CMPS 3120

Algorithm Analysis

Dr. Chengwei Lei
CEECS
California State University, Bakersfield
Example: sorting

- Input: A sequence of N numbers $a_1 \ldots a_n$
- Output: the permutation (reordering) of the input sequence such that $a_1 \leq a_2 \ldots \leq a_n$.
- Possible algorithms you’ve learned so far
 - Insertion, selection, bubble, quick, merge, ...
 - More in this course
- We seek algorithms that are both correct and efficient
Insertion Sort

InsertionSort(A, n) {
 for j = 2 to n {
 ▶ Pre condition: A[1..j-1] is sorted
 ▶ Post condition: A[1..j] is sorted
 }
}
Insertion Sort

InsertionSort(A, n) {
 for j = 2 to n {
 key = A[j];
 i = j - 1;
 while (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i - 1;
 }
 A[i+1] = key
 }
}
Example of insertion sort

5→2→4→6→1→3
2→5→4→6→1→3
2→4→5→6→1→3
2→4→5→6→1→3
1→2→4→5→6→3
1→2→3→4→5→6

Done!
Analysis of algorithms

- **Issues:**
 - correctness
 - time efficiency
 - space efficiency
 - optimality

- **Approaches:**
 - theoretical analysis
 - empirical analysis
Correctness

- What makes a sorting algorithm correct?
 - In the output sequence, the elements are ordered non-decreasingly
 - Each element in the input sequence has a unique appearance in the output sequence
 - \([2 \ 3 \ 1] \Rightarrow [1 \ 2 \ 2] \quad \times\)
 - \([2 \ 2 \ 3 \ 1] \Rightarrow [1 \ 1 \ 2 \ 3] \quad \times\)
Correctness

- For any algorithm, we must prove that it *always* returns the desired output for *all* legal instances of the problem.
- For sorting, this means even if (1) the input is *already sorted*, or (2) it contains *repeated elements*.
- Algorithm correctness is NOT obvious in some problems (e.g., optimization)
Use loop invariants to prove the correctness of loops

- A loop invariant (LI) is a formal statement about the variables in your program which holds true throughout the loop
- **Claim:** at the start of each iteration of the for loop, the subarray $A[1..j-1]$ consists of the elements originally in $A[1..j-1]$ but in sorted order.
- **Proof** by induction
 - **Initialization:** the LI is true prior to the 1^{st} iteration
 - **Maintenance:** if the LI is true before the j^{th} iteration, it remains true before the $(j+1)^{th}$ iteration
 - **Termination:** when the loop terminates, the LI gives us a useful property to show that the algorithm is correct
Prove correctness using loop invariants

```plaintext
InsertionSort(A, n) {
    for j = 2 to n {
        key = A[j];
        i = j - 1;
        ▷ Insert A[j] into the sorted sequence A[1..j-1]
        while (i > 0) and (A[i] > key) {
            A[i+1] = A[i];
            i = i - 1;
        }
        A[i+1] = key
    }
}
```

Loop invariant: at the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.
Initialization

InsertionSort(A, n) {
 for j = 2 to n {
 key = A[j];
 i = j - 1;
 ▷ Insert A[j] into the sorted sequence A[1..j-1]
 while (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i - 1;
 }
 A[i+1] = key
 }
}

Subarray A[1] is sorted. So loop invariant is true before the loop starts.

Loop invariant: at the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.
Maintenance

InsertionSort(A, n) {
 for j = 2 to n {
 key = A[j];
 i = j - 1;
 \(\triangleright \text{Insert } A[j] \text{ into the sorted sequence } A[1..j-1] \)
 while (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i - 1;
 }
 A[i+1] = key
 }
}

Assume loop variant is true prior to iteration j

Loop invariant: at the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Loop variant will be true before iteration j+1
Termination

InsertionSort(A, n) {
 for j = 2 to n {
 key = A[j];
 i = j - 1;
 ▷ Insert A[j] into the sorted sequence A[1..j-1]
 while (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i - 1;
 }
 A[i+1] = key
 }
}

Upon termination, A[1..n] contains all the original elements of A in sorted order.

The algorithm is correct!

Loop invariant: at the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.
Efficiency

- Correctness alone is not sufficient
- Brute-force algorithms exist for most problems
- To sort n numbers, we can enumerate all permutations of these numbers and test which permutation has the correct order
 - Why cannot we do this?
 - Too slow!
 - By what standard?
How to measure complexity?

- Accurate running time is not a good measure
- It depends on input
- It depends on the machine you used and who implemented the algorithm
- It depends on the weather, maybe 😊
- We would like to have an analysis that does not depend on those factors