CMPS 3120

Algorithm Analysis

Dr. Chengwei Lei
CEECS
California State University, Bakersfield
Problem: Find $\gcd(m,n)$, the greatest common divisor of two nonnegative, not both zero integers m and n
Euclid’s Algorithm

Problem:

Examples: \(\gcd(60, 24) = 12 \), \(\gcd(60, 0) = 60 \), \(\gcd(0, 0) = ? \)
Euclid’s Algorithm

Problem:

Examples: \(\text{gcd}(60,24) = 12, \quad \text{gcd}(60,0) = 60, \quad \text{gcd}(0,0) = ? \)

Euclid’s algorithm:

Euclid’s algorithm is based on repeated application of equality

\[\text{gcd}(m,n) = \text{gcd}(n, m \mod n) \]

until the second number becomes 0, which makes the problem trivial.

Example: \(\text{gcd}(60,24) = \text{gcd}(24,12) = \text{gcd}(12,0) = 12 \)
Two descriptions of Euclid’s algorithm

Step 1 If \(n = 0 \), return \(m \) and stop; otherwise go to Step 2
Step 2 Divide \(m \) by \(n \) and assign the value of the remainder to \(r \)
Step 3 Assign the value of \(n \) to \(m \) and the value of \(r \) to \(n \). Go to Step 1.
Two descriptions of Euclid’s algorithm

Step 1 If $n = 0$, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value to the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

```
while $n \neq 0$ do
    \[ r \leftarrow m \mod n \]
    \[ m \leftarrow n \]
    \[ n \leftarrow r \]
return $m$
```
while $n \neq 0$ do
 $r \leftarrow m \mod n$
 $m \leftarrow n$
 $n \leftarrow r$
return m
while $n \neq 0$ do
 $r \leftarrow m \mod n$
 $m \leftarrow n$
 $n \leftarrow r$
return m

int gcd(int m, int n)
{
 while (n!=0)
 {
 int $r = m \% n$;
 $m = n$;
 $n = r$;
 }
 return m;
}
#include <stdio.h>

int gcd(int m, int n) {
 while(n!=0) {
 int r=m % n;
 m=n;
 n=r;
 }
 return m;
}

int main() {
 int input1, input2, result;

 printf("Enter two positive integers: ");
 scanf("%d %d", &input1, &input2);

 result = gcd(input1, input2);

 printf("GCD = %d\n", result);

 return 0;
}
Other methods for computing $\gcd(m, n)$

Consecutive integer checking algorithm

Step 1 Assign the value of $\min\{m, n\}$ to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and stop; otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2
Other methods for computing $\text{gcd}(m, n)$

Consecutive integer checking algorithm

```c
int gcd(int m, int n)
{
    int t = m > n ? n : m;
    step2:
    if (m % t == 0)
        if (n % t == 0)
            return t;
    t = t - 1;
    goto step2;
}
```
Other methods for $\text{gcd}(m,n)$ [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factors and return it as $\text{gcd}(m,n)$

Is this an algorithm?
Sieve of Eratosthenes

Input: Integer \(n \geq 2 \)
Output: List of primes less than or equal to \(n \)

\[
\text{for } p \leftarrow 2 \text{ to } n \text{ do } A[p] \leftarrow p \\
\text{for } p \leftarrow 2 \text{ to } \sqrt{n} \text{ do} \\
\quad \text{if } A[p] \neq 0 \quad \text{//p hasn’t been previously eliminated from the list} \\
\quad \quad j \leftarrow p \cdot p \\
\quad \quad \text{while } j \leq n \text{ do} \\
\quad \quad \quad A[j] \leftarrow 0 \quad \text{//mark element as eliminated} \\
\quad \quad \quad j \leftarrow j + p
\]
Sieve of Eratosthenes

Input: Integer \(n \geq 2 \)
Output: List of primes less than or equal to \(n \)

for \(p \leftarrow 2 \) to \(n \) do \(A[p] \leftarrow p \)

for \(p \leftarrow 2 \) to \(\sqrt{n} \) do

 if \(A[p] \neq 0 \) // \(p \) hasn’t been previously eliminated from the list
 \(j \leftarrow p \cdot p \)
 while \(j \leq n \) do
 \(A[j] \leftarrow 0 \) //mark element as eliminated
 \(j \leftarrow j + p \)

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Two main issues related to algorithms

- How to design algorithms
- How to analyze algorithm efficiency
Algorithm design techniques/strategies

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer
- Space and time tradeoffs

- Greedy approach
- Dynamic programming
- Iterative improvement
- Backtracking
- Branch and bound
Analysis of algorithms

- How good is the algorithm?
 - time efficiency
 - space efficiency

- Does there exist a better algorithm?
 - lower bounds
 - optimality
Important problem types

- sorting
- searching
- string processing
- graph problems
- combinatorial problems
- geometric problems
- numerical problems
Fundamental data structures

- list
- array
- linked list
- string
- stack
- queue
- priority queue

- graph
- tree
- set and dictionary