Chapter 16

Logic Programming Languages
Chapter 16 Topics

- Introduction
- A Brief Introduction to Predicate Calculus
- Predicate Calculus and Proving Theorems
- An Overview of Logic Programming
- The Origins of Prolog
- The Basic Elements of Prolog
- Deficiencies of Prolog
- Applications of Logic Programming
Introduction

- Programs in logic languages are expressed in a form of symbolic logic
- Use a logical inferencing process to produce results
- *Declarative* rather than *procedural*:
 - Only specification of results are stated (not detailed procedures for producing them)
Proposition

- A logical statement that may or may not be true
 - Consists of objects and relationships of objects to each other
Symbolic Logic

- Logic which can be used for the basic needs of formal logic:
 - Express propositions
 - Express relationships between propositions
 - Describe how new propositions can be inferred from other propositions

- Particular form of symbolic logic used for logic programming called *predicate calculus*
Objects in propositions are represented by simple terms: either constants or variables

- **Constant**: a symbol that represents an object
- **Variable**: a symbol that can represent different objects at different times
 - Different from variables in imperative languages
Compound Terms

- Atomic propositions consist of compound terms
- Compound term: one element of a mathematical relation, written like a mathematical function
 - Mathematical function is a mapping
 - Can be written as a table
Parts of a Compound Term

- Compound term composed of two parts
 - Functor: function symbol that names the relationship
 - Ordered list of parameters (tuple)

- Examples:
 student(jon)
 like(seth, OSX)
 like(nick, windows)
 like(jim, linux)
Forms of a Proposition

- Propositions can be stated in two forms:
 - **Fact**: proposition is assumed to be true
 - **Query**: truth of proposition is to be determined

- **Compound proposition**:
 - Have two or more atomic propositions
 - Propositions are connected by operators
Logical Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>(\neg)</td>
<td>(\neg a)</td>
<td>not a</td>
</tr>
<tr>
<td>conjunction</td>
<td>(\land)</td>
<td>a (\land) b</td>
<td>a and b</td>
</tr>
<tr>
<td>disjunction</td>
<td>(\lor)</td>
<td>a (\lor) b</td>
<td>a or b</td>
</tr>
<tr>
<td>equivalence</td>
<td>(\equiv)</td>
<td>a (\equiv) b</td>
<td>a is equivalent to b</td>
</tr>
<tr>
<td>implication</td>
<td>(\Rightarrow)</td>
<td>a (\Rightarrow) b</td>
<td>a implies b</td>
</tr>
<tr>
<td></td>
<td>(\subseteq)</td>
<td>a (\subseteq) b</td>
<td>b implies a</td>
</tr>
</tbody>
</table>
Quantifiers

<table>
<thead>
<tr>
<th>Name</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>universal</td>
<td>$\forall X. P$</td>
<td>For all X, P is true</td>
</tr>
<tr>
<td>existential</td>
<td>$\exists X. P$</td>
<td>There exists a value of X such that P is true</td>
</tr>
</tbody>
</table>
Clausal Form

- Too many ways to state the same thing
- Use a standard form for propositions
- **Clausal form:**
 - $B_1 \cup B_2 \cup \ldots \cup B_n \subseteq A_1 \cap A_2 \cap \ldots \cap A_m$
Clausal Form

- Too many ways to state the same thing
- Use a standard form for propositions

Clausal form:

\[B_1 \cup B_2 \cup \ldots \cup B_n \subseteq A_1 \cap A_2 \cap \ldots \cap A_m \]

means if all the As are true, then at least one B is true

Antecedent: right side

Consequent: left side
Predicate Calculus and Proving Theorems

- A use of propositions is to discover new theorems that can be inferred from known axioms and theorems
- *Resolution*: an inference principle that allows inferred propositions to be computed from given propositions
Resolution

- **Unification**: finding values for variables in propositions that allows matching process to succeed
- **Instantiation**: assigning temporary values to variables to allow unification to succeed
- After instantiating a variable with a value, if matching fails, may need to backtrack and instantiate with a different value
Proof by Contradiction

- **Hypotheses**: a set of pertinent propositions
- **Goal**: negation of theorem stated as a proposition
- **Theorem** is proved by finding an inconsistency
Theorem Proving

- Basis for logic programming
- When propositions used for resolution, only restricted form can be used
- *Horn clause* - can have only two forms
 - *Headed*: single atomic proposition on left side
 - *Headless*: empty left side (used to state facts)
- Most propositions can be stated as Horn clauses
Overview of Logic Programming

- Declarative semantics
 - There is a simple way to determine the meaning of each statement
 - Simpler than the semantics of imperative languages

- Programming is nonprocedural
 - Programs do not state now a result is to be computed, but rather the form of the result
Example: Sorting a List

- Describe the characteristics of a sorted list, not the process of rearranging a list

\[
sort(\text{old_list}, \text{new_list})
\]
Example: Sorting a List

- Describe the characteristics of a sorted list, not the process of rearranging a list

\[
\text{sort}(\text{old_list}, \text{new_list}) \subset \text{permute}(\text{old_list}, \text{new_list}) \cap \text{sorted}(\text{new_list})
\]

\[
\text{sorted}(\text{list}) \subset
\]
Example: Sorting a List

- Describe the characteristics of a sorted list, not the process of rearranging a list

\[
\text{sort(} \text{old_list, new_list}) \subseteq \text{permute (} \text{old_list, new_list}) \cap \text{sorted (} \text{new_list})
\]

\[
\text{sorted (} \text{list}) \subseteq \forall_j \text{ such that } 1 \leq j < n, \text{ list}(j) \leq \text{ list (} j+1 \text{)}
\]
The Origins of Prolog

- University of Aix-Marseille (Calmerauer & Roussel)
 - Natural language processing
- University of Edinburgh (Kowalski)
 - Automated theorem proving
Terms

- This book uses the Edinburgh syntax of Prolog
- Term: a constant, variable, or structure
- Constant: an atom or an integer
- Atom: symbolic value of Prolog
- Atom consists of either:
 - a string of letters, digits, and underscores beginning with a lowercase letter
 - a string of printable ASCII characters delimited by apostrophes
Terms: Variables and Structures

- **Variable**: any string of letters, digits, and underscores beginning with an uppercase letter
- **Instantiation**: binding of a variable to a value
 - Lasts only as long as it takes to satisfy one complete goal
- **Structure**: represents atomic proposition
 functor (*parameter list*)
Fact Statements

- Used for the hypotheses
- Headless Horn clauses

female(shelley).
male(bill).
father(bill, jake).
Rule Statements

- Used for the hypotheses
- Headed Horn clause
- Right side: antecedent (if part)
 - May be single term or conjunction
- Left side: consequent (then part)
 - Must be single term
- Conjunction: multiple terms separated by logical AND operations (implied)
Example Rules

ancestor(mary, shelley): - mother(mary, shelley).

- Can use variables (*universal objects*) to generalize meaning:
 parent(X, Y): - mother(X, Y).
 parent(X, Y): - father(X, Y).
Goal Statements

- For theorem proving, theorem is in form of proposition that we want system to prove or disprove – *goal statement*
- Same format as headless Horn

 `man(fred)`

- Conjunctive propositions and propositions with variables also legal goals

 `father(X, mike)`
Inferencing Process of Prolog

- Queries are called goals
- If a goal is a compound proposition, each of the facts is a subgoal
- To prove a goal is true, must find a chain of inference rules and/or facts. For goal Q:
 \[P_2 : - P_1 \]
 \[P_3 : - P_2 \]
 ...
 \[Q : - P_n \]
- Process of proving a subgoal called matching, satisfying, or resolution
Approaches

- **Matching** is the process of proving a proposition
- Proving a subgoal is called **satisfying** the subgoal
- **Bottom-up resolution, forward chaining**
 - Begin with facts and rules of database and attempt to find sequence that leads to goal
 - Works well with a large set of possibly correct answers
- **Top-down resolution, backward chaining**
 - Begin with goal and attempt to find sequence that leads to set of facts in database
 - Works well with a small set of possibly correct answers
- Prolog implementations use backward chaining
Subgoal Strategies

- When goal has more than one subgoal, can use either
 - Depth-first search: find a complete proof for the first subgoal before working on others
 - Breadth-first search: work on all subgoals in parallel
- Prolog uses depth-first search
 - Can be done with fewer computer resources
Backtracking

- With a goal with multiple subgoals, if fail to show truth of one of subgoals, reconsider previous subgoal to find an alternative solution: backtracking
- Begin search where previous search left off
- Can take lots of time and space because may find all possible proofs to every subgoal
Prolog supports integer variables and integer arithmetic

is operator: takes an arithmetic expression as right operand and variable as left operand

\[A \text{ is } B / 17 + C \]

Not the same as an assignment statement!

The following is illegal:

\[\text{Sum is Sum + Number.} \]
Example

speed(ford, 100).
speed(chevy, 105).
speed(dodge, 95).
speed(volvo, 80).
time(ford, 20).
time(chevy, 21).
time(dodge, 24).
time(volvo, 24).
distance(X,Y) :- speed(X,Speed),
 time(X,Time),
 Y is Speed * Time.

A query: distance(chevy, Chevy_Distance).
Trace

- Built-in structure that displays instantiations at each step
- *Tracing model* of execution - four events:
 - *Call* (beginning of attempt to satisfy goal)
 - *Exit* (when a goal has been satisfied)
 - *Redo* (when backtrack occurs)
 - *Fail* (when goal fails)
Example

likes(jake, chocolate).
likes(jake, apricots).
likes(darcie, licorice).
likes(darcie, apricots).

trace.
Likes(jake, X), likes(darcie, X).
(1) 1 Call: likes(jake, _0)?
(1) 1 Exit: likes(jake, chocolate)
(2) 1 Call: likes(darcie, chocolate)?
(2) 1 Fail: likes(darcie, chocolate)
(1) 1 Redo: likes(jake, _0)?
(1) 1 Exit: likes(jake, apricots)
(3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: likes(darcie, apricots)
X = apricots
Deficiencies of Prolog

- Resolution order control
 - In a pure logic programming environment, the order of attempted matches is nondeterministic and all matches would be attempted concurrently

- The closed-world assumption
 - The only knowledge is what is in the database

- The negation problem
 - Anything not stated in the database is assumed to be false

- Intrinsic limitations
 - It is easy to state a sort process in logic, but difficult to actually do—it doesn’t know how to sort
Applications of Logic Programming

- Relational database management systems
- Expert systems
- Natural language processing
Summary

- Symbolic logic provides basis for logic programming
- Logic programs should be nonprocedural
- Prolog statements are facts, rules, or goals
- Resolution is the primary activity of a Prolog interpreter
- Although there are a number of drawbacks with the current state of logic programming it has been used in a number of areas