Chapter 5 Topics

- Introduction
- Names
- Variables
- The Concept of Binding
- Scope
- Scope and Lifetime
- Referencing Environments
- Named Constants
Introduction

- Imperative languages are abstractions of von Neumann architecture
 - Memory
 - Processor
- Variables are characterized by attributes
 - To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility
Names

- Design issues for names:
 - Are names case sensitive?
 - Are special words reserved words or keywords?
Names (continued)

- **Length**
 - If too short, they cannot be connotative
 - Language examples:
 - C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31
 - C# and Java: no limit, and all are significant
 - C++: no limit, but implementers often impose one
Names (continued)

- Special characters
 - PHP: all variable names must begin with dollar signs
 - Perl: all variable names begin with special characters, which specify the variable's type
 - Ruby: variable names that begin with @ are instance variables; those that begin with @@ are class variables
Names (continued)

- Case sensitivity
 - Disadvantage: readability (names that look alike are different)
 - Names in the C-based languages are case sensitive
 - Names in others are not
 - Worse in C++, Java, and C# because predefined names are mixed case (e.g. IndexOutOfBoundsException)
Names (continued)

- Special words
 - An aid to readability; used to delimit or separate statement clauses
 - A keyword is a word that is special only in certain contexts
 - A reserved word is a special word that cannot be used as a user-defined name
 - Potential problem with reserved words: If there are too many, many collisions occur (e.g., COBOL has 300 reserved words!)
Variables

- A variable is an abstraction of a memory cell
- Variables can be characterized as a sextuple of attributes:
 - Name
 - Address
 - Value
 - Type
 - Lifetime
 - Scope
Variables Attributes

- **Name** - not all variables have them
- **Address** - the memory address with which it is associated
 - A variable may have different addresses at different times during execution
 - A variable may have different addresses at different places in a program
 - If two variable names can be used to access the same memory location, they are called aliases
 - Aliases are created via pointers, reference variables, C and C++ unions
 - Aliases are harmful to readability (program readers must remember all of them)
Variables Attributes (continued)

- **Type** - determines the range of values of variables and the set of operations that are defined for values of that type; in the case of floating point, type also determines the precision

- **Value** - the contents of the location with which the variable is associated
 - The l-value of a variable is its address
 - The r-value of a variable is its value

- **Abstract memory cell** - the physical cell or collection of cells associated with a variable
The Concept of Binding

A *binding* is an association between an entity and an attribute, such as between a variable and its type or value, or between an operation and a symbol.

- *Binding time* is the time at which a binding takes place.
Possible Binding Times

- Language design time -- bind operator symbols to operations
- Language implementation time-- bind floating point type to a representation
- Compile time -- bind a variable to a type in C or Java
- Load time -- bind a C or C++ static variable to a memory cell
- Runtime -- bind a nonstatic local variable to a memory cell
Static and Dynamic Binding

- A binding is static if it first occurs before run time and remains unchanged throughout program execution.
- A binding is dynamic if it first occurs during execution or can change during execution of the program.
Type Binding

- How is a type specified?
- When does the binding take place?
- If static, the type may be specified by either an explicit or an implicit declaration
Explicit/Implicit Declaration

- An explicit declaration is a program statement used for declaring the types of variables.
- An implicit declaration is a default mechanism for specifying types of variables through default conventions, rather than declaration statements.
- Basic, Perl, Ruby, JavaScript, and PHP provide implicit declarations.
 - Advantage: writability (a minor convenience)
 - Disadvantage: reliability (less trouble with Perl)
Explicit/Implicit Declaration (continued)

- Some languages use type inferencing to determine types of variables (context)
 - C# - a variable can be declared with `var` and an initial value. The initial value sets the type
 - Visual Basic 9.0+, ML, Haskell, and F# use type inferencing. The context of the appearance of a variable determines its type
Dynamic Type Binding

- Dynamic Type Binding (JavaScript, Python, Ruby, PHP, and C# (limited))

- Specified through an assignment statement e.g., JavaScript

  ```
  list = [2, 4.33, 6, 8];
  list = 17.3;
  ```

- Advantage: flexibility (generic program units)

- Disadvantages:
 - High cost (dynamic type checking and interpretation)
 - Type error detection by the compiler is difficult
Variable Attributes (continued)

- Storage Bindings & Lifetime
 - Allocation - getting a cell from some pool of available cells
 - Deallocation - putting a cell back into the pool

- The lifetime of a variable is the time during which it is bound to a particular memory cell
Categories of Variables by Lifetimes

- **Static**--bound to memory cells before execution begins and remains bound to the same memory cell throughout execution, e.g., C and C++ static variables in functions
 - **Advantages**: efficiency (direct addressing), history-sensitive subprogram support
 - **Disadvantage**: lack of flexibility (no recursion)
Categories of Variables by Lifetimes

- Stack-dynamic--Storage bindings are created for variables when their declaration statements are elaborated.
 (A declaration is elaborated when the executable code associated with it is executed)
- If scalar, all attributes except address are statically bound
 - local variables in C subprograms (not declared static) and Java methods
- Advantage: allows recursion; conserves storage
- Disadvantages:
 - Overhead of allocation and deallocation
 - Subprograms cannot be history sensitive
 - Inefficient references (indirect addressing)
Categories of Variables by Lifetimes

- **Explicit heap-dynamic** -- Allocated and deallocated by explicit directives, specified by the programmer, which take effect during execution

- Referenced only through pointers or references, e.g. dynamic objects in C++ (via `new` and `delete`), all objects in Java

- **Advantage**: provides for dynamic storage management

- **Disadvantage**: inefficient and unreliable
Categories of Variables by Lifetimes

- Implicit heap-dynamic—Allocation and deallocation caused by assignment statements
 - all variables in APL; all strings and arrays in Perl, JavaScript, and PHP
- Advantage: flexibility (generic code)
- Disadvantages:
 - Inefficient, because all attributes are dynamic
 - Loss of error detection
Variable Attributes: Scope

- The scope of a variable is the range of statements over which it is visible
- The *local variables* of a program unit are those that are declared in that unit
- The *nonlocal variables* of a program unit are those that are visible in the unit but not declared there
- *Global variables* are a special category of nonlocal variables
- The scope rules of a language determine how references to names are associated with variables
Static Scope

- Based on program text
- To connect a name reference to a variable, you (or the compiler) must find the declaration.
- **Search process**: search declarations, first locally, then in increasingly larger enclosing scopes, until one is found for the given name.
- Enclosing static scopes (to a specific scope) are called its **static ancestors**; the nearest static ancestor is called a **static parent**.
- Some languages allow nested subprogram definitions, which create nested static scopes (e.g., Ada, JavaScript, Common Lisp, Scheme, Fortran 2003+, F#, and Python).
Scope (continued)

- Variables can be hidden from a unit by having a "closer" variable with the same name
Blocks

- A method of creating static scopes inside program units--from ALGOL 60

- Example in C:

```c
void sub() {
    int count;
    while (...) {
        int count;
        count++;
        ...
    }
...
}
```

- Note: legal in C and C++, but not in Java and C# - too error-prone
The **LET** Construct

- Most functional languages include some form of **let** construct
- A let construct has two parts
 - The first part binds names to values
 - The second part uses the names defined in the first part
- In Scheme:

  ```scheme
  (LET ( 
      (name_1 expression_1) 
      ... 
      (name_n expression_n) 
  )
  ```
The **LET** Construct (continued)

- In ML:
  ```ml
  let
  val name_1 = expression_1
  ... 
  val name_n = expression_n
  in
  expression
  end;
  ```

- In F#:
 - First part: `let left_side = expression`
 - `(left_side is either a name or a tuple pattern)`
 - All that follows is the second part
Declaration Order

- C99, C++, Java, and C# allow variable declarations to appear anywhere a statement can appear
 - In C99, C++, and Java, the scope of all local variables is from the declaration to the end of the block
 - In C#, the scope of any variable declared in a block is the whole block, regardless of the position of the declaration in the block
 - However, a variable still must be declared before it can be used
In C++, Java, and C#, variables can be declared in `for` statements.

- The scope of such variables is restricted to the `for` construct.
Global Scope

- C, C++, PHP, and Python support a program structure that consists of a sequence of function definitions in a file
 - These languages allow variable declarations to appear outside function definitions
- C and C++ have both declarations (just attributes) and definitions (attributes and storage)
 - A declaration outside a function definition specifies that it is defined in another file
Global Scope (continued)

- PHP
 - Programs are embedded in HTML markup documents, in any number of fragments, some statements and some function definitions
 - The scope of a variable (implicitly) declared in a function is local to the function
 - The scope of a variable implicitly declared outside functions is from the declaration to the end of the program, but skips over any intervening functions
 - Global variables can be accessed in a function through the $GLOBALS array or by declaring it global
Global Scope (continued)

- Python
 - A global variable can be referenced in functions, but can be assigned in a function only if it has been declared to be `global` in the function
Evaluation of Static Scoping

- Works well in many situations
- Problems:
 - In most cases, too much access is possible
 - As a program evolves, the initial structure is destroyed and local variables often become global; subprograms also gravitate toward become global, rather than nested
Dynamic Scope

- Based on calling sequences of program units, not their textual layout (temporal versus spatial)
- References to variables are connected to declarations by searching back through the chain of subprogram calls that forced execution to this point
Scope Example

```javascript
function big() {
    function sub1() {
        var x = 7;
        function sub2() {
            var y = x;
        }
        var x = 3;
    }
}
```

- **Static scoping**
 - Reference to `x` in `sub2` is to *which* `x`?

- **Dynamic scoping**
 - Reference to `x` in `sub2` is to *which* `x`?
Scope Example

```javascript
function big() {
    function sub1() {
        var x = 7;
        function sub2() {
            var y = x;
        }
        var x = 3;
    }
}
```

- **Static scoping**
 - Reference to `x` in `sub2` is to `big`'s `x`

- **Dynamic scoping**
 - Reference to `x` in `sub2` is to `sub1`'s `x`
Scope Example

Evaluation of Dynamic Scoping:

- Advantage: convenience
- Disadvantages:
 1. While a subprogram is executing, its variables are visible to all subprograms it calls
 2. Impossible to statically type check
 3. Poor readability - it is not possible to statically determine the type of a variable
Scope and Lifetime

- Scope and lifetime are sometimes closely related, but are different concepts.
- Consider a `static` variable in a C or C++ function.
Referencing Environments

- The referencing environment of a statement is the collection of all names that are visible in the statement.
- In a static-scoped language, it is the local variables plus all of the visible variables in all of the enclosing scopes.
- A subprogram is active if its execution has begun but has not yet terminated.
- In a dynamic-scoped language, the referencing environment is the local variables plus all visible variables in all active subprograms.
Named Constants

- A named constant is a variable that is bound to a value only when it is bound to storage
- Advantages: readability and modifiability
- Used to parameterize programs
- The binding of values to named constants can be either static (called manifest constants) or dynamic
- Languages:
 - C++ and Java: expressions of any kind, dynamically bound
 - C# has two kinds, `readonly` and `const`
 - the values of `const` named constants are bound at compile time
 - The values of `readonly` named constants are dynamically bound
Summary

- Case sensitivity and the relationship of names to special words represent design issues of names
- Variables are characterized by the sextuples: name, address, value, type, lifetime, scope
- Binding is the association of attributes with program entities
- Scalar variables are categorized as: static, stack dynamic, explicit heap dynamic, implicit heap dynamic
- Strong typing means detecting all type errors