Decidable Languages
From the Church-Turing Thesis, we can use TMs tell if a problem is computable:
- Can represent problems as languages
- Formulate problems in terms of testing membership in a language
 - If the language is decidable, the problem is decidable
 - Can simulate all previous topics in TMs

Example: acceptance problem
- Test whether a DFA accepts a given string
- Can be expressed as a language, A_{DFA}
 - $A_{DFA} = \{ <B,w> | B \text{ is a DFA that accepts input string } w \}$
- Problem of testing whether a DFA B accepts an input w is the same as testing whether $<B,w>$ is a member of the language A_{DFA}.
Example: Deterministic FA

- Present a TM M that decides A_{DFA}.

- (Implementation Description) $M = \text{“On input } <B,w>, \text{ where } B \text{ is a DFA and } w \text{ is a string:}"

 1. Simulate B on input w.
 2. If the simulation ends in an accept state, accept.
 - If it ends in a nonaccepting state, reject.

- TM M exists, A_{DFA} is decidable

 - It is possible to test whether a DFA will accept a given string
Example: Nondeterministic FA

- $A_{\text{NFA}} = \{<B, w> \mid B \text{ is an NFA that accepts input string } w\}$
- Present a TM N that decides A_{NFA}.
 - May make use of TM M from previous example

- $N = \text{"On input } <C, w>, \text{ where } C \text{ is an NFA and } w \text{ is a string:"
 - 1. Convert NFA C to DFA B
 - 2. Run TM M on $<B, w>$.
 - 3. If M accepts, accept.
 - Otherwise, reject.

- TM N exists, A_{NFA} is decidable
 - It is possible to test whether a NFA will accept a given string
Example: Regular Expressions

- $A_{\text{REX}} = \{<R,w> \mid R \text{ is a regular expression that generates string } w\}$
- Present a TM P that decides A_{REX}.
 - May make use of TM N from previous example

$P =$ “On input $<R,w>$, where R is a regular expression and w is a string:
 - 1. Convert RE R to NFA C
 - 2. Run TM N on $<C,w>$.
 - 3. If N accepts, accept.
 - Otherwise, reject.

- TM P exists, A_{REX} is decidable
 - It is possible to test whether a regular expression generates a specific string
Example: Emptiness Testing

- All previous problems tested whether an FA accepts a particular string.
 - It is sometimes important to test if an FA accepts anything at all.

\[E_{\text{DFA}} = \{ \mid B \text{ is a DFA and } L(B) = \emptyset \} \]
- Present a TM \(T \) that decides \(E_{\text{DFA}} \).

\(T = \text{“On input } , \text{ where } B \text{ is a DFA:} \)
- 1. Mark the start state of \(B \).
- 2. Mark any states that can be directly transitioned from a currently marked state
 - Repeat until no new states are marked.
- 3. If no marked states are accept states, accept.
 - Otherwise, reject.

- TM \(T \) exists, \(E_{\text{DFA}} \) is decidable
 - It is possible to test whether a DFA accepts no strings
 - Test whether DFA’s language is empty
Example: Equivalence Testing

- \(\text{EQ}_{\text{DFA}} = \{ <B_1, B_2> \mid B_1, B_2 \text{ are DFAs and } L(B_1) = L(B_2) \} \)
 - Present a TM \(F \) that decides \(\text{EQ}_{\text{DFA}} \).

- Create a DFA \(C \) which recognizes strings that are accepted by either \(B_1 \) or \(B_2 \) but not both.
 - \(L(C) = \) symmetric difference
 - For \(L(B_1) = L(B_2) \), \(L(C) \) must be empty

- \(F = "\text{On input } <B_1, B_2>, \text{ where } B_1, B_2 \text{ are DFAs:} \)
 - 1. Construct DFA \(C \) as described.
 - 2. Run TM \(T \) for emptiness testing
 - 3. If \(T \) accepts, accept.
 - Otherwise, reject.

- TM \(F \) exists, \(\text{EQ}_{\text{DFA}} \) is decidable
 - It is possible to test whether two DFAs are equivalent
Example: Context Free Grammars

- $A_{CFG} = \{ <G, w> \mid G \text{ is a CFG that generates string } w \}$
 - Present a TM S that decides A_{CFG}.

- Systematically produce derivations of G until one matches w
 - May never halt if correct derivation is never encountered
 - TM will be a recognizer but not a decider
 - If rules are put into Chomsky normal form, G is guaranteed to produce string of the correct length within $2n-1$ steps
 - $n = \text{length of } w$
 - Only need to check all derivations with $2n-1$ steps
 - Finite number of derivations, halting is now guaranteed
Example: Context Free Grammars

- S = “On input < G,w >, where G is a CFG and w is a string:
 1. Convert G to equivalent grammar in Chomsky normal form.
 2. List all derivations with 2n-1 steps
 3. If any derivation generates w, accept
 - Otherwise, reject

- TM S exists, A_{CFG} is decidable
 - It is possible to test if a CFG generates a particular string
Example: CFG Emptiness

- $E_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \emptyset \}$
 - Present a TM R that decides E_{CFG}.

- $R = \text{"On input } <G>, \text{ where } G \text{ is a CFG:} $
 - 1. Mark all terminal symbols in G
 - 2. Mark any variables that can be substituted with all marked symbols
 - Repeat until no new variables get marked
 - 3. If start variable is not marked, accept.
 - Otherwise, reject.

- TM R exists, E_{CFG} is decidable
 - It is possible to test if a CFG generates any strings
Figure 4.10
The relationship among classes of languages
Example: Every CFL is Decidable

- \(\text{EQ}_{\text{CFG}} = \{ <G_1,G_2> \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \)
 - Present a TM \(Q \) that decides \(\text{EQ}_{\text{CFG}} \).

- \(Q = \text{"On input } < G >, \text{ where } G \text{ is a CFG:} \)
 1. Mark all terminal symbols in \(G \)
 2. Mark any variables that can be substituted with all marked symbols
 - Repeat until no new variables get marked
 3. If start variable is not marked, accept.
 - Otherwise, reject.

- TM \(Q \) exists, \(\text{E}_{\text{CFG}} \) is decidable
 - It is possible to test if a CFG generates any strings