Greedy Technique

Constructs a solution to an optimization problem piece by piece through a sequence of choices that are:

- feasible
- locally optimal
- irrevocable

For some problems, yields an optimal solution for every instance.
For most, does not but can be useful for fast approximations.
Applications of the Greedy Strategy

- **Optimal solutions:**
 - change making for “normal” coin denominations
 - minimum spanning tree (MST)
 - single-source shortest paths
 - simple scheduling problems
 - Huffman codes

- **Approximations:**
 - traveling salesman problem (TSP)
 - knapsack problem
 - other combinatorial optimization problems
Change-Making Problem

Given unlimited amounts of coins of denominations $d_1 > ... > d_m$, give change for amount n with the least number of coins.

Example: $d_1 = 25c$, $d_2 = 10c$, $d_3 = 5c$, $d_4 = 1c$ and $n = 48c$

Greedy solution:
Change-Making Problem

Given unlimited amounts of coins of denominations $d_1 > \ldots > d_m$, give change for amount n with the least number of coins

Example: $d_1 = 25c$, $d_2 = 10c$, $d_3 = 5c$, $d_4 = 1c$ and $n = 48c$

Greedy solution:

Greedy solution is

- optimal for any amount and “normal” set of denominations
- may not be optimal for arbitrary coin denominations
Minimum Spanning Tree (MST)

- **Spanning tree** of a connected graph G: a connected acyclic subgraph of G that includes all of G’s vertices

- **Minimum spanning tree** of a weighted, connected graph G: a spanning tree of G of minimum total weight

Example:
Prim’s MST algorithm

- Start with tree T_1 consisting of one (any) vertex and “grow” tree one vertex at a time to produce MST through a series of expanding subtrees T_1, T_2, \ldots, T_n

- On each iteration, construct T_{i+1} from T_i by adding vertex not in T_i that is closest to those already in T_i (this is a “greedy” step!)

- Stop when all vertices are included
Notes about Prim’s algorithm

- Proof by induction that this construction actually yields MST
- Needs priority queue for locating closest fringe vertex

Efficiency

- $O(n^2)$ for weight matrix representation of graph and array implementation of priority queue
- $O(m \log n)$ for adjacency list representation of graph with n vertices and m edges and min-heap implementation of priority queue
Another greedy algorithm for MST: Kruskal’s

- Sort the edges in nondecreasing order of lengths

- “Grow” tree one edge at a time to produce MST through a series of expanding forests $F_1, F_2, \ldots, F_{n-1}$

- On each iteration, add the next edge on the sorted list unless this would create a cycle. (If it would, skip the edge.)
Example
Notes about Kruskal’s algorithm

- Algorithm looks easier than Prim’s but is harder to implement (checking for cycles!)

- Cycle checking: a cycle is created iff added edge connects vertices in the same connected component