
A Particle Swarm Optimization Algorithm for Finding DNA Seq uence Motifs

Chengwei Lei and Jianhua Ruan
Department of Computer Science

The University of Texas at San Antonio
One UTSA Circle, San Antonio, TX 78249, USA

{clei, jruan}@cs.utsa.edu

Abstract

Discovering short DNA motifs from a set of co-regulated
genes is an important step towards deciphering the complex
gene regulatory networks and understanding gene func-
tions. Despite significant improvement in the last decade,
it still remains one of the most challenging problems in
both computer science and molecular biology. In this work,
we propose a novel motif finding algorithm based on a
population-based stochastic optimization technique called
Particle Swarm Optimization (PSO), which has been shown
to be effective in optimizing difficult multidimensional prob-
lems in many fields. However, PSO has mainly been applied
to problems in continuous domains. The motif finding prob-
lem, which is essentially a multiple local alignment prob-
lem, is discrete, as a slight shift in one sequence completely
changes the alignment. Therefore, we propose to use a word
dissimilarity graph to remap the neighborhood structure of
the solution space, which transforms the motif finding prob-
lem into a contiguous integer domain, and propose a modi-
fication of the naive PSO algorithm to accommodate integer
variables. In order to improve efficiency, we also propose
several strategies for escaping from local optima, and deter-
mining the termination criteria automatically. Experimen-
tal results on simulated challenge problems show that our
method is both more efficient and more accurate than sev-
eral existing algorithms. Applications to several sets of real
promoter sequences also show that our approach is able to
detect known transcription factor binding sites, and outper-
forms two of the most successful existing algorithms.

1. Introduction

One of the most important mechanisms to regulate gene
functions is on the transcription level, where the expression
of genes is mediated by the binding of transcription factors
(TF) to the promoter sequences of genes. Identifying com-
mon transcription factor binding sites (TFBS) from a set of

putatively co-regulated genes is an important step towards
deciphering the complex gene regulatory networks and un-
derstanding the tissue/condition-specific functions of genes.

The existing motif finding algorithms often differ from
one another in their ways of defining motifs, the objec-
tive functions for calculating motif significance, and the
search techniques used to find the optimal (or near opti-
mal) motifs. Many of these algorithms can be classified
into one of two broad categories: stochastic searching al-
gorithms based on position specific weight matrix (PSWM)
motif representations, and combinatorial search algorithms
based on consensus sequence motif representations. Exam-
ples of the first category include the well-known programs
such as MEME [1], AlignACE [17], GibbsSampler [11],
BioProspector [13], while the second category can be ex-
emplified by Weeder [14], YMF [18], MultiProfiler [8], and
Projection [2]. For surveys of the existing methods and
assessments of their relative performance, see [21, 12, 7].
As expected, no single method stands out as the sole best.
In fact, assessing the performances of these algorithms is
a daunting task itself, and experiments have shown that the
overall performance of motif finding algorithms is still quite
low [21, 7]. Nevertheless, there seems to be a slight advan-
tage by combinatorial approaches [21, 12].

To test the capacity of various motif finding algorithms,
Pevzner and Sze designed a set of challenging cases, the so-
called (l,d)-motif, a set of DNAl-mers each of which dif-
fer from a common consensus sequence by exactly d mis-
matches [15]. The motifs were then embedded into some
random DNA sequences and submitted to various motif
finding algorithms. It has been shown that many stochastic
searching algorithms fail to recover the embedded motifs
even for biologically realistic choices of parameters (e.g. a
set of (15, 4)-motifs embedded in 20 sequences each with
600 bases) [15]. On the other hand, although combinato-
rial search algorithms have generally been shown to per-
form better in these challenging test cases, they typically
resort to exhaustive enumeration of all or a large number of
variants of consensus sequences, and are therefore limited

to small data sets and short motifs only.
In this study, we propose a novel motif finding algorithm

based on a population-based stochastic optimization tech-
nique called Particle Swarm Optimization (PSO) [5], which
has been shown to be effective in optimizing difficult multi-
dimensional problems in many fields. The naive PSO algo-
rithm, however, can only be applied to continuous domains.
The motif finding problem, which is essentially a multi-
ple local sequence alignment problem, unfortunately, is dis-
crete, as a slight shift of one sequence completely changes
the alignment (See Section 3.2 for more discussions). To
circumvent this problem, we break sequences intol-mers
and develop a novel mapping scheme to convert the motif
finding problem into a semi-continuous domain, and modi-
fied the update policy of the original PSO algorithm to solve
the motif finding problem. We also propose several strate-
gies for escaping from local optima, and determining the
termination criteria automatically.

Compared to previous motif finding methods, our algo-
rithm uses consensus as motif representation, thus avoiding
many of the pitfalls associated with PSWM-based meth-
ods. On the other hand, PSO does not require exhaustive
enumeration of consensus sequences, yet can still quickly
converge to an optimal or almost optimal solution. Exper-
imental results on both simulated and real biological data
sets have shown that our method is more efficient and more
accurate than several existing algorithms.

The remaining sections are organized as follows. In Sec-
tion 2, we introduce the basic concept and ideas of PSO and
the generic PSO algorithm. In Section 3, we discuss the
improvement that we made to the generic PSO algorithm
in order to accommodate the unique nature of motif finding
problems, and other algorithmic issues that we addressed.
We present our experimental results in Section 4, and con-
clude in Section 5 with some possible future improvement.

2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-
based stochastic optimization technique for problem solv-
ing that is inspired by the social behaviors of organisms
such as bird flocking and fish schooling [5]. The system
is initialized with a population of random solutions and
searches for the optimal solution by updating iteratively.
Although PSO shares many similarities with evolutionary
computation techniques such as genetic algorithms, PSO
differs from other evolutionary algorithms significantly on
how the solutions were updated. In PSO, each potential
solution, called particle, is represented by a point in the
multiple-dimensional solution space. When searching for
the optimal solution, particles fly around the solution space
with a certain velocity. During flight, each particle adjusts
its position and velocity according to its own experience and

the experiences of its neighbors. Specifically, each particle
keeps track of the best solution (the position and the fit-
ness value) it has encountered so far. This solution is called
pbest, which stands for personal best. Each particle also
keeps track of the best solution by any particle in its neigh-
borhood. This solution is calledlbest, which stands for local
best. Many types of neighborhood structures can be imple-
mented by emulating real social networks. In the simplest
case, all the particles are directly connected to each other.
Then lbest is simply the global optimum of all the particles,
hence is also calledgbest. Therefore, while each individ-
ual particle is performing a local search, the particles also
communicate with other particles and learn from them, bal-
ancing exploration and exploitation.

Formally, let vectorsxi andvi be the current position
and velocity of thei-th particle (1 ≤ i ≤ n), x̂i be the
recorded position of pbest of thei-th particle, and̂g be the
position of gbest. The fundamental concept of PSO consists
of changing the velocity (vi) of each particle at each time
step toward its pbest and gbest locations. Acceleration is
weighted by a random number, with separate random num-
bers generated for acceleration toward pbest and gbest lo-
cations. The particles update their positions and velocities
based on the two equations below.

vi = ωvi + c1r1 ◦ (xi − x̂i) + c2r2 ◦ (xi − ĝ);

xi = xi + vi,

whereω is a parameter called the inertial weight,r1 and
r2 are vectors of random numbers, usually uniformly dis-
tributed within 0 and 1. The operator◦ denotes entry-wise
vector multiplication. It is critical to note that different r1

and r2 are generated at each iteration and for each parti-
cle. c1 andc2 are positive constants, called the acceleration
constant.c1 is a factor determining how much the particle is
influenced by its pbest, andc2 is a factor determining how
much the particle is influenced by gbest. Although the PSO
algorithm is a relatively new technique, it has been devel-
oped into many variants and has been successfully applied
in many research and application areas [9, 4, 3, 16].

However, as we have mentioned in Introduction, the PSO
algorithm cannot be directly applied to the motif finding
problem, which is a discrete optimization problem. In Sec-
tion 3.2, we will discuss more in detail about the problems
in applying PSO to motif finding, and our modifications of
the naive algorithm to address these problems.

3. The PSO-motif algorithm

3.1. Motif model and fitness function

In order to apply PSO to the motif finding problem, we
need to first define the solution structure and the fitness

function. There are several ways to represent a motif. In
PSWM-based algorithms, motifs are represented by weight
matrices, so a solution can be unambiguously represented
by a 3 × l matrix, wherel is the length of the motif. Our
focus of this paper is to develop a consensus-based algo-
rithm, due to its relative advantage that has been shown re-
cently [21, 12]. To represent a motif in consensus-based
algorithms, we have two choices. First, we may repre-
sent a motif by a consensus sequence, which is a discrete
l-dimensional vector. The search space consists of all4l

l-mers. Alternatively, a motif can be precisely defined by
the list of motif instances occurred in the input sequences.
Therefore, with the motif length fixed, a motif can be rep-
resented by a vector of motif starting positions within the
input sequences. Between the two representations, we opt
for the second representation in this work. The main ad-
vantage of the latter is its efficiency in updating. A more
detailed discussion of this issue is beyond the scope of this
paper.

To evaluate the quality of a motif, we first derive a con-
sensus for the motif by taking the most frequent base at each
position, and then measure the total number of mismatches
between the individual instances and the consensus. When
this fitness function is used, it is assumed that the back-
ground sequences have uniform base frequencies, which is
usually not true. However, it is straightforward to design a
more elaborated fitness function to take into consideration
background base frequencies, with slightly increased run-
ning time.

3.2. Word dissimilarity graph

The main difficulty associated with applying the PSO al-
gorithm to motif finding problem is that the fitness function
is not continuous. In a typical PSO algorithm, one wishes
to control the velocity so that at the beginning stage the par-
ticles can fly around quickly inside the search space, and
when a particle approaches the optimal solution, it should
slow down so it can converge. One can achieve this if the
fitness function is continuous, since the velocity is updated
according to the distances between the current position and
the positions of pbest and gbest. However, a solution in
our algorithm consists of a vector of positions in the input
sequences. Therefore, the distance between two potential
solutions has no indication of the difference of their fitness
values. For example, as shown in the figure below, positions
1 and 2 are separated by 6 mismatches, while positions 1
and N have only 1 mismatch.

To solve this problem, we model the neighborhood in-
formation in the solution space by a dissimilarity graph of
all l-mers in each sequence. For example, given an input se-
quence CTCTGCTG and motif length = 3, we can construct
a dissimilarity graph, whose adjacency matrix is shown in

1

2 N

A C G T T C C A T.............A C G T T C C T

#mismatch = 6

#mismatch = 1

Figure 1. Relationship between motif posi-
tions and motif dissimilarity

Table 1. Adjacency matrix of an example dis-
similarity graph

P1 P2 P3 P4 P5 P6
P1 - 3 1 2 3 1
P2 3 - 3 2 1 3
P3 1 3 - 3 3 0
P4 2 2 3 - 3 3
P5 3 1 3 3 - 3
P6 1 3 0 3 3 -

Table 1. The row index is the current position of a candi-
date motif in this sequence, the column index is the poten-
tial new position of the motif, and the values in the cell are
the number of mismatches between the two l-mers starting
at the positions represented by the row index and column
index, respectively. For example, if the motif start posi-
tion is updated from 1 to 6, the distance is only 1, mean-
ing CTC and CTG have 1 mismatch. With this graph, we
can reformat the sequence into a new order, which is more
meaningful and useful. In the matrix below, the “neighbor-
hoods” order of P2 is (P5), (P4), (P1;P3;P6). This matrix
can be pre-computed and stored in the main RAM. As one
graph is needed for each sequence, the total space needed
is O(nL2), wheren is the number of sequences andL is
the length of each sequence. For longer sequences, the
graph can be made sparse by keeping only the edges whose
weights are smaller than a certain threshold, for example,
2d, whered is the maximum number of mismatches ex-
pected between the motif consensus and its instances.

3.3. Update policy

In order to decide what new positions should be consid-
ered as the motif starting positions, we define the velocity
of a particle as the range of the allowed number of mis-
matches between the new and current motif instances. Let
xi andxj represent two potential solutions, andD(xi,xj)
be the vector of numbers of mismatches between the motif
instances inxi and inxj , we use the following rule to define

the velocity of a particle:

vu
i ← ωvu

i + cu
1
r1 ◦D(xi, x̂i) + cu

2
r2 ◦D(xi,g)

vl
i ← ωvl

i + cl
1
r1 ◦D(xi, x̂i) + cl

2
r2 ◦D(xi,g)

Given the upper and lower bounds of the velocity,vu
i

andvl
i, we updatexi as follows. Letxi(j) be the starting

position of the motif on thej-th sequence, andx′

i(j) be
the new starting position on the same sequence. In order to
obtainx′

i(j), we randomly pick a position from sequence
j such that the number of mismatches between the motifs
started at these two positions are within the upper and lower
bound of the velocity, i.e.,

vl
i(j) ≤ D(xi(i), x

′

i(j)) ≤ vl
i(j).

3.4. Occasional full scan and shift check

Inside the algorithm we always keep track a consensus
sequence derived from gbest using the most frequent base at
each position, and compute the fitness value of gbest. When
the fitness value of gbest reaches a certain threshold, we use
the consensus sequence to do a full scan on all sequences to
check if there is anl-mer in the input sequence that matches
the consensus sequence better than thel-mer in gbest.

Second, similar to many motif finding algorithms, the
output of PSO algorithm may have a shift issue: the start
positions may be one or two positions away from the real
positions, and it is difficult for the algorithm to escape from
such local optima. To circumvent this problem, we period-
ically check whether shifting the motif positions by a small
number can improve the quality of the solution.

When a particle is almost near the optimal solution, these
two tricks can significantly reduce the running time, and
make the algorithm converge much more quickly.

3.5. Escape from local optima

If gbest remains stable for a large number of iterations,
we consider that the algorithm has reached a local optimum
or the global optimum, so we reset the algorithm. There are
two ways for reset. The first strategy is to simply discard all
the information so far and start the algorithm from scratch.
In some cases with this strategy the algorithm might con-
verge to the same local optimum repeatedly. Here we sug-
gest the second strategy, which we call a “reset move”.
When a local optimum is detected, we move all the cur-
rent solution, pbest and gbest by a random distance. We
have found that this strategy can more effectively help the
algorithm escape from local optima.

3.6. Termination

Like many stochastic algorithms, in many cases it is dif-
ficult to determine when the algorithm should terminate.
For simulated test cases, we typically know the total num-
ber of mismatches, so the program can stop when it reaches
the threshold. In practice, however, a user typically does
not have prior knowledge about the number of mismatches.
If the number is given too high, the algorithm may give
up the search before it finds the optimal solution. On the
other hand, if the number is given too low, the algorithm
may spend most of its time trying to improve over an eas-
ily detectable global optimum. Here we implemented three
methods to determine when the algorithm should termi-
nate: value-based, time-based, and repeat-based. The value-
based method is the easiest: when the solution reaches a
pre-defined threshold value, the algorithm stops running
and returns the solution. The time-based method terminates
the algorithm after a certain amount of time has passed. Fi-
nally, we recommend the repeat-based method for real test
cases. With this method, before resetting the algorithm, we
compare the current gbest fitness value with the best gbest
fitness value achieved during the course of the algorithm. If
the current gbest is better than the history gbest, we update
the history gbest; if the two fitness values and the associated
motif consensuses are exactly the same, we stop the algo-
rithm and output this result. This method is based on the in-
tuition that, since there are typically many local optima, the
probability of repeating one local optimum without an up-
date is very low. This method is very effective when tested
on the real test cases (Section 4).

3.7. Post-processing

By default, the quality of a motif is evaluated by the to-
tal number of mismatches between the consensus sequence
and its instances. There are a number of limitations in this
basic strategy when applied to real biological sequences.
First, the mismatch based quality function does not con-
sider the background frequency, which is usually not uni-
form. Second and more importantly, in real TF binding mo-
tifs the mutation rates are often not uniformly distributed
across every position, and not every site has the same sig-
nificance in determining the binding strength. For example,
many TF binding sites consist of two short conserved re-
gions, separated by a small gap. Therefore, a mismatch in
the gapped region should be penalized much less than a mis-
match in the conserved region. However, in the consensus-
based method, we are forced to select a representative for
each position, and the number of mismatches is computed
based on that representative.

To address these problems, we apply a post-processing
procedure to improve the final motif returned by the PSO

Input Sequences

Build mismatch table

Initialize pbest value, v
value, current pointer ptemp

Update pbest value,
pbest_pointer, current value

Update gbest value, gbest

Update v and current pointer

termination
criteria met?

Check shift

Output

Number of
iterations > N?

Reinitialize

Y Y

N

N

Post processing

Figure 2. Overview of PSO-motif algorithm

algorithm. Given the gbest returned by the algorithm, we
construct a position-specific weight matrix. This matrix is
then used to scan all input sequences. This scan will likely
update some of the motif instances. We then recompute the
position specific weight matrix and repeat the scan, until
the solution does not vary. With this method, the match-
ing/mismatching score is weighted by the information con-
tent contained in each position, and therefore the more con-
served positions will have more contribution to the selec-
tion of the binding sites. Furthermore, we can also take into
account the background base frequencies when scoring a
binding site against the weight matrix.

Figure 2 shows the overall structure of the PSO-motif
algorithm. The individual steps have been described in the
previous subsections.

4. Experimental results

We have implemented our algorithm in C. To evaluate
the performance of our algorithm, we tested it on two types
of DNA sequences. The first type of test data consists of
simulated data sequences, also known as the (l, d)-motif
challenging problem. The second type of data contain real
promoter sequences fromE. coli and human genes contain-
ing known TF binding sites that have been determined ex-
perimentally.

4.1. Simulated data sets

To objectively compare with the existing algorithms, we
first tested our algorithm on simulated data sets. We synthe-
sized problem instances as follows. First, a motif consen-
sus of lengthl was generated by randomly pickingl bases.
Second, we randomly selectedd positions from the consen-
sus and mutated the base at each position to a random base,
which could be the same as the original base. This generates
one instance of the motif. We repeated this process to obtain
t instances. Third, we randomly generatedt background se-
quences of lengthn each. Finally, we assign each motif
instance to a random position in a background sequence.
This procedure generatest sequences, each containing ex-
actly one instance of the motif. All random choices were
made independently and with equal base frequencies.

We first focused on the (15, 4)-motif challenge problem,
which is one of the most popular benchmarks for many mo-
tif finding programs. We fixed the number of sequences
to 20, and varied the length of each sequence from 400 to
1000. Since our algorithm is stochastic, we repeated our
algorithm multiple times, and terminated it once the mo-
tif was found. Table 2 shows the mean and median run-
ning time of our algorithm. For each sequence length, the
results are based on 10 independent runs on 5 sets of se-
quences. Table 2 also shows the running time of two of the
best combinatorial-search motif finding algorithms: Projec-
tion [2], a random projection based algorithm, and Weeder,
a suffix tree based enumeration algorithm [14]. The running
time of Weeder was taken from the original paper published
almost 7 years ago [14]. According to the original authors,
the running time was based on an 89% success probabil-
ity. Unfortunately we were not able to repeat the exper-
iments ourselves since the program is not available. The
program Projection was downloaded from the original au-
thor’s website (http://cse.wustl.edu/ jbuhler) and we tested
the program on the same data sets as for our algorithm. The
number of iterations of Projection is pre-determined by its
parameters, so its running time does not vary between runs
and the mean is almost the same as the median. Therefore
only the mean results are shown for Projection. PSO-motif
and Projection were able to recover all the embedded motifs
with 100% accuracy. Weeder is generally slower than Pro-
jection and PSO-motif. While PSO-motif and Projection
have similar running time, the running time of Projection in-
creases more rapidly with the length of the input sequences.
Furthermore, the number of iterations in Projection has to
be estimated from the motif length and the number of mis-
matches in advance. If a user does not know the number
of mismatches, one either has to use a large number of it-
erations which requires a prolonged running time, or use a
small number of iterations with the risk of missing the real
motif.

0 500 1000 1500 2000
0

5

10

15

20

25

Running time (seconds)

F
re

qu
en

cy

Figure 3. Distribution of running time of PSO
on (15,4) motifs with sequence length = 1000.

It is also worth noting that since PSO is a stochastic al-
gorithm, its running time varies between runs even on the
same data set. In rare cases the algorithm may require ex-
tremely long running time to converge. As a result, the run-
ning time has a long tail distribution, and the mean is often
much higher than the median. Figure 3 shows the distri-
bution of the running time of PSO on (15,4) motifs with a
sequence length of 1000. In fact, in 80% of cases the motifs
can be found in 335 seconds, while in one case the pro-
gram completes after almost 1900 seconds. A better strat-
egy for detecting local optima may eliminate some of these
rare cases and improve the efficiency.

Next, we compared PSO, Projection and MotifEnumer-
ator, a pattern-driven motif enumeration algorithm [20],
on a series of challenge problems with varying mo-
tif lengths and number of errors. Sequences lengths
are fixed at 600. The program MotifEnumerator
was downloaded from the original author’s website
(http://faculty.cs.tamu.edu/shsze/motifenumerator/). Again
both PSO-motif and Projection were able to recover the em-
bedded motifs with 100% accuracy. As shown in Table 3,
although Projection is more efficient than PSO for shorter
motifs, its advantage vanishes when motif length increases
to about 15, and it is slower than PSO for motifs longer than
17. The running time of PSO is almost independent of mo-
tif lengths. The running time and space requirement of Mo-
tifEnumerator are exponential tol. Therefore, for small mo-
tif lengths (e.g.,l = 11), MotifEnumerator solves the prob-
lem very efficiently; however, whenl increases to 15, the
program aborted with an out of memory exception on our
testing computer with 2GB RAM.

4.2. Real biological sequences

We also tested our algorithm on three sets of biologi-
cal sequences with known TF binding motifs. (1) The first

Table 2. Running time on (15,4)-motif chal-
lenge problems

Sequence length 400 500 600 800 1000
Weeder <1m 125s 200s 450s 15m
Projection 9s 23s 42s 162s 418s
PSO (mean) 18s 34s 57s 137s 288s
PSO (median) 7s 15s 36s 103s 220s

Table 3. Running time on other motif chal-
lenge problems

(l, d) (11,2) (13,3) (15,4) (17,5) (19,6)
Projection 4s 13s 42s 94s 174s
MotifEnumerator 5s 119s – – –
PSO (mean) 72s 58s 57s 61s 54s
PSO (median) 43s 48s 36s 38s 41s

sample is the binding sites for the cyclic AMP receptor pro-
tein (CRP), which functions as a transcription factor in Es-
cherichia coli. The data set contains 18 sequences, each
105 bp long, which contain 23 sites that have been exper-
imentally determined [19]. (2) The second test sample is
the binding site for the estrogen receptor (ER), which is a
ligand-activated enhancer protein that binds to estrogen re-
sponse elements (EREs).The data set includes 25 genomic
sequences, each of which is 200 bp long and contains a sin-
gle known ERE [10]. (3) The final data set includes 25
mammalian sequences of 200 bp long that are known to
contain binding sites for the transcription factors in the E2F
family [6].

It is important to note the following difference between
the above sequences and the simulated ones. (1) The back-
ground base frequencies are not uniform in these real se-
quences; (2) The number of mutations are not known; and
(3) The mutation rates vary at different positions. It is in-
teresting to test whether any of these characteristics in real
sequences may pose additional difficulty for our consensus-
based motif finding algorithm. Furthermore, we chose these
three examples because they represent three typical cases in
motif finding: ERP is a long and well-conserved prokary-
otic TF binding site, which is relatively easy to be identified;
ERE consists of two conserved sub-motifs separated by a
small gap; E2F is a mammalian TF binding motif present
in promoter sequences with high GC contents which may
mislead an algorithm into a low complexity region.

Figure 4 shows the sequence logos of the known motifs
together with the flanking regions, compared with the mo-
tifs predicted by our algorithm. As shown, our algorithm
has recovered the consensuses of all three real motifs. On

(a) Real motifs

(b) Predicted motifs

(c) Predicted motifs after post-processing

Figure 4. (color online) Results of PSO-motif
on real biological sequences.

(a) CRP

(b) ERE

(b) ERE

(c) E2F

Figure 5. (color online) Results of alignACE.

(a) CRP

(b) ERE

(c) E2F

Figure 6. (color online) Results of MEME.

the other hand, the probabilities of observing a given base
at some position are different between the predicted and the
real motifs, especially for the CRP motif. Further investi-
gation shows that the reason for this partial discrepancy is
often due to (1) each input sequence may contain more than
one motif, while our algorithm only allowed one occurrence
per sequence; (2) our algorithm does not take into consid-
eration background base frequencies. In the CRP data set,
the 18 sequences contained a total of 24 binding sites. Fur-
thermore, the sequences contain a very high AT content
(61%). Our algorithm included several binding sites that
match to the consensus sequence equally well as or better
than the true sites, but have higher AT contents. Therefore,
although the binding sites identified by our algorithm has
a smaller number of mismatches to the consensus than the
real binding sites, the former may be less biologically in-
teresting. Therefore, we applied to post-processing proce-
dure described in Section 3.7. Figure 4(c) shows that the
post-processing did not change the consensus sequence, but
fine-tuned the motif instances and the predicted motifs with
post-processing are more similar to the real ones than those
without post-processing are.

As a comparison, we applied two of the most successful
motif finding algorithms, MEME [1] and AlignACE [17],
both of which are based on optimizing position specific
weight matrices. To our surprise, even for these relatively
easy problems, AlignACE failed to find the ERE and E2F
motifs. Although it found the consensus sequence of CRP,
it missed many of the actual binding sites (Fig. 5) . MEME
correctly identified all the consensus sequences, but still
made significant number of errors on the binding site level
(Fig. 6) . These results confirmed the weakness of PSWM-
based methods [21, 12].

5. Conclusions and discussion

In this work, we have proposed a novel algorithm for
finding DNA motifs based on a modified version of the Par-
ticle Swarm Optimization (PSO) algorithm. We have shown
that by remapping a promoter sequence into a dissimilarity
graph of l-mers, we can successfully apply the PSO algo-
rithm to solve the difficult motif finding problem with high
efficiency and high accuracy. Our experimental results on
both simulated and real biological data sets are very en-
couraging. When applied to simulated challenge problems,
PSO is slower than Projection in easier cases, while faster
in more difficult cases that have longer input sequences or
longer motifs and more mutations. Furthermore, our al-
gorithm does not require the number of mismatches to be
given as a parameter, which is more useful in practice. For
real biological sequences, our method combined with post-
processing has successfully identified the known motifs and
most of the binding sites. Our studies have shown that PSO
is a reliable and efficient technique for solving the difficult
motif-finding problem, and we are looking into applying it
to other challenging problems in computational biology.

Acknowledgement JR was supported in part by a
UTSA new faculty startup grant and a faculty research
award. The authors would like to thank Zhi Wei for pro-
viding real biological sequence data, and UTSA Computa-
tional Biology Initiative for providing computing resources.

References

[1] T. Bailey and C. Elkan. Fitting a mixture model by expecta-
tion maximization to discover motifs in biopolymers.Proc
Int Conf Intell Syst Mol Biol, 2:28–36, 1994.

[2] J. Buhler and M. Tompa. Finding motifs using random pro-
jections.J Comput Biol, 9:225–42, 2002.

[3] M. Clerc and J. Kennedy. The particle swarm-explosion,
stability, and convergence in a multidimensional complex
space. IEEE Transactions on antennas and propagation.,
6:58–73, 2002.

[4] R. Eberhart and Y. Shi. Particle swarm optimization: devel-
opments, applications and resources. InProc. 2001 Congr.
Evolutionary Computation, 2001.

[5] R. Eberhart, Y. Shi, and J. Kennedy.Swarm Intelligence.
Morgan Kaufmann, 2001.

[6] M. Frith, U. Hansen, J. Spouge, and Z. Weng. Finding func-
tional sequence elements by multiple local alignment .Nu-
cleic Acids Res., 32:189–200, 2004.

[7] J. Hu, B. Li, and D. Kihara. Limitations and potentials
of current motif discovery algorithms.Nucleic Acids Res.,
33(15):4899–913, 2005.

[8] U. Keich and P. Pevzner. Finding motifs in the twilight zone.
Bioinformatics, 18:1374–81, 2002.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization.
In Proc. IEEE Conf. Neural Networks IV, 1995.

[10] C. Klinge. Estrogen receptor interaction with estrogen re-
sponse elements.Nucleic Acids Res., 29:2905–2919, 2001.

[11] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald,
and J. Wootton. Detecting subtle sequence signals: a gibbs
sampling strategy for multiple alignment.Science, 262:208–
14, 1993.

[12] N. Li and M. Tompa. Analysis of computational approaches
for motif discovery.Algorithms Mol Biol., 1:8, 2006.

[13] X. Liu, D. Brutlag, and J. Liu. Bioprospector: discover-
ing conserved dna motifs in upstream regulatory regions of
co-expressed genes.Pac Symp Biocomput., pages 127–38,
2001.

[14] G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding
signals of unknown length in dna sequences..Bioinformat-
ics, 17:S207–14, 2001.

[15] P. Pevzner and S. Sze. Combinatorial approaches to finding
subtle signals in dna sequences.Proc Int Conf Intell Syst
Mol Biol., 8:269–78, 2000.

[16] J. Robinson, S. Sinton, and Y. Rahmat-Samii. Particle
swarm optimization in electromagnetics.IEEE Transactions
on antennas and propagation., 52:397–407, 2004.

[17] F. Roth, J. Hughes, P. Estep, and G. Church. Finding DNA
regulatory motifs within unaligned noncoding sequences
clustered by whole-genome mrna quantitation.Nat Biotech-
nol., 16:939–45, 1998.

[18] S. Sinha and M. Tompa. Discovery of novel transcription
factor binding sites by statistical overrepresentation.Nucleic
Acids Res., 30:5549–60, 2002.

[19] G. Stormo and G. Hartzell. Identifying protein-binding
sites from unaligned dna fragments.Proc. Natl Acad. Sci.,
86:1183–1187, 1989.

[20] S.-H. Sze and X. Zhao. Improved pattern-driven algorithms
for motif finding in dna sequences. InProc. of the 2005 Joint
RECOMB Satellite Workshops on Systems Biology and Reg-
ulatory Genomics, Lecture Notes in Bioinformatics, volume
4023, pages 198–211, 2006.

[21] M. Tompa, N. Li, T. Bailey, G. Church, B. De Moor, E. Es-
kin, A. Favorov, M. Frith, Y. Fu, W. Kent, V. Makeev,
A. Mironov, W. Noble, G. Pavesi, G. Pesole, M. Rgnier,
N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbo-
gaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing
computational tools for the discovery of transcription factor
binding sites.Nat Biotechnol, 23:137–44, 2005.

