CMPS 3120

Algorithm Analysis

Dr. Chengwei Lei
CEECS
California State University, Bakersfield
Multiplication of Large Integers

Consider the problem of multiplying two (large) \(n \)-digit integers represented by arrays of their digits such as:

\[
A = 12345678901357986429 \quad B = 87654321284820912836
\]

The grade-school algorithm:

\[
\begin{array}{cccc}
& a_1 & a_2 & \ldots & a_n \\
\times & b_1 & b_2 & \ldots & b_n \\
\hline
& (d_{10}) & (d_{11}) & d_{12} & \ldots & d_{1n} \\
& (d_{20}) & d_{21} & d_{22} & \ldots & d_{2n} \\
& \vdots & \vdots & \vdots & \ddots & \vdots \\
& (d_{n0}) & d_{n1} & d_{n2} & \ldots & d_{nn}
\end{array}
\]

Efficiency: \(n^2 \) one-digit multiplications
First Divide-and-Conquer Algorithm

A small example: $A \ast B$ where $A = 2135$ and $B = 4014$

$A = (21 \cdot 10^2 + 35), \quad B = (40 \cdot 10^2 + 14)$

So, $A \ast B = (21 \cdot 10^2 + 35) \ast (40 \cdot 10^2 + 14)$

$= 21 \ast 40 \cdot 10^4 + (21 \ast 14 + 35 \ast 40) \cdot 10^2 + 35 \ast 14$

In general, if $A = A_1 A_2$ and $B = B_1 B_2$ (where A and B are n-digit, A_1, A_2, B_1, B_2 are $n/2$-digit numbers),

$A \ast B = A_1 \ast B_1 \cdot 10^n + (A_1 \ast B_2 + A_2 \ast B_1) \cdot 10^{n/2} + A_2 \ast B_2$

Recurrence for the number of one-digit multiplications $M(n)$:

$M(n) = 4M(n/2), \quad M(1) = 1$

Solution: $M(n) = n^2$
Second Divide-and-Conquer Algorithm

\[A \ast B = A_1 \ast B_1 \cdot 10^n + (A_1 \ast B_2 + A_2 \ast B_1) \cdot 10^{n/2} + A_2 \ast B_2 \]

The idea is to decrease the number of multiplications from 4 to 3:

\[(A_1 + A_2) \ast (B_1 + B_2) = A_1 \ast B_1 + (A_1 \ast B_2 + A_2 \ast B_1) + A_2 \ast B_2, \]

i.e., \((A_1 \ast B_2 + A_2 \ast B_1) = (A_1 + A_2) \ast (B_1 + B_2) - A_1 \ast B_1 - A_2 \ast B_2,
\]

which requires only 3 multiplications at the expense of \((4-1)\) extra add/sub.

Recurrence for the number of multiplications \(M(n)\):

\[M(n) = 3M(n/2), \quad M(1) = 1 \]

Solution: \(M(n) = 3 \log_2 n = n \log_2 3 \approx n^{1.585} \)
General Divide-and-Conquer Recurrence

\[T(n) = aT(n/b) + f(n) \quad \text{where} \quad f(n) \in \Theta(n^d), \quad d \geq 0 \]

Master Theorem:

- If \(a < b^d \), \(T(n) \in \Theta(n^d) \)
- If \(a = b^d \), \(T(n) \in \Theta(n^d \log n) \)
- If \(a > b^d \), \(T(n) \in \Theta(n^{\log_b a}) \)

Note: The same results hold with \(\Omega \) instead of \(\Theta \).
Example of Large-Integer Multiplication

2135 \times 4014
Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows:

\[
\begin{bmatrix}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{bmatrix}
= \begin{bmatrix}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{bmatrix}
\times
\begin{bmatrix}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{bmatrix}
= \begin{bmatrix}
M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\
M_2 + M_4 & M_1 + M_3 - M_2 + M_6
\end{bmatrix}
\]
Formulas for Strassen’s Algorithm

\[M_1 = (A_{00} + A_{11}) \times (B_{00} + B_{11}) \]
\[M_2 = (A_{10} + A_{11}) \times B_{00} \]
\[M_3 = A_{00} \times (B_{01} - B_{11}) \]
\[M_4 = A_{11} \times (B_{10} - B_{00}) \]
\[M_5 = (A_{00} + A_{01}) \times B_{11} \]
\[M_6 = (A_{10} - A_{00}) \times (B_{00} + B_{01}) \]
\[M_7 = (A_{01} - A_{11}) \times (B_{10} + B_{11}) \]
Analysis of Strassen’s Algorithm

If \(n \) is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

\[
M(n) = 7M(n/2), \quad M(1) = 1
\]

Solution: \(M(n) = 7^\log_2 n = n^{\log_7 7} \approx n^{2.807} \) vs. \(n^3 \) of brute-force alg.

Algorithms with better asymptotic efficiency are known but they are even more complex.
General Divide-and-Conquer Recurrence

\[T(n) = aT(n/b) + f(n) \quad \text{where } f(n) \in \Theta(n^d), \quad d \geq 0 \]

Master Theorem:
- If \(a < b^d \), \(T(n) \in \Theta(n^d) \)
- If \(a = b^d \), \(T(n) \in \Theta(n^d \log n) \)
- If \(a > b^d \), \(T(n) \in \Theta(n^{\log_b a}) \)

Note: The same results hold with \(O \) instead of \(\Theta \).
Closest-Pair Problem by Divide-and-Conquer
closest-pair problem by divide-and-conquer

step 1: divide the points given into two subsets P_l and P_r by a vertical line $x = m$ so that half the points lie to the left or on the line and half the points lie to the right or on the line.
Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right subsets.

Step 3 Set \(d = \min\{d_l, d_r\} \)

We can limit our attention to the points in the symmetric vertical strip \(S \) of width \(2d \) as possible closest pair. (The points are stored and processed in increasing order of their \(y \) coordinates.)

Step 4 Scan the points in the vertical strip \(S \) from the lowest up.

For every point \(p(x,y) \) in the strip, inspect points in the strip that may be closer to \(p \) than \(d \). There can be no more than 5 such points following \(p \) on the strip list!
Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

\[T(n) = 2T(n/2) + M(n), \text{ where } M(n) \in O(n) \]

By the Master Theorem (with \(a = 2, b = 2, d = 1 \))

\[T(n) \in O(n \log n) \]
General Divide-and-Conquer Recurrence

\[T(n) = aT(n/b) + f(n) \quad \text{where } f(n) \in \Theta(n^d), \quad d \geq 0 \]

Master Theorem:
- \(a < b^d \), \(T(n) \in \Theta(n^d) \)
- \(a = b^d \), \(T(n) \in \Theta(n^d \log n) \)
- \(a > b^d \), \(T(n) \in \Theta(n^{\log_b a}) \)

Note: The same results hold with \(\Omega \) instead of \(\Theta \).