
Application of Voxel-Based Physics 
Across a Multi-User Network
Team Purify
November 21st, 2019 
5 P.M. Section
Final Presentation



Recap: What is our Project?

● Creating a destructible environment through the use of voxels that can be communicated across a 

multi-user network.

● Graphics

○ Octree

○ Meshes

○ Shaders

● Network

○ Multiplayer

● Virtual Reality



Graphics: Octree ● What is an Octree?

● How did we implement it?

● How/Why does it help us?



Graphics: Meshing ● What is Meshing?

● How does it work?

● Why are we using it?



Graphics: Compute 
Shaders

● What are they?
○ Compute shaders utilize a computer’s graphics 

card’s computational ability for rendering.

● How do they work?
○ Shaders run on a graphics pipeline that tells the 

computer how to render each pixel.

○ Often run on multiple threads increasing the 

speed we can render. (We use 8x8)

● Why are we using them?
○ Create more realistic environments.

○ Improve performance by removing rendering from 

the CPU.

○ Ray Tracing

■ Reflections

■ Lighting

■ Etc.



Graphics: Ray 
Tracing

● What is Ray Tracing
○ Simulates the steps of light bouncing off 

surfaces to reproduce realistic lighting and 

reflections

● How/Why does it help us?
○ Ray tracing is currently being implemented by 

developers as native support in rendering 

environments.



Our Ray Tracing 
Examples/Tests



Graphics: Voxelization ● What is it?

● What does it do?

● How can it help us?



Network: Server 
Implementation

● How the server is implemented
○ Using a Java server for rapid development and 

compatibility with clients
● What the server is doing

○ Java server makes JSON message and sends it 
to client where JSON message gets read using 
C#



Messaging System

Java Server C# Clients



Network Structure



Issues We Faced

Problems:

● Inefficient Octree 
○ 4 LOD = 3,072 faces & 4096 Vertices

● Network 
○ C++ Network 

● Compute Shader
○ Incompatible with Oculus Quest(for now)

Short-Term Solutions:

● Mesh implementation 
○ 4 LOD = 384 faces & 576 Vertices

● Changing Languages (until winter break)
○ NodeJS 

○ Java

○ Postponing CUDA Processing

● Turn off shader(also for now)



Timeline

Stage 1 - done by 10/31/19
● Create basic graphics environment
● Client/server communication

Stage 2 - done by 11/30/19
● Start basic physics engine
● Allow for multiple-user access

Stage 3 - done by 12/31/19
● Apply Physics to environment manager
● Finalize graphics & physics 

Stage 4 - done by 2/29/20
● Optimization of project
● Finalization of all tasks

Stage 5 - Remainder of Spring Semester
● Time accomodation



Demonstration


