0,1\}^*\}$

- Formal Definition, $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
 - $Q = \{q_1, \ldots, q_8, q_{\text{accept}}, q_{\text{reject}}\}$
 - $\Sigma = \{0,1,\#\}$
 - $\Gamma = \{0,1,\#,x,\$$\}$
 - We describe δ with a state diagram
 - The start, accept, and reject states are q_1, q_{accept}, and q_{reject}, respectively

- Notation: $a,b \rightarrow D$
 - Reads either a or b
 - Moves in the D direction

- Reject state is not shown
 - Rejects when reading symbol without a transition
Example 3

- M_3 decides the language $C = \{a^ib^jc^k \mid i \times j = k \text{ and } i, j, k \geq 1\}$

- $M_3 =$ “On input string w:
 1. Scan input from left to right to check if single is a member of $a^+b^+c^+$
 - Reject if not a member
 2. Return head to leftmost end
 3. Cross off an a and scan right until a b occurs
 - Go back and forth between b’s and c’s while crossing off one of each until all b’s are gone
 - If all c’s are crossed off and some b’s remain, reject
 4. Restore crossed off b’s and repeat stage 3 if there is another a to cross off
 - If all a’s are crossed off and all c’s are crossed off, accept
 - Otherwise, reject”
Example 4

- M_4 decides the language

$$E = \{#x_1#x_2# \ldots #x_l | \text{each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$$

- $M_4 =$ “On input w:

1. Place a mark on top of the leftmost tape symbol (ex $\#$).
 - If that symbol was a black, accept
 - If symbol was a $\#$, continue with the next stage
 - Reject, otherwise
2. Scan right to the next $\#$ and place a second mark on top of it
 - If no $\#$ is encountered before a blank symbol, only x_1 was present; accept
3. Go back and forth between the two words on the right of the marked hashes
 - If they match reject
4. Move the 2^{nd} mark to the next hash symbol
 - If there is no more hash symbols on the right, then move the 1^{st} hash symbol to its next one
 - Move the 2^{nd} mark to the hash immediately after the 1^{st}
 - If no hashes are available to move to, all words have been compared; accept
5. Return to stage 3”