Smart Injection Setup Procedure

Please refer to part 1 to setup the backend, part 2 to setup the frontend and part 3 to run the application.

Part 1: Running the back-end code with smart-inject-be

Note: you can access each gradle tasks I've instructed from the Ul, if it's easier.
Otherwise follow along the instructions.

smart-injection-be:clients [runTemplateServer] ¥ 4 h it: ®© o am

PCConnection.java Gradle a —

Case Words Regex ? SRS T N T TR

Hy smart-injection-be
v :clients
» [Source Sets
v I Tasks
» I; application
v I3 build
assemble
bootjar
build
buildDependents
buildNeeded
classes
clean
jar
testClasses

piingiuy 9 usrey 3 spesy §, 19foid:T I

1. Clean your project

a. Run the command in your IDE’s terminal (where you will be in your project’s directory):
./gradlew clean (deletes all your old jar files)

i. This is what you should see:

2. Deploy your corda nodes (otherwise the build folder will not have generated the nodes)
a. Runthe command in your IDE’s terminal: . /gradlew deployNodes -x test (build
corda jar files for all your nodes)
b. Two ways to run your 3 nodes:
i. Easiestis to run this in your IDE’s terminal: build/nodes/runnodes
1. Don’t move your mouse, let it load on its own. Expect three windows (for the 3
nodes) to open up on your computer’s terminal.

ii. If the three windows aren’t opening properly, you can run the nodes individually:

R r
& Open in Terminal

1. Go into ‘build’ folder, under ‘Notary’, right click & click ‘Open in terminal’ (so
you are in this folder on the terminal).
a. Inthis terminal, run: java -jar corda.jar
2. Go into ‘build’ folder, under ‘PartyA, right click & click ‘Open in terminal’.
a. Inthis terminal, run: java -jar corda.jar
3. Go into ‘build’ folder, under ‘PartyB’, right click & click ‘Open in terminal’.
a. Inthis terminal, run: java -jar corda.jar

c. This is what you would see in the terminal when a node (in this case, Party B) is successfully
running:

never die, they
the buck

Logs can be found in : /Users/jodichan/IdeaProjects/smart-injection-be/build/nodes/PartyB/logs
A Y

Advertised P2P messaging addresses : localhost:10008

RPC connection address : localhost:10089

RPC admin connection address : localhost:10049

Loaded 2 CorDapp(s) : Contract CorDapp: Template CorDapp version 1 by vendor Corda Open Sourc
he License, Version 2., Workflow CorDapp: Template Flows version 1 by vendor Corda Open Source with licence Apac
2.0

Node for "PartyB" started up and registered in 13.83 sec

Running P2PMessaging loop

Welcome to the Corda interactive shell.
You can see the available commands by typing 'help'.

i_ Thu Aug 19 01:28:48 HKT 2021>>> |
3. Build your project
a. Runthisin your IDE’s terminal: . /gradlew build -x test (building new jar file of your
app). Alternatively, from the Ul, click on the green hammer icon.
4. Run template client & template server
a. Ingradle’s tool bar here:

Gradle
S +

v smart-injection-be
v :clients

193044 T

> [Source Sets
» I Tasks
v Iz Run Configurations
smart-injection-be:clients [runTemplateClient]
i_ smart-injection-be:clients [runTemplateServer]

ajpeso {,

3

i. Find & double click each of the following:
1. smart-injection-be — clients — run configurations — smart-injection-be:clients
[runTemplateClient]
a. Note: you will see this after

ction-be:clients [runTemplateSer...

PED
UP-TO-DATE

ateClient

i.
2. smart-injection-be — clients — run configurations — smart-injection-be:clients
[runTemplateServer]
a. Note: you will see this after

e
. b 4Run = L] 5
| Al files break 91:46

5. Check that it's working by navigating to http://localhost:10050. You should see this:

LS) GitHub - JAVA-Mas X |) GitHub - andrewfol X = Untitled document X @ Example front-end. X

& C O | @ localhost:10050 Enl e s O » v

Define your front-end here.

Part 2: Running the front-end code with ui-smartinjection

1. Before you start, make sure you completed part 1 in building up the BE part.

2. Open your project & run this command in the terminal of your IDE: npm install

3. Onceit's done, run: npm serve

4. Navigate to http://localhost:4200/ (you will see a blank page when you click on it). Use this when
accessing the different API endpoints (e.g., http://localhost:4200/wo/new-project,
http://localhost:4200/wo/my-wells)

http://localhost:10050
http://localhost:4200/
http://localhost:4200/wo/new-project
http://localhost:4200/wo/my-wells

Part 3: Running the whole application together

1. Before you start, please note you must complete part 1 & 2.
2. Refer to the following file for all the APl endpoints for which you will be using to navigate your app.
a. File path: smart-injection-be/clients/src/main/java/com/template/webserver/Controller.java

i Or on the Ul from the back-end code:

Project ¥
v smart-injection-be
.Ci
.gradle
.idea
.settings
build
clients
build
logs
out
4
v main
v java
v com.template
v bmwebserver
Controller
NodeRPCConnection
Nelilg
WellForm
Client

3. Examples when accessing the webpage:
a. Dashboard view:

) GitHub x | €) GitHub x | [Untitlec X | @ localhc X A UiSmar X

< C O @ localhost

= Smart Injection

2/ Projects Management % Wells Management
Choose an option to manage your Choose an option to manage
projects. your wells.

CREATE NEW PROJECT CREATE NEW WELL

PENDING PROJECTS MY WELLS

My UIC Projects

Project Name Project Status UIC Project Number

b. Create a new project:

) GitHub x | €) GitHub X Untitlec X | @ Examp/ X A UiSmar X

< C 0 [© localhost:

= Smart Injection

Back to the Dashboard
o New project's name e Add wells o Review Project o Confirmation

Enter a new project's name

Next Step

